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Genome-scale metabolic models have proven to be crucial resources for translating 

detailed knowledge of thousands of distinct biochemical processes into global 

predictions of organism behavior. These models can be used to predict essential 

genes, organism phenotypes, organism response to mutations, and metabolic 

engineering strategies [1]. The models also serve as platforms for assessing and 

expanding knowledge of metabolism via an iterative cycle of experimentation, 

prediction, and reconciliation [2]. Despite these many applications, methods for 

creating genome-scale models are failing to keep pace with genome sequencing. In 

the past decade, 800+ prokaryotic genomes have been submitted to NCBI, but only 

30 genome-scale models have been published [3]. To address this problem, we have 

developed the High-Throughput Genome-scale Metabolic Reconstruction (HT-

GMR) pipeline, which rapidly generates predictive genome-scale metabolic models 

from prokaryotic genome sequences. This pipeline integrates numerous 

technologies for automating portions of the reconstruction process with minimal 

manual intervention, including genome annotation [4, 5], reaction network 

annotation and assembly [6], thermodynamic analysis to determine reaction 

reversibility [7, 8], and model optimization to fit experimental data [8-10]. We used 

the HT-GMR pipeline to generate 130 new genome-scale metabolic models and fit 

22 of these models to available experimental data [11-18]. Gibbs free energy of 

reaction values were generated for 90% of the reactions in every model [7]. Any 

gaps preventing models from growing on known minimal media were identified 

and filled to enable the prediction of phenotypes and essential gene sets. 

Comparison of HT-GMR models to available published models reveals that in 16 

of 19 cases, the HT-GMR models include more genes than their published 

counterparts. Validation of the 22 models with available growth phenotype data 

[11-18] reveals the models to have an average accuracy of 66% before optimization 
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and 87% after optimization, which closely approaches the accuracy of available 

published models. 

Until now, the genome-scale metabolic reconstruction process has followed a 

“one genome at a time” paradigm, where years of manual effort have been expended to 

build the most comprehensive model possible for a single organism. However, this 

paradigm does not scale in a world where sequencing capacity is rising and sequencing 

cost is falling at exponential rates; high-throughput methods are needed for performing 

genome-scale metabolic reconstruction without sacrificing quality or accuracy. To meet 

this challenge, we have designed and implemented the High-Throughput Genome-scale 

Metabolic Reconstruction (HT-GMR) pipeline within the SEED framework for genome 

annotation and analysis [5]. The SEED framework addresses two fundamental needs for 

rapid generation of accurate genome-scale metabolic models: the need for high-quality, 

consistent underlying genome annotations, and the rapid annotation of newly sequenced 

genomes [4]. The SEED uses a subsystems-based approach to ensure high-quality 

annotation across sets of genes that are related by function (e.g., a metabolic process) or 

structure (e.g., a ribosomal complex).  These subsystems are used to derive protein 

families that encode the core metabolic and non-metabolic functions of prokaryotic life 

[19]. Each SEED subsystem is maintained by an expert annotator who manually curates 

the protein families derived from the subsystem to ensure that they are consistently 

annotated across all sequenced genomes. Annotators also mine the scientific literature to 

improve the accuracy and detail of the subsystem annotations. The end result is the 

maintenance of a database of high-quality and up-to-date annotations that is 

continuously expanded to include new genome sequences.  

The HT-GMR pipeline extends the SEED’s “many genomes in parallel” approach 

to all of the remaining steps in the genome-scale metabolic reconstruction process: 

preliminary reconstruction, model completion, consistency analysis, and model 



4 

optimization (described below; see Fig. 1). We applied the HT-GMR pipeline to 

generate new genome-scale metabolic models for 130 organisms spread across 13 

bacterial divisions (these can be viewed and downloaded from 

http://www.theseed.org/models/). We selected organisms for this initial study based on 

annotation quality (measured by the fraction of the genes in the genome that are 

included in SEED subsystems), pathogenicity, industrial applicability, and availability 

of a published model for the organism (to allow for comparison).  

Model generation begins with the preliminary reconstruction step of the HT-

GMR pipeline, which uses the SEED annotations to produce a preliminary genome-

scale model for each of the 130 organisms. Each preliminary model consists of a 

network of metabolic and transport reactions, gene-protein-reaction associations, and an 

organism-specific biomass reaction. To support the preliminary reconstruction step, we 

mapped biochemical reactions to functional roles in subsystems to enable the automated 

assembly of gene-protein-reaction networks [6], and created a template biomass 

reaction that is used in the HT-GMR pipeline to generate a distinct biomass reaction for 

each organism (Supplementary Table S1). 

Each preliminary model produced by the pipeline undergoes an auto-completion 

step to fill any gaps in the reaction network that prevent the production of one or more 

small molecule building blocks in the biomass reaction (e.g., amino acids, nucleotides, 

and cofactors). Reactions are added from a comprehensive database of approximately 

12,000 spontaneous reactions, enzymatic reactions, and trans-membrane transport 

reactions maintained as a part of the SEED (http://www.theseed.org/reactions/). This 

database combines all the biochemistry contained in the KEGG [20, 21] and 13 

published genome-scale metabolic models [10, 12, 15, 16, 22-30] into a single, non-

redundant set. The auto-completion step ensures that every HT-GMR model is capable 

of simulating cell growth. It also produces a list of metabolic functions predicted to be 
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missing from the genome annotations in the SEED (Supplementary Table S2). On 

average, 56 reactions were added to the 130 HT-GMR models during the auto-

completion step (Fig. 2c), increasing average size of the models to 965 reactions. As 

expected, the most well studied bacterium, Escherichia coli K12, required the fewest 

auto-completion reactions (10 reactions) in order for biomass to be produced. This was 

in spite of the fact that the auto-completion for E. coli was performed while simulating 

growth in glucose minimal media. In contrast, the model of the endosymbiont Buchnera 

aphidicola required the most auto-completion reactions (132 reactions). Many of the 

reactions added to B. aphidicola were transporters for essential metabolites that B. 

aphidicola cannot produce biosynthetically. Some of the remaining intracellular auto-

completion reactions represent metabolic functions that are predicted to be missing from 

the B. aphidicola annotations. However, many also represent metabolic functions that 

are provided to B. aphidicola by its host (e.g., the lipopolysaccharide biosynthesis 

pathways) [31]. In general, the 23 HT-GMR models associated with obligate-

intracellular organisms required more reactions (74 on average) to be added during the 

auto-completion step, a result of the dependency of these organisms on metabolic 

functions provided by their hosts. The functions added to the obligate-intracellular 

organisms during the auto-completion step provide useful insights into the nature of the 

symbiotic or parasitic relationship these organisms have with their hosts. 

The auto-completion results also enable the identification of the regions of the 

metabolic network where the gaps in the genome annotations for the model organisms 

appear to be more prevalent (i.e., Cell Wall and Capsule Biosynthesis pathways, 

Cofactors, Vitamins, and Prosthetic Group Biosynthesis pathways). On average, 21 

(15%) of the 141 reactions associated with the Cell Wall and Capsule Biosynthesis 

pathways in the HT-GMR models were added during the auto-completion process, 

meaning they are enzymatic reactions required for biomass production that have no 

gene associated with them. The Cell Wall and Capsule Biosynthesis reactions added 
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during the auto-completion process belong primarily to three SEED subsystems: LOS 

Core Oligosaccharide Biosynthesis (Gram negative), Teichoic and Lipoteichoic Acids 

Biosynthesis (Gram positive), and KDO2-Lipid A Biosynthesis (Gram negative). In 

general, the Gram negative cell wall biosynthesis pathways involved more auto-

completion reactions than did the Gram positive pathways. Similarly, 10 (5%) of the 

194 reactions associated with the Cofactors, Vitamins, and Prosthetic Group 

Biosynthesis pathways in each HT-GMR model were added during the auto-completion 

step. These belong primarily to three SEED subsystems: Ubiquinone Biosynthesis, 

Menaquinone and Phylloquinone Biosynthesis, and Thiamin Biosynthesis. Overall, 

while an average of 56 reactions were added to the HT-GMR models during the auto-

completion step, over 31 of these reactions are associated with only six subsystems in 

the SEED. This indicates that the quality and completeness of the SEED annotations can 

be significantly improved by targeting these six subsystems for additional experimental 

work and manual curation. Because the preliminary reconstruction and auto-completion 

steps in the HT-GMR pipeline are fully automated, any improvements made to the 

SEED annotations can be rapidly integrated into new versions of the HT-GMR models. 

We call the models that are generated by the preliminary reconstruction and auto-

completion steps analysis-ready because they can simulate the production of biomass 

from transportable nutrients. Hence, these models can be used with flux balance 

analysis tools [1, 32] to predict gene essentiality, organism growth conditions, organism 

phenotypes, and overall organism response to environmental and genetic manipulations. 

An analysis-ready model was produced for all 130 genomes processed by the HT-GMR 

pipeline. On average, the analysis-ready models include 965 reactions (Fig. 2a), 688 

genes (Fig. 2b), and 876 metabolites. Models vary significantly in size, from 243 

reactions and 193 genes (Onion yellows phytoplasma) to 1396 reactions and 1586 genes 

(Burkholderia xenovorans). 
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The remaining steps of the HT-GMR pipeline involve the optimization of the 

analysis-ready models to better fit any available experimental growth phenotype data. 

Experimental data including Biolog phenotyping arrays [11-16] and gene essentiality 

datasets [17, 18] are available for 22 of the organisms for which models were 

constructed, and these data were used to validate and optimize the analysis-ready HT-

GMR models for these 22 organisms (Fig. 3). The analysis-ready HT-GMR models had 

an average predictive accuracy of 60% for the Biolog data, 72% for the essentiality data, 

and 66% overall (blue bars in Fig. 3). These accuracies are low compared with the 

accuracy typical for published genome-scale models, which is around 90%. However, 

the extreme accuracy of published genome-scale models is largely a product of an 

iterative process of manual refinement to better fit available experimental data [2]. We 

implemented three steps in the HT-GMR pipeline to replicate this manual refining 

process in high-throughput: Biolog consistency analysis, gene essentiality consistency 

analysis and model optimization.  

Consistency analysis of the 14 HT-GMR models with available Biolog data 

revealed an average of 69 nutrients that were lacking transport reactions in each model 

but were known to be metabolized based on the experimental data. Transport reactions 

were added to the models for each of these nutrients, which resulted in a 10.1% 

improvement in the accuracy of the Biolog phenotype predictions (Fig 3a) and a 4.9% 

improvement in overall accuracy. The large number of transport reactions added during 

the Biolog consistency analysis indicates that identification of the genes associated with 

transport of Biolog nutrients remains an open problem in annotation. However, the large 

increase in accuracy that results from the addition of transport reactions during the 

Biolog consistency analysis indicates that the intracellular pathways required to 

metabolize the Biolog nutrients are typically captured in the SEED annotations. The 

addition of new transport reactions during the Biolog consistency analysis had a 

negligible effect on the essentiality prediction accuracy (Fig 3b), with only two models 
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(E. coli K12 and P. aeruginosa PAO1) showing any improvement at all. This indicates 

that the transport reactions most essential for capturing how an organism grows and 

interacts with its environment in complex media (where most essentiality experiments 

are conducted) are well-captured by existing annotations or the auto-completion 

algorithm. Application of the gene essentiality consistency analysis algorithm to the 14 

HT-GMR models with available essentiality data resulted in the identification and 

correction of 202 annotations that were inconsistent with available essentiality data (see 

Methods and Supplementary Table S5). This improved the average accuracy of the gene 

essentiality predictions to 78% (red bars in Fig. 3). 

The model optimization step of the HT-GMR pipeline, which is a modified 

version of the GrowMatch algorithm [9], takes place in two stages: GapFill and 

GapGen (see Methods). Application of the GapFill stage resulted in the addition of an 

average of 15 new reactions, while the reversibility constraints were relaxed on an 

average of 5 existing reactions (Supplementary Table S6). These changes improved 

overall model accuracy to 83% on average (green bars in Fig. 3). As with the auto-

completion, the GapFill stage of the model optimization step generated numerous 

predictions of metabolic functions that are missing from the current genome 

annotations, which will be useful to the ongoing efforts to improve these annotations.  

Application of the GapGen stage of the model optimization step resulted in the 

removal of an average of 5 reactions, while reversibility constraints were tightened on 

an average of 8 reactions (Supplementary Table S7). These changes further improved 

overall model accuracy to 88% on average (purple bars in Fig. 3). Details of the exact 

reactions added and removed from each of the 22 HT-GMR models during the GapFill 

and GapGen stages are provided in Supplementary Tables S6 and S7, along with data 

on the explicit model predictions that were corrected with the addition or deletion of 

each reaction. In general, the GapFill and GapGen algorithms produced a more 
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significant improvement on the Biolog phenotyping array prediction accuracy than on 

gene essentiality prediction accuracy (Fig. 3).   

Genome-scale models have already been published for 19 of the organisms 

selected for reconstruction by the HT-GMR pipeline [10, 12, 15, 16, 22-30] (Table 1). 

We compared the HT-GMR models for these 19 organisms with their published 

counterparts to determine how effectively the HT-GMR pipeline reproduces the results 

of the manual reconstruction process. A comparison of the number of reactions included 

in the models reveals that the HT-GMR models are significantly larger than their 

published counterparts with only one exception (iAF1260) (Table 1). In the HT-GMR 

models, many pathways that are typically lumped together in published models (e.g., 

fatty acid biosynthesis) were expanded to enable thermodynamic analysis, which is one 

of the reasons that the HT-GMR models contain more reactions. Comparison of the 

number of genes represented in the HT-GMR models and the published models is a 

better measure of relative complexity and completeness of the models because both 

models are derived from the same set of genes. In 16 of the 19 cases we examined, the 

HT-GMR models include more genes than their published counterparts (Table 1), 

indicating that the HT-GMR models (and the annotations they are derived from) tend to 

be more complete than their published counterparts. The improved coverage of the 

genomes by the HT-GMR models exemplifies the completeness of the SEED’s 

subsystems-based annotations and the effectiveness of the HT-GMR pipeline in 

producing genome-scale models with a size and detail that matches and often exceeds 

the manual reconstruction process.  

We conducted a detailed comparison for nine of the HT-GMR models to 

determine the extent to which the reactions and genes in these models overlap with the 

reactions and genes in the published models (Supplementary Table S3). The comparison 

reveals that the published models and the HT-GMR models share an average of 567 
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reactions, which amounts to 66% of the reactions in the published models and 42% of 

the reactions in the HT-GMR models. The gene comparison reveals that the published 

models and the HT-GMR models share an average of 505 genes, which amounts to 82% 

of the genes in the published models and 42% of the genes in the HT-GMR models. 

These results demonstrate that the published models and the HT-GMR models both 

contain a significant amount of exclusive content. However, the HT-GMR models 

contain a much larger fraction of reactions and genes that are not represented in the 

published models. Most of the exclusive genes in the published models are not involved 

in any SEED subsystems and are assigned to generic functional roles in the SEED (e.g., 

amino acid biosynthesis, amino acid permease). To capture these genes in the HT-GMR 

models, we will need to seek evidence to explain why specific reactions were assigned 

to these genes in the published models. The exclusive genes in the HT-GMR models are 

associated with specific metabolic functions involved in a wide range of subsystems in 

categories such as Amino Acid Biosynthesis, Vitamin and Cofactor Biosynthesis, and 

Trans-membrane Transport. These results indicate that published models may be 

significantly improved by reconciling them with the HT-GMR models. 

Here we have applied the first high-throughput genome-scale metabolic 

reconstruction pipeline to the generation and optimization of 130 new genome-scale 

metabolic models; and we have constructed an online resource for downloading, 

viewing, comparing, and analyzing these new models (http://www.theseed.org/models/). 

While we have limited this initial application of the HT-GMR pipeline to 130 of the 

most well studied and annotated genomes in the SEED, the technology can rapidly be 

scaled up to produce functioning genome-scale metabolic models for all available 

prokaryotic genome sequences. In tandem with the SEED’s rapid annotation service 

(the RAST [4]), the HT-GMR pipeline is also capable of producing a new model from 

any prokaryotic genome sequence in approximately five days. While the accuracy of the 

models will decline significantly for organisms that are poorly covered by the current 
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set of SEED subsystems, the availability of preliminary functioning genome-scale 

metabolic models for these organisms will significantly benefit efforts to improve their 

annotations. Additionally, in the process of constructing these models we have 

generated hundreds of new predictions of functions believed to be missing from the 

current annotations (Supplementary Tables S2 and S6). As microbiologists test for the 

presence of the missing functions proposed in this work, we will update our models and 

rerun the auto-completion and model optimization steps to replace predictions that are 

inconsistent with their findings. This iterative process of model improvement has been 

highly successful when applied to E. coli [2], but each cycle of the process has 

previously required years because of the time needed to absorb new data and publish an 

updated model. The HT-GMR pipeline will enable us to rebuild all of the HT-GMR 

models on a monthly or even biweekly basis. Rapid update of genome-scale models is 

essential for keeping up with the emergence of new high-throughput experimental data 

sets and for enabling researchers worldwide to rapidly benefit from new discoveries in 

organism metabolism. 

Methods Summary 

The HT-GMR pipeline uses a semi-automated process to produce optimized 

genome-scale metabolic models from annotated genomes in the SEED framework for 

genome annotation and analysis. The pipeline consists of five consecutively applied 

steps (Fig. 1): (1) assembly of a preliminary reconstruction from a SEED annotated 

genome; (2) auto-completion of the preliminary reconstruction to fill any gaps in the 

reaction network that prevent the production of biomass from transportable nutrients; 

(3) Biolog consistency analysis to identify metabolized nutrients that are lacking 

transport reactions in the model; (4) gene essentiality consistency analysis to identify 

cases where gene-protein-reaction relationships in the models are inconsistent with 

available gene essentiality data; and (5) model optimization to add or remove a minimal 
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set of reactions from the model to improve the accuracy of model predictions. Each of 

these five steps is described in detail in the Additional Methods section. Flux Balance 

Analysis (FBA) is used with the HT-GMR models to simulate organism growth in a 

variety of environments and with a variety of genetic modifications. Simulation results 

are compared with available Biolog phenotyping array data and gene essentiality data to 

assess model accuracy.  
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Tables 

Table 1. Comparison with published models 

Organism name 
Published 
model 

Published 
reactions 

SEED 
Reactions 

Published 
genes 

SEED 
genes 

Acinetobacter iAbaylyiv4 [16] 868 1196 775 785 

B. subtilis iYO844 [12] 1020 1463 844 1041 

C. acetobutylicum  iJL432 [33] 502 989 432 721 

E. coli  iAF1260 [15] 2013 1529 1261 1083 

G. sulfurreducens  iRM588 [34] 523 721 588 468 

H. influenzae  iCS400 [35] 461 969 400 575 

H. pylori  iIT341 [36] 476 731 341 421 

L. plantarum  iBT721 [37] 643 908 721 699 

L. lactis  iAO358 [25] 621 965 358 646 

M. succiniciproducens  iTK425 [38] 686 1048 425 659 

M. tuberculosis  iNJ661 [27] 939 1021 661 728 

M. genitalium  iPS189 [10] 264 294 189 214 

N. meningitidis  iGB555 [39] 496 903 555 560 

P. gingivalis iVM679 [40] 679 744 0* 399 

P. aeruginosa  iMO1056 [41] 883 1386 1056 1094 

P. putida  iNJ746 [28] 950 1261 746 1053 

R. etli  iOR363 [42] 387 1264 363 1242 

S. aureus  iSB619 [30] 641 1115 619 770 

S. coelicolor iIB700 [43] 700 1159 700 987 

*genes were not associated with reactions in this model. 
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Figures legends 

Figure 1. High-throughput Genome-scale Metabolic Reconstruction Pipeline. In 

the first step of the HT-GMR pipeline, a preliminary model is assembled 

consisting of intracellular and transport reactions associated with genes on the 

basis of the SEED annotations, spontaneous reactions, and a distinct biomass 

reaction assembled from the template biomass reaction. In the auto-completion 

step of the pipeline, additional intracellular and transport reactions are added to 

the preliminary model to generate an analysis-ready model capable of 

simulating biomass production using only transportable nutrients. The final three 

steps of the HT-GMR pipeline involve the removal/addition of reactions from the 

model to fit Biolog phenotyping array data (when available) and gene 

essentiality data (when available) to produce an optimized model. 

Figure 2. Statistics for analysis-ready HT-GMR models. The number of 

reactions (a) and genes (b) included in the 130 analysis-ready models follows a 

roughly bell-shaped distribution (blue bars). However, the distribution of 

reactions added by the auto-completion algorithm (c) is distinctively skewed to 

the left, indicating that a small number of models require a significantly larger 

number of auto-completion reactions. 

Figure 3. Accuracy of models generated by the HT-GMR pipeline. The accuracy 

of the HT-GMR models in predicting Biolog phenotyping array data (A) and 

gene essentiality data (B) steadily improved during the model refining steps of 

the pipeline. Prior to optimization, the HT-GMR models had an average overall 

accuracy of 66% (blue bars); this increased to 71% after the Biolog consistency 

analysis (orange bars); 75% after the gene essentiality consistency analysis 

(red bars); 83% after the GapFill stage of the model optimization (green bars); 

and 88% after the GapGen stage of the model optimization (purple bars). The 
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gene essentiality consistency analysis impacted only the gene-protein-reaction 

associations in the models, so it had no effect on the Biolog phenotyping array 

prediction accuracy.  
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Additional Methods 

HT-GMR pipeline: preliminary reconstruction 

The HT-GMR pipeline produces analysis-ready genome-scale metabolic models 

starting from the high-quality genome annotations produced and maintained within the 

SEED framework, and optimizes them when phenotype and gene essentiality data are 

available (Fig.1). In the first step of this pipeline, a preliminary metabolic model is 

constructed consisting of (1) the spontaneous reactions, enzymatic reactions, and 

transport reactions that make up an organism’s metabolism; (2) the set of gene-protein-

reaction (GPR) relationships that describe how reaction activity depends upon an 

organism’s genes; and (3) a biomass reaction that describes the essential small molecule 

building blocks of the organism. Enzymatic intracellular and trans-membrane transport 

reactions are included in the preliminary model if one or more of the functional roles 

associated with these reactions in the SEED (http://www.theseed.org/reactions/) have 

been assigned to one or more of the genes in the annotated genome. The functional role-

to-reaction mappings in the SEED are used to construct the GPR relationships that 

encode how genes work together to form the protein complexes that catalyze enzymatic 

reactions. These GPR relationships are essential for correctly predicting the impact of 

gene knockout on organism viability and behavior by using a genome-scale model. The 

biomass reaction in the preliminary model is assembled based on the template biomass 

reaction in the SEED (Supplementary Table S1), which was constructed from a curation 

of the biomass reactions included in 19 existing genome-scale metabolic models [10, 

12, 15, 16, 22-30]. The template biomass reaction includes 83 small molecule reactants, 

39 of which are universal building blocks included in the biomass reaction of every 

organism (e.g., nucleotides for RNA and amino acids for protein). The remaining 44 

reactants are included in a subset of the biomass reactions based on specific criteria that 

must be satisfied by evidence available in the annotated genome. These criteria include 
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cell wall type (Gram positive, Gram negative, other) and subsystem variant codes that 

indicate specifically how an organism implements certain metabolic functions.  

HT-GMR pipeline: auto-completion 

The preliminary metabolic models assembled during the first step of the HT-GMR 

pipeline typically contain gaps in their reaction networks that prevent the production of 

one or more essential building blocks in the biomass reaction. As a result of these gaps, 

preliminary models are incapable of simulating cell growth under any conditions. In the 

second step of the HT-GMR pipeline, these gaps are identified and eliminated through a 

process called auto-completion. In the auto-completion process, an optimization is 

performed to identify the minimal set of new reactions that must be added to the 

preliminary model to enable the production of biomass in the minimal confirmed 

growth medium for the modelled organism (Supplementary Table S2). If the minimal 

confirmed growth medium for an organism is unknown, any transportable metabolite is 

allowed to be consumed from the medium during the auto-completion process. The 

reactions added during the auto-completion process are selected from a comprehensive 

database of spontaneous reactions, enzymatic reactions, and trans-membrane transport 

reactions maintained as a part of the SEED (http://www.theseed.org/reactions/). This 

database consists of  approximately 12,000 reactions and 15,044 compounds, and it 

combines all the biochemistry contained in the KEGG [20, 21] and 13 published 

genome-scale metabolic models [10, 12, 15, 16, 22-30] into a single, non-redundant set. 

Often the gaps in the reaction network of a preliminary model may be filled by many 

different distinct sets of reactions. The objective function of the auto-completion 

optimization is parameterized to favor the selection of the set of reactions that 

represents the best possible hypothesis of what is actually missing from the genome 

annotations. In this objective function, the addition of transport reactions is penalized so 

the completion of intracellular biosynthesis pathways is favored over the addition of 
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transport reactions. The addition of transport reactions for small molecules included in 

the biomass reaction is penalized more heavily. Addition of reactions proceeding in a 

thermodynamically unfavorable direction is also penalized to avoid auto-completion 

solutions that involve thermodynamically infeasible pathways. Addition of reactions 

associated with functional roles or subsystems in the SEED is favored because these 

reactions take part in the core pathways of metabolism and represent the most well 

curated portion of the known biochemistry. Addition of reactions associated with 

subsystems and pathways that are already heavily represented in the annotated genome 

is particularly favored because these reactions are more likely to be filling gaps in the 

genome annotations. Once the auto-completion optimization produces a set of reactions 

that optimally satisfy these criteria, the reactions are added to the preliminary model to 

produce an analysis-ready model. 

HT-GMR pipeline: analysis-ready model optimization 

The remaining steps of the HT-GMR pipeline involve the optimization of the 

analysis-ready model to better fit any experimental growth phenotype data that is 

available. Because these steps of the pipeline require data for fitting, they can be applied 

only to those organisms for which experimental data exist. The first optimization step of 

the pipeline, called Biolog consistency analysis, is performed only for organisms with 

available Biolog phenotyping array data [13]. In this step, the list of nutrients for which 

transport reactions exist in the model is compared against the list of nutrients the 

organism is known to metabolize based on available Biolog phenotyping array data. If 

no transport reaction exists in the model for a nutrient that is known to be metabolized, 

the transport reaction associated with the nutrient is added to the model.  

The second optimization step of the pipeline, called gene essentiality consistency 

analysis, is performed only for organisms with available gene essentiality data. In this 
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step, the data are used to identify and correct errors in annotations and GPR 

relationships included in the analysis-ready model. An algorithm is used to 

automatically search for instances of inconsistency between model annotations and 

available gene essentiality data. Three types of inconsistency are examined during the 

consistency analysis: (i) identical functional roles are assigned to an essential gene and 

one or more nonessential genes, (ii) identical functional roles are assigned to multiple 

essential genes without indicating that the protein products of these genes form a 

complex, and (iii) one or more essential genes and one or more nonessential genes are 

all annotated to encode portions of the same protein complex. Once inconsistent 

annotations are identified, they are grouped by associated metabolic function, and a 

variety of annotation corrections are automatically proposed. Proposed corrections are 

then manually reviewed for implementation in the model. 

The third optimization step in the pipeline, called model optimization, involves 

using the GrowMatch algorithm developed by Kumar and colleagues [9] with additional 

global optimization steps described in detail in our previous work [8]. The model 

optimization proceeds in two stages: (i) GapFill to correct errors in the model that 

prevent growth in silico when growth is observed in vivo (false negative predictions) 

and (ii) GapGen to correct errors in the model that allow growth in silico when growth 

is not observed in vivo (false positive predictions). In the GapFill stage, a series of 

mixed integer linear optimization problems (MILPs) is solved to produce a set of 

possible solutions. Each solution represents a minimal set of modifications to the model 

reaction network that results in a maximal reduction in false positive predictions. The 

modifications proposed by the GapFill algorithm include the addition of new reactions 

to the model reaction network or switching an existing reaction from being irreversible 

to being reversible. The most physiologically reasonable solution is then manually 

identified for implementation in the refined model.  
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The GapGen stage of the model optimization is similar to the GapFill stage in that 

a series of MILPs is solved to produce a small number of solutions, one of which is 

manually selected for implementation to maximally reduce prediction errors. In the 

GapGen stage, however, false positive predictions are eliminated, and reactions are 

made irreversible or removed entirely rather than being added. The GapGen stage of the 

model optimization provides a valuable means of identifying reactions in the models 

that were under-constrained by the reversibility prediction method used.  

Model validation using flux balance analysis 

Flux balance analysis (FBA) is first used in the HT-GMR pipeline to verify that 

every model produced by the pipeline is analysis-ready, by confirming that the model is 

capable of simulating biomass production in the minimal defined growth medium for 

the modelled organism. If no minimal defined growth medium is known for the 

organism, FBA is used to ensure that the model is capable of simulating biomass 

production using only nutrients for which trans-membrane transport reactions exist in 

the model. 

In the assesment and optimization of the SEED models, FBA is used to calculate 

the maximum possible growth in silico for every experimental condition with available 

data. Model accuracy is assessed by determining that fraction of experimental 

conditions where the growth predicted in silico and growth observed in vivo are either 

both zero or both nonzero.  
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