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We present a pivoting algorithm for solving linear progranithunear complementarity constraints. Our
method generalizes the simplex method for linear programmingabwith complementarity conditions.
We develop an anticycling scheme that can verify Bouligadisiarity. We also give an optimization-
based technique to find an initial feasible vertex. Stanith a feasible vertex, our algorithm always finds
a minimizer or an unbounded descent search direction in a finitegber of pivoting steps.
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1. Introduction

In the past decade, extensivoets have been spent on mathematical programming with
equilibrium constraints (MPEC). Many of these reseaiftbres center on constraint qual-
ifications and stationarity conditions [40, 41, 44, 45] arngbathms based on nonlinear
programming (NLP) techniques to obtain stationary point2[B, 13, 15, 16, 19, 26, 29,
30, 35-37, 42]. Other researcfiats focus on finding global solutions [25, 32], but these
methods incur considerable computational costs.

A common drawback of the NLP-based approach for MPECs is thanicoaverge
to spurious stationary points, such as C-stationary orailestary points, with trivial de-
scent directions. Recently a robust method for solving MPE&s pvoposed [38], based
on sequentially solving a linear model of an MPEC, a linear @ogwith linear comple-
mentarity constraints (LPCC). This method converges to Bestaty points which have
no trivial descent directions provided one finds B-statigraoints for the LPCCs gen-
erated. Moreover, failure of the LPCC method to find a feasibietpend report only
B-stationary point for an infeasibility minimization pri@m is robustly handled by the
algorithm, which will compute a B-stationary point for thePC infeasibility minimiza-
tion problem. This algorithm motivates us to investigate negal techniques to solve
LPCCs.

The global solution of LPCCs is a challenging problem, becausedsPi@ave non-
convex feasible sets that might not even be connected. dnaleé PCC is always trans-
formable to a mixed-integer program, and sometimes tramsfble to a bilevel linear pro-
gram. Several works exploit the connections in order to agvekw methods. Examples
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Include cutting plane (24, 27, 23] and branch-anad-boundopt |3-5, 22, 31|, where the
latter are a class of algorithms for finding a global minimunadifilevel linear program.

Both approaches are based on mixed-integer programmiegldition, a penalty method
was also proposed b®nal [39] and analyzed by Car@le and Scheimberg [9]. While
these methods can be used to compute global solutions to LRI@Gsymputational cost
of applying them is large when we need only local B-statigrsaiutions.

Our proposed method for solving LPCCs does not guarantee alglolition, though it
does provide global optimality in some of our test probleRegther than transforming the
LPCC into another type of program, we consider the LPCC itselfdmwvelop a pivoting
algorithm that can handle linear complementarity constsabased on the classical sim-
plex method for linear programming. A related local meth®described in [33], but this
method was developed only for nondegenerate problems. I@anitam, however, is ap-
plicable to degenerate problem and includes an optimizdigsed initialization method
and an anticycling scheme. In addition, certain well-d&hbd techniques for the sim-
plex method, such as steepest-edge search [21, 43] andidwmodification of LU fac-
torization for active-set updates [6, 7, 17, 43], can be uisedr algorithm to improve its
efficiency.

The rest of this paper is organized as follows. Section 2 reyvidwe stationarity con-
ditions for LPCCs. Section 3 gives a generalized pivoting dligor for LPCC under a
nondegeneracy assumption. Section 4 extends the capaijilayr algorithm to work
under degeneracy. Section 5 gives a scheme to break pivottlgscdue to degener-
acy and nonstrict complementarity conditions. This antingcscheme can also prove
B-stationarity. Our algorithm requires an initial feasiblertex to start, and Section 6
presents an optimization-based method to find such an iniidéx. Section 7 reports
some numerical results.

2. Stationarity Conditions for LPCC

In this section we briefly review optimality conditions for LPEGNe consider the LPCC

minimize g' x
X
subject toa! x > by, i=1....,m (1)

0<(ax—hy) L (ag,Xx=bpu) 20,i =m+1,....m+p,

wherex € R". The notatiory L zmeans thay andz are orthogonal; that ig;" z = 0 for
vectors, or simplyz = 0 for real values. Without loss of generality, we have remede
the inequalities such that the lagh hequalities are in thg complementary conditions.
We call inequalitiesa,-Tx > by standardconstraints foi = 1,..., mandcomplementarity
constraints for = m+1,..., m+2p.

Our method is readily extended to more general forms of fimeastraints, such as
equality constraints, range constraints, or mixed complarity conditions. We have
chosen the format in (1) mainly to simplify the presentation

For an indexi of a complementarity constraint, we defio@) to be the index of the
constraint to which it is complementary. That is,

NULL, if i <m;
ci)=1i+p, if m+1<i<m+p; 2)
i—p, if m+p+l<i<m+2p.



A point Is calledlinear teasibler it satisfies the linear inequalities
a' x> by, i=1,...,m+2p. (3)
A point is calledcomplementarif it satisfies the complementarity conditions
(& x—hy)(a;x—beg) = 0, i=m+1,...,m+p. (4)

A point is calledfeasibleif it is complementary and linear feasible, that is, satigfyall
the constraints in (1).

Several stationarity concepts for optimization problemghveiquilibrium or comple-
mentarity constraints have been proposed. We briefly revievstrong- and Bouligand-
stationarity conditions for LPCCs. Other stationarity cquteesuch as A-, C-, L-, or M-
stationarity [23, 40, 41, 44, 45] include trivial descenedtions and therefore are not of
interest.

We call a complementarity conditio/(x~bi) L (al; x—bq()) nonstrictat Xif af % = by
andal(i)k = be) [42]. It is also sometimes called a degenerate or lowertdsgenerate
complementarity condition. We denote the index set of martstomplementarity condi-
tions by

D(R) ={i:a/k=b raly&=be, i =m+1...,m+p}. (5)

DeriniTion 2.1 A feasible poinik of (1) is called strongly stationary if there exist multi-
pliers yi, ..., Yms2p, Such that

m+2p

g- Z yiai = 0,
i—1
Os(aiT)“(—bi)J_yiZO,Vie{l,...,m}; (6)
a'x>b =y =0 Vie{m+l,...,m+2p});
Yi > 0A Yy =0, Vi € D(X).

If we relax the conditiond] X - bj) L (a;% — b)) for j € D(X) at a feasible point
X and fix the remaining complementarity conditions as equatisimilar to (2.2), then in
a neighborhood ox%,the LPCC problem (1) is reduced to an LP problem. If the solution
of this LP is alsox; thenX'is strongly stationary. The Karush-Kuhn-Tucker (KKT) con-
ditions of this LP atx; which imply a minimum, are equivalent to the strong-stasdidty
conditions in Definition 2.1. Therefore, a strongly statignaoint of LPCC (1) is a local
minimizer, but there exist local minima that are not strgrgthtionary, see e.g. (9). We
note thatx’is only a local minimizer, because afdirent feasible poink gives rise to a
different LP. Next, we review a necessary anflisient condition for a local minimizer of
LPCC, namely B-stationarity.

For MPECs, aBouligand-stationary or B-stationargoint is a point at which no lin-
earized feasible descent directions exist [41]. For LPCCsgaiivalent, more convenient
definition is given next.

Derinition 2.2 Given a feasible poink of (1) and a subset of nonstrict complementarity
conditionsP € D(X), the LP piece LIX, P) is defined by tightening the nonstrict comple-



mentarity conditions:

minimize g'x

subjxect to ax > by, Vie{l,...,m}
a'x=b; and a'cr(i)x > by, Vi € {m+1,...,m+ph\ D(X) and g X = by;
a1TX > b and ag(i)x = bc(i), Vie{m+1,...,m+p}\ D(X) and a'{(i)k = bc(i);
a1TX = b; and a'cr(i)x > bc(i), Vi e P;
a' x> b and ag(i)x = bggiy, Yi € D(X) \ P.

(7)

Derinition 2.3 We call X a B-stationary point if and only ik is a minimizer of all LP
pieces LRX, ) for P € D(X).

Remark 1An equivalent statement in terms of multipliers is that fdrfa c D(X) there
exist multipliersyy, . .., Ym.2p, Such that

m+2p

g- > via=0,
i1
0<@R-b)Ly >0 Vie({l,...,m; (8)
a'x>b =y =0, Vie{m+1,...,m+2p}\ D(X);
Yeiy 2 0, Vi € P;
yi >0, Yie DX\ P

holds.

In general, strong stationarity implies B-stationarityt bot vice versa. However, when
all complementarity constraints are strict, then strorgicgbarity and B-stationarity are
equivalent.

Scheel and Scholtes [41], page 8 give an example where a vetBegtationary but not
strongly stationary:

minimize X; + Xo — X3
X1,X2,X3

subjectto 4; — X3 > 0, indexed by 1; (9)
4%, — X3 > 0, indexed by 2;
0< X L X >0, indexed by 3and 4

The only feasible vertex of (9) is (0, 0). By Definition 2.1, strong stationarity requires
that there exist nonnegative multipliers y», ys, y4 satisfying

1
1
-1

Adding 4y, +y3 = 1 and 4/, +y, = 1 minus four timey; +y, = 1, we obtairnys+y, = -2,
which contradictys > 0 andy, > 0. Thus, (00, 0) is not strongly stationary.

To prove B-stationarity, we observe that the two LP piece®9ptorrespond tog =
0 < xp andx; > 0 = x,. Using (10), we obtain the multiplier§ (3, -2,0) and &, 2,0, -2)
for the two LP pieces. Thus, (0, 0) is B-stationary.

Y1

21 (10)
3
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0 401
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3. Pivoting under Nondegeneracy

Our algorithm generalizes the active-set method for LP to LP3@.algorithm starts at
a feasible vertex and moves from one vertex to another along a feasible edgmit@e
g' x. For ease of presentation, we make the following two assiomgt

(1) There are exactlg linearly independent active constraints at every vertex.
(2) An initial feasible vertex is given and associated witlnearly independent ac-
tive constraints.

The first assumption is a general nondegeneracy assumptidmyeashow in Sections 4
and 5 how to remove it, by extending the working set and d@wedpa suitable anticycling
scheme for LPCC. The second assumption can be removed by a dge-ptocess, which
we describe in Section 6.

A vertex X of LPCC (1) is determined by a working set factive linearly indepen-
dent constraints, whose indices form a set denotedhyUnder the nondegeneracy as-
sumption, all active constraints are in the working®ét To satisfy the complementarity
condition in (1), we need the following additional conditio

{i,c(H}NnW £ 0, Yie{m+1,...,m+p}, (11)

wherec(i), defined in (2), is the index of the other complementarityst@int of constraint
i. Condition (11) ensures that at least one constraint in eaciplementarity condition is
active. For ease of presentation, we partitidhinto Wy andWi:

Wo=Wn{l...,m}, Wi=Wn{m+l,...,m+2p}, (12)

where W, andW; contain the standard and complementarity constraints fi&nre-
spectively.

We note that we have assumed nondegeneracy but not staahesmplementarity
conditions. In other words, two constraints in a compleragtyt condition can be in the
working set at the same timgj; c(j)} € W for somej € {m+1,..., m+p}.

Aggregating all constraints in the working s#t, we obtain a linear systef’ x = b,
whereA = [aj]jew andb = [bj]jew. The Lagrangian of (1) is

L(x.y) =g"x—-y'(A"x-b).

The vertexx"determined by the working sé¥’ is A~"h. SettingdL/dx = 0, we obtain
the multipliersy’= [¥]jew := A~1g. Moving from one vertex to another along a feasible
edge implies replacing one entry in the working $€tby another, and\ = [a;] e and
b = [bj]jew will be updated accordingly. In practice, we do not foAm but work with
numerically stable LU factors. Since only one columnfois changed at each pivoting
step, we can apply a rank-one update to the LU factors for ctatipoal dficiency [6, 7,
17, 43].

We denoteA " = [sj]jew. Moving from the vertexx”= A~Tb along the directiors;
increaseaJij, so the constrainelexj > b; becomes inactive, while the other equations in

ATx = b remain satisfied. The directics) is associated with the edge formedAyx = b
after removingaij = b;. The rate of change of the objective function when moving from
Xto X + sj is given by the multipliey; = szg. Therefore s; is a descent direction if and
only if §; < 0.

Now we discuss whether moving alorsy from a feasible vertex Will violate the
complementarity conditions (4). We have assumed that at l@@e constraint in each
complementarity condition is in the working set. Therefofeonstraintj € W, (i.e.,



standard) the directios; does not violate (4). Otherwisg, € ‘W1 Is complementary.
Under the nondegeneracy assumption, the diredjatoes not violate (4) if and only if
constraintc(j) is in the working set. Thus, we may choose to drop any comstiraim the
following set of eligible constraints:

{i :9i<O/\(iewov(iewl/\c(i)e‘wl))}.

In our implementation we choose to drop the constraint vighrhost negative multiplier.
In other words,

Jq = min{0.9; 1 € Wo v (i € Wi Ac() e W)},

whereq is the constraint index of the minimizer. As Lemma 3.1 willehd ¥, = 0, then
vertex X is strongly stationary. Otherwisg is the descent search direction associated
with the leaving constrairy.

We also need to maintain linear feasibility (3). When mowatong the directiorg;, an
inactive constrainaij > b; can become active only iistq less than 0. The maximum

step lengthy that maintains feasibility of the inactive constraﬂuﬁb( > b; with astq <0is

thena = (b; —aJTﬁ)/aJ.Ts > 0. Thus, the largest step length that we can take is the minimum
sucha over all inactive constraints, namely,

'{bj_a‘w sy <0, ] w} (13)
ming ———:a;5 <0, ¢ )
astq !

wherer is the index minimizer indicating the entering constraifve call (13) theratio
test

If al's; > O for all inequalitiesj not in the working set, there exists no stopping con-
straint, and the directiog, is unbounded. In this case we let be co, and we conclude
that the LPCC is unbounded.

When the leaving constraimf and entering constraint are determined, we remove
constraintg from the working set, add constraini.e., W := W U {r} \ {q}), and update
A = [aj]jew andb = [bj]jew. This discussion is summarized in Algorithm 1, which
follows the same principle of the active-set algorithm foPECs by ddice et al. [33]
under the nondegeneracy assumption.

Consider Algorithm 1. Under the assumption of nhondegenerae can always move
downhill with @, > 0 to another vertex, until no decrease is possible and aicolig
found, or until the LPCC is determined unbounded. Since only eefmimber of vertices
exist, Algorithm 1 always terminates in a finite number of step

Lemma 3.1 If Algorithm 1 terminates witly, = 0O, then the final vertex is strongly
stationary.

Proof All constraints not in the working sét’ are associated with zero multipliers. Since
Yq = 0, it follows that mirfy; : i € ‘Wo} > 0, which implies that the first three conditions
of (6) are satisfied. For the last condition of (6), we obsethaty, = 0 implies that
min{y; : i € Wi A c(i) € Wi} = 0 which guarantees that the inequalities in the nonstrict
complementarity conditions have nonnegative multiplisosall conditions for strong sta-
tionarity in Definition 2.1 are met. [ |

Lemma 3.2 A nondegenerate B-stationary point of an LPCC is also stroniglyanary.
Proof See [41, Theorem 4]. [ |



1: // Given vertexx'associated with a working s8V’ satisfying (11).
2: FormA = [aj]jew andb := [bj]jew.
3: Compute current vertex:= A~ Th.
4: repeat
5. Compute multipliers = [#i]icw = Alg.
6 Computey; :=min{0.9 :i € WoV (i € Wi Ac(i) e Wy).
7: // The indexq indicates the constraint to leave the working set.
8. if §g=0then
9: return: Xis a strongly stationary point.
10: else
11: Compute search directiog as the column oA~ corresponding tgq:
by —alx
12: Perform the ratio test, = min { J - ) ,oo}.
Sl a; X
a; <0
13 // The indexr indicates the constraint to enter the working set.
14: if @y = oo then
15: return: the LPCC is unbounded.
16: else
17 UpdateW = WU r}\ {g}, A:=[aj]jew, andb := [bj]jew.
18: Update the vertex = X + & .
19: end if
20: end if
21: until Xis strongly stationary at,"= co.

Algorithm 1: A generalized pivoting algorithm for LPCC (1).

Now we illustrate the application of Algorithm 1 using theéléwing example:

minimize 4x; — 2Xo + X3 — X5
X1,X2,X3,X4,X5

subject tox; > 0, X > 0, indexed by 1,2;
X1 + 2Xq4 > 2, indexed by 3;
X3 — X4 — X5 > —2, indexed by 4; (14)

0< Xz L X —X +Xx3+1>0,indexed by 5 and 8;
0<X4gLXg—X3+22>0, indexed by 6 and 9;
0<Xs LX3—Xa+12>0, indexed by 7 and 10

The first pivoting step: As will be seen in Section 6, our initialization scheme findsa fe
sible vertexx"= (2,0,0,0,0) associated with the working s8t’ = {2,3,5,6,7}. The
objective isg" & = 8. The multipliersy’= [§;]jew = Alg are

1 tra )
9 |1 2 4
Js | = 1 1]=|1
2 1
1

‘6)

Y6 0 -8 '
¥z -1 -1

The most negative multiplier i = —8, associated with constraint 6, which is, however,
complementary. The other complement, indexed by 9, is vaetind not in the working
set. Thus, we cannot remove this constraint from the workéngT$he second most nega-
tive multiplier isy, = —2, and constraingj = 2 will leave the basis. The ratio test shows
thatay s; < 0, and constraint = 8 will enter the basis.



The second pivoting stepNow the vertex assoclated with the working s& =
{3,5,6,7,8} is X = (2,3,0,0,0). The objective isg"k = 2, and the multipliers are
V3,95, Y6, 97, ¥8) = (2,-1,-4,-1,2). There are three negative multipliesss = -1,
Vs = —4, andy7; = —1. The complementarity constraints 6 and 7 cannot leave thiimgp
set, since their other complements are inactive and noteénbrking set. The leaving
constraint ig) = 5. The ratio test (13) determines the entering constrain®.

The third pivoting step: We are now at vertex = (2, 7,4, 0, 0), determined by the working
setW = {3,6,7,8,9}. The objective ig" X = —2. The multipliers areyg, Ve, 7, Js. Jo) =
(14,-2,-1,2,1). There are two negative multipliengs = —2 andy; = —1. As before, the
complementarity constraint 7 cannot leave the working$&tThe leaving constraint is
g = 6. The ratio test (13) determines the entering constraint.

The result: Now the multipliers associated with working s&’ = {1,3,7,8,9} are
(Y1, V3, ¥7, Y8, ¥0) = (1,0, -1, 2,1) The only negative multipliey;"= —1 is associated with
the complementarity constraint 7, which cannot leave theking set since the other com
plement, indexed by 10, is inactive and not in working®ét Therefore, Algorithm 1 ter-
minates ak = (0, 3,2, 1, 0), which is strongly stationary. The final objectivegisk = —4.

4. Pivoting under Degeneracy

In this section we extend Algorithm 1 by allowing degeneragdices. The complemen-
tarity constraints that can leave the working set are

C=1i:ieWnAci)e Wl

In other words, under the nondegeneracy assumption, comeplrity constraint can
leave the working set without violating (4) if constrai{t) remains in the working set.
However, at a degenerate vertexwe must also take complementarity constraiimto
account, if constraint(i) is active but not in the working set. Otherwise, Lemma 3.1 is
no longer valid. Therefore, we extend the candidate’dgy including all active comple-
mentarity constraints to

Another issue arises if complementarity constrgistC \ C leaves and constrainfq)
is not in the working set¥, because in this caseggx — bg) L (ajyX — beg) may be
violated after the pivot. A naive solution is that wheneget C \ C leaves the working
set, we immediately ade(q) into the working set, that is, updatd’ := W U {q} \ {c(qQ)}.
The pitfall is that the resulting working matrix = [g]icy may become singular.

For example, consider the LPCC

minimize —x;

X1,X2,X3
subject tox; — X + X3 > 0, indexed by 1;
X1 + X2 + X3 > 0, indexed by 2; (15)
-X1 > -1, indexed by 3;

0< X1 L X >0, indexed by 4 and .5

Say we are at vertexx{,; %, X3) = (0,0, 0), associated with the initial working sét’ =
{1,2,4}. The associated working matri = [a;]jew, the objective normag, and the



multipliersy := A""g are

A=

111 -1 0
—1101, g:[O}, y:lo]. (16)

110 0 -1

The only negative multiplier igs"= —1, associated with the leaving constraxat> 0.
The other complementarity constrait > O is active but not in the working sé’. To
maintain 0< X; 1L X > 0, we add constraint 5 into the working set, givitig = {1, 2, 5}.
110

-11 l} is singular.

110

To deal with degeneracy in LPCC, we introduce the concepkt#ndedvorking set:

The updated working matrif =

W=WUE  WNE=0,

where the sef is an extension. All constraints i/ are active at the current vertex ~
While we still maintain the working set’ consisting ofn linearly independent active
constraints, the extensid@hcontains the complementarity constraints that should pé ke
active to satisfy (4). Thus, condition (11) is relaxed to

i,cMNnW=0 for i=m+l....m+p. (17)

The high level description of the revised algorithm is asfol. If the leaving constraint
g is complementary an(q) is not in the extended working s&/ = W U &, then we add
c(q) to €. To determine the entering constraint, if a positive stegtle would cause any
constraint € &to no longer be active, we movdrom & to ‘W right away. Otherwise, we
proceed with the usual ratio test (13) to determine the eng@onstraint, and remove
c(r) from & if ¢(r) € &. More details are given in Algorithm 2.

Five remarks on Algorithm 2 must be made:

(1) Lemma 3.1 remains valid. If the algorithm terminates Wifh= 0, then the final
vertexxis strongly stationary. B

(2) Atthe end of each pivoting step, we keep all constramt#/ active and maintain
(17) so that at least one constraint in each complementawitgition is inW.
Therefore, the vertices visited are always feasible.

Note that, in line 14 of Algorithm 2a]s; # O for somer € & means that
moving alongs; will make constraint inactive. So we move from & into ‘W
immediately, in which case the resulting verteis unchanged, and therefore the
other constraints i&, if any, remain active. Moreover, we need to k&épof size
n. Therefore, if there are multiple choicesrog & with a] s; # 0 in line 14, we
move only one of them td4’.

(3) In addition,A = [a;]jew is always guaranteed to be nonsingular. The reason is
that no matter which entering constrainis chosen in line 14 of Algorithm 2 or
in the ratio test in line 17, we haw s, # 0.

(4) Here and throughout this paper, our extensiorEsgintains only complementar-
ity constraints of (1), namely/i € &, i > m. Under a nondegeneracy assumption,
& = 0 and Algorithm 2 coincides with Algorithm 1.

(5) We may impose the following condition,

Vie&, c(j)¢w, (18)

to exclude unnecessary complementarity constraints foamd therefore po-



1
2:
3:
4:
5:
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11:
12:
13:
14:
15:
16:
17:
18:

19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

/| Given vertexx'associated withy = ‘W U & satisfying (17).
J/ All constraints il are active ak;“W containa linearly independent constraints.
A = 0; A .= 0; form A = [aj]jew andb := [bj]jew.
Compute current vertex:= A~Th.
repeat
Compute multipliery = [§i]iew = Alg.
Computey; := min{0.9i :i € Wo v (i € W1 A cli) € W)},
// The indexq indicates the constraint to quit the working set.
if ¥4 = Othen
return: Xis strongly stationary.
else B
if ge Wi andc(q) ¢ W then
&E:=&U{c(9)}.
end if
Compute search directiog as the column oA~ corresponding tg,:
if Ir € & such thag s; # Othen
E=8\1{r}
else// The indexr indicates the c%onstraint to enter the working set.
b —a X
Ratio testa; := min { il ,oo}.

h T
jew a.
astq<0 J R

if & = oo then
return: the LPCC is unbounded.
end if
end if
Update the working seW’ := W U {r} \ {q}.
if c(r) € &then
Removec(r); & := &\ {c(r)}.

end if
(cycle, A, Ay) =DetectCycLE(q, T, @y, Az, Ay); // see Algorithm 3
if cycle = true then

(status, W, &, X) = ANTICycLE('W, &, X); /| see Algorithm 4

if status = B_stationary then
return: Xis B-stationary.

else if status = unbounded then
return: the LPCC is unbounded.

end if
status = cycle_breaks
else
Update the vertex = X+ a; .
end if
UpdateA := [aj]jew andb := [bj]jew.
end if

until Xis strongly stationary or B-stationary, of = .

Algorithm 2: A revised pivoting algorithm for LPCC (1).

tentially reduce the number of pivoting steps. If the inigatended working set
satisfies (18), then (18) remains satisfied in line 23.

(6) If there exist multiple indices € & such tha@| s, # 0 in Line 16, then we can
choose any one of them to be removed fri&m

Now we apply Algorithm 2 to the LPCC (15). Let the initial workisgtW be{1, 2, 4}



with zero extensio = () that determines the Initial vertexy(, Xo, X3) = (0, 0,0). Condi-
tion (17) is satisfied. From (16) we conclude that the leavingstaintq is 4, associated
with the only negative multipliey," = —1. The descent directiog, is (1,0, -1), the last
column of A-T. Because the other complementarity constra{g) = 5 ¢ W U &, we
add it to& and haveS = {5}. At the test in line 14, constraint 5 fro® has gradient
as = (0,1,0). Sincea'Srsq = 0, it cannot be the entering constraint. The entering coinstra
is —x; > —1, determined by ratio test in line 17. The updated workingss&’ = {1, 2, 3}
and the vertex ix = (1,0, —1). The multipliers ¥1, ¥»,3) = (0,0, 1) are all nonnegative.
As aresult, the vertex = (1,0, —1) is strongly stationary.

Another problem caused by degeneracy is the fact that piyotiay cycle. We will
address this issue in the next section.

5. Anticycling for LPCC

At a degenerate vertex, the step lengthy,” can be zero, and we call such a pivoting
stepdegeneratelf the degenerate pivoting steps form a cycle, it loops fimitely. In
particular, Algorithm 2, without anticycling, can termiraonly at a strongly stationary
point or by finding an unbounded search direction. Therefdre Bastationary point that
is not strongly stationary, it must loop forever. For exaenii we apply Algorithm 2 to
the program (9) whose only vertex is B-stationary but natrgity stationary, then the
step length is always zero, resulting in an infinite loop.

At each pivoting step in our algorithm, we may have multigheices of leaving con-
straint and entering constraint. In LP, we can use Blands [0, Theorem 3.3]; [20,
Theorem 8.3.1] to resolve degeneracy. Unfortunately, simpiplying Bland’s rule to
Algorithm 2 for LPCCs can still result in a cycle. Even worse,hailit anticycling, Al-
gorithm 2 cannot determine any B-stationary point that is stoiongly stationary. We
illustrate the failure of Bland’s rule with the following ample.

m)i(n!(nlize X1+ Xo+ X3+ Xg — X5 — Xg

1,A2,A3

subject to 4, — X5 > 0, indexed by 1;
4%, — X5 > 0, indexed by 2;
A3 — Xg > O, indexed by 3; (19)
4Xq4 — X > 0, indexed by 4;
0< X1 L X >0, indexed by 5 and 6;
0<X3LXx4>0, indexed by 7 and .8

The only feasible vertex s (0, 0, 0, 0, 0). Let the initial working set¥ be{1, 2, 3,4, 5, 7}.
The multipliers (.92, 93,94, 95.97) are €,1,2,1 -2,-2). By Bland's rule, the leav-
ing constraint isx; > 0. The entering constraint is, > 0, resulting in working set
W = {1,2,3,4,6,7). The multipliers ¥1, 9>, Y3, 9,96.57) are ¢, 2,3, 1, -2 -2). Now
the leaving and entering constraints age> 0 andx; > 0. That forms cycling.

To resolve degeneracy for LPCCs, we require two routines: ke @eatection routine
and an anticycling routine. We adopt a cycle detection framv&tal [10]. We keep an
array of leaving constraint$l; and another array of entering constraigts. When the
lastk entries ofA; and A, match each other for sonme cycling is detected. Note that
whenever a step length is positive (i.€:,> 0), a cycle breaks, and we resdt and. A,
to be empty. The description is stated in pseudo-code in Alguor3.

Definition 2.3 shows how to determine whether a given vextexB-stationary when
nonstrict complementarity conditions are present. Whegding at X is detected, we
consider the LP pieces LRP) for all possibleP € D(X). We apply an anticycling rule,
such as Bland’s least index rule, to each XB). Then it follows thatx’is B-stationary



1: function [cycle, Aq, As] = CycLeDetecT(q, I, @y, Aq, Ad)

2 /| Ay and A, are arrays containing the recent leaving and entering @nt.

3 // gandr are the leaving and entering constrainisis the step length.

4: if a; > Othen

5: // The objective of (1) is reduced, so previous steps canngerig cycling.

6 AL=0;, Ay =0

7 cycle = false

8 else

9: Updatel := size(A;), Ai(l) := g, andA(l) :=r.

10: if there existk such thatA;(1-k+1,...,1) andA,(I-k+1,...,I) form the
same sethen

11: /| Cycling is detected.

12: cycle := true

13: else

14: cycle = false

15: end if

16: end if

17: end function

Algorithm 3: Cycle detection for Algorithm 2.

if and only if X is a minimizer to LPX®) for all # ¢ D(X). Otherwise, we can find a
descent direction from some LP piece to leave the vertex ~

The naive approach just described can be improved by thenfioiipobservation. Ap-
plying Bland’s rule to LPX;#) for some® C D(X), assume that we obtain a set of mul-
tipliersy; that satisfies (8) and therefoxds™a solution to LPX,*P). If for somei € P we
havey; > 0 in addition toyg; > 0O, thenX'is also a solution to LB(% \ {i}). In general,
given a set of multipliers satisfying (8) atWwe let

R1={i:§/i20/\ieP}, R2={iiyc(i)20/\i€@()?)\7)}, (20)

be the index sets corresponding to strongly stationary oompts. Thenx is a solution
to all the LP pieces

LP(X,P USs\ Sl) forall S;1CRi, S CRo. (21)

This observation indicates that a set of multipliers can leelus detect the optimality of
multiple LP pieces in Definition 2.3.

A simplistic implementation of our anticycling scheme ida@lfows. We setl{ equal to
29() and removeP from U wheneveixis verified as a minimizer of LR(%). The process
repeats untift{ = 0, in which casex’is a B-stationary point, or until we find a descent
search direction to leawg ih which case the cycle of pivoting breaks. The pseudo-code
is given in Algorithm 4.

The condition (17) must still be satisfied during anticyclingAdgorithm 4. This con-
dition has implications for the two cases:

(1) Foreach strict complementary condition, one constragnactive and has been in
the extended working set, thatiss ‘W = W U &. This active constraint cannot
move away fronTW, but it may move fron€ to ‘W. The other complementarity
constraintc(i) is inactive and therefore is not in the extended workingtbet is,
c(i) ¢ ‘W. Hence, we can ignore these strict complements when detiggtihe
leaving constraints.

(2) For each nonstrict complementary condition, one compl&arity constraint is
treated as an equality and the other is treated as an ingqueilh respect to



1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

function [status, W, &, K] = AnticycLe(‘W, &, X)
SetU := 2°®, whereD(X) = {i : &’k = by A ag(i)k = by}
repeat
SelectP € U; let P° = {c(i) : i € D(X) \ P}.
// We consider LPX,’P) and apply Bland’s least index rule.
E=EU{i:iePUPAI g W}
repeat
Computey’= [§iliew = A™lg, whereA := [aj]jew.
Computeq := min{i : i € Co U Cy}, Where
Co:=minfi :ie WoAY <0}
Cr:=min{i:i e Wi\ (PUP)AY <0}
J HereWy =W n{l,...,mandW; =Wn{m+1,...,m+2p}.
if g # NULL then
Yq < O'is the qualified multiplier with smallest index.
Compute search directics, the column ofA™" corresponding tgy.
if Ir € & such thag s; # 0then
=8\ {r}; Wi=Wufrt\{g
else
. X . {bj -aj% }
Ratio testa; = min = ,00p .
1oL 3
a; <0
If multiple choices ofr exist, choose the smallest one.
if @, = oo then
/| LP(X,P) is unbounded, so is the LPCC.
return: status := unbounded.
end if
Wi=Wwulrt\{g
if @, > 0then // cycle breaks.
X=X+
return: status .= cycle_breaks.
end if
end if
end if
until g = NULL (i.e., no qualified leaving constraint).
/| Xis a solution to LPX,"P).
SetRy:={i 1§ 20T €P),Ro:={i: ¥ =0T € DX\ P}
Update(LI =UNPUSI\NS1:S1CRIAS TR}
until U = 0.
return: status .= B_stationary.
end function

Algorithm 4: Anticycling for Algorithm 2.

LP(X,#) in each inner loop. Those treated as equalities must bé/irn other
words,

PUPCCW, P =(c(i):ieDX\PL (22)

We can ensure (22) by requiring two conditions:

¢ At the beginning of each inner loop, we add the required camgs into& to
makeW = W U & satisfy (22).
e At each pivoting step, we prevent the constraint®ia #° from leavingW.

In each inner loop of Algorithm 4, we consider b®P) and apply Bland’s least index




rule. Theretore, the Inner lo0p must terminate In a Tinite nunaeterations |10, The-
orem 3.3]; [20, Theorem 8.3.1]. Note, however, that we do ma&dnBland’s rule when
moving a constraint fror& into ‘W, because in each inner loop, constraints can leave
but no constraint can enté&r and therefore it cannot cause a cycling.

For the outer loop, the size dff is reduced at each iteration. Therefore, the overall
number of iterations is finite. We conclude that our anticyglscheme in Algorithm 4
must terminate with one of the following three cases:

(1) A descent search direction is found, and there is no stgpgonstraint, that is,
ay = co. The current LPX,P) of concern is unbounded, and so is the LPCC (1).

(2) A descent direction is found, and we move to another xewith a positive step
length, in which case we go back to Algorithm 2 and continuthvilhe next
pivoting step.
Remark: Note that (18) may no longer hold because we augi@ieNevertheless,
(18) is not required by Algorithm 2 to work properly, but it teatially avoids
unnecessary pivoting steps. Indeed, we can impose

E=fiziesnci)¢Wna(i<m+pvcl)¢8)

when returning to Algorithm 2, if (18) is desired.
(3) If U = 0 at the termination of Algorithm 4, thexiS a minimizer to all LP§ %)
for P € D(X), and therefore B-stationary.

The discussion leads to the following proposition.

Proprosition 5.1 Algorithm 2 must terminate in a finite number of pivoting stegither
finding a descent direction to leave the current veRex verifying thatX is B-stationary.

We are free to choose ay € U in Algorithm 4. If we carefully selec € U, the
number of pivoting steps may be reduced, as the followingtithtive example shows. We
apply Algorithm 2 to solve the LPCC (9) which has only one veiex(0, 0, 0). We note
that in this example the pivoting methods finds the global mimh, but does not provide
a certificate of global optimality, which would require a ts=arch.

The first pivoting step: Suppose we have the initial working s&t = {1, 2, 3} with zero
extension& = 0. The corresponding multiplieng £ [§j]jcw = A™lg are (1,2, 93) =
%,%,—2), wherey; = -2 is the only negative multiplier, associated with constrai
3, which is complementary. The other complement, indexed kg Active but not in
W = W U &. Therefore the leaving constraigtis 3, and we add constraint 4 in&
resulting in& = {4}. The search directiog, is (1, 1,4). We move constraint 4 froié to
W immediately, sinceysy = 1 # 0, whereay = (0, 1,0) is the gradient of constraint 4.

In Algorithm 3 for cycle detection, the updated arrays. @re= (3) andA, = (4).

The second pivoting stepThe working setW is now{1, 2, 4}, associated with multipliers
V1,92, V4) = (%1, ;3’1, —2). With a similar discussion, the leaving and entering coinstisaare
those indexed by 4 and 3, respectively. At this point we dedexycle by Algorithm 3,
where the updated arrays afg = (3,4) andA, = (4, 3), forming the same s¢8, 4.
Hence, we do not pivot but instead move on to Algorithm 4 fdicyeling.

The anticycling phase: When entering Algorithm 4, we have the working $ét= {1, 2, 4}.
The only complementarity condition is degenerate Z¥&) = {3}. We initialize U :=
{0, {3}} as the power set dD(X). Now we selectP to be® € U; thenP® = {4}, and&E



remains empty. The only negative multiplier associated With= {1,2,4} ISy, = 2.
Since 4e P U P¢, constraint 4 is treated as equality in XP{) and cannot leavéy’.
Therefore,X"is a minimizer of LPK 0). The updated{ contains only one elemei8}
after removing).

We continue with the next outer iteration of Algorithm 4. Thexh® is {3}, whose
correspondingP® is . Since 3¢ P U P° is not in the working setd’ = {1, 2,4}, we add it
into & and obtairE = {3}. The only negative multiplier ig,"= —2. Since now the LP piece
of concern is LPX,{3}), constraint 4 is treated as an inequality and can leave tnkimg
setW. Then the entering constraint ise3E. After pivoting, we havel = {1, 2, 3} and
& = 0. The only negative multiplier ig3"= —2. However, constraint 3 is treated as an
equality in LP {3}), so it cannot leave the working s&’. Hencex'= (0,0, 0) is also a
minimizer of LP {3}). We conclude that = (0, 0, 0) is a B-stationary point.

Discussion: In the above illustration, we selegtto be0 for the first inner loop of Algo-
rithm 4. Alternatively, if we choos® to be{3}, then the sef will be augmented to bgs}.
As a result, the first LP piece requires one more pivoting stepdee constraint 3 from
& to W. Careful selection oP C U may save more pivots for larger programs.

Now we discuss how to selegt C U in Algorithm 4. Adding constraints int& will
potentially increase the number of pivoting steps to movestaints fron€ to ‘W. There-
fore, the key point is to constrain the augmentatio@oRecall that the purpose of aug-
menting& is to satisfy (22). As discussed in Section 4, a#t in Algorithm 2 satisfies
(17), so there exist® satisfying (22). Hence augmentation &fis not required for the
firstinner loop. A greedy method is to select he U that is closest to the previous one,
denoted byP, for each consequent inner loop. In other words,

P = argmaXiP N P| : P € U}.

6. Obtaining an Initial LPCC Feasible Vertex

Our pivoting algorithm to solve an LPCC (1) requires a feasgitéeting vertex. Similar
to the Phase | process of the simplex method for linear progiag we propose a two-
phase process for LPCC (1).

Our Phase | is identical to the Phase | of LP, where we find a linemilfle vertex
satisfying all the inequalities (3). If such a vertex canbetfound, then the inequalities
(3) cannot be satisfied, and the LPCC (1glisbally infeasiblebecause the LP relaxation
of the LPCC (obtained by relaxing the complementarity coods) is infeasible. If such
a vertex is found, we continue with Phase Il to resolve complaary violations in order
to satisfy (4). If a feasible pointis found, we move on to the optimality phase, where we
usexas the starting vertex to solve LPCC (1) by our Algorithm 2.

In Phase Il we have a linearly feasible verteltdm Phase |, but some of the comple-
mentarity conditions may not be satisfied. We note that Phassures thaa" X — b > 0
andaj; X - by > 0, which implies &% — bi)(al;, X - bqg)) > 0. Therefore, we partition
the complementarity conditions into two sets/oand 7, of those satisfied and of those
not yet satisfied, respectively:

I ={i: @ &-b)@jX-bey) =0,i=m+1,....m+pj, 23
T =i (8T %~ b)(@lg X - begy) > 0. = M1,...., mpl (23)

We resolve the complementary violation one at a time, andigp@3) at each iteration.
The pseudo-code is given in Algorithm 5.



1: // Given a linearly feasible vertexdf LPCC (1) from Phase I.

2: DetermineZ and.J by (23).

3 SetK =0

4: repeat

5: Selectj € J \ K. Starting fromx] solve the following reduced LPCC:

minimize aj X
subjecttoa] x > by, i=1,...,m+2p, (24)
Os(a1TX_bi) J-(a;;r(i)x_bc(i))ZO, iel.

6: if the minimizerx* of (24) satisfie|! x* = b; then
7: K :=0; X:= x*; updatel and g t)y (23).
8: else
o: Starting fromx; solve the LPCC:
minimize agjX
subjecttoal x > by, i=1,....,m+2p, (25)
0< (a1TX—bi) L (aI(i)x—bc(i)) >0, iel.
10: if the minimizerx* of (25) satisfies] ;) X" = b) then
11: K = 0; X:= x*; updateZ and.J by (23).
12: else
13: K =K U{j}
14: end if
15: end if

16: until T =0orK=49.
17: J/ If J = 0, then the lask is feasible.

Algorithm 5: Phase Il to find a complementary feasible vertex of LPCC (1).

We note that we can solve LPCCs (24) and (25) using our LPCC piyatifieme,
because we have a feasible starting vertex. We also noteltbeihg:

(1) When updating *= x*, we also update the extended working $€t= W U &,
inherited from (24) or (25).

(2) Since we have at least one more satisfied complementantjitcn, 7 is aug-
mented. After augmentation g@f, the condition (17) may no longer hold. Let

F={iielnigWAac)eW)

be the set of complementarity conditions without completsém the extended
working setW = W U &. In order to satisfy (17), we add some complements to
&, those in

AS={i:ieFra x=biufc):i e?‘”/\al(i))iz by A &7 R # bi).
After augmentingS := & U AE, the resulting extended working S =WUE

satisfies (17). Finally, the augmentationéfloes not violate (18).

In Algorithm 5, either the size off is reduced after every update, or the current com-
plementarity condition is added #. Therefore, Algorithm 5 must terminate in a finite
number of iterations with one of two possible outcomes:

(1) g = 0: We obtain a complementary feasible vertexThen we continue with



the optimality phase, solving the LPCC (1) by our pivoting aitpon with the
starting vertexx.”

(2) K =9 + 0: We are not able to resolve the complementarity violatiditisrs 7,
in which case we call the LPCC (Igcally infeasible

For everyj € 7, we can either solve (25) first or solve (24) first. In our impletagon,
we project the current vertexto the two subspaces formed ayx = b; andaI(Dx = by(j).
respectively. We solve (24) or (25) first depending on whicbjgmted point results in
smaller objective function value.

Note: We can stop Algorithm 5 early if we reach line 13 whé&e# 0, which corre-
sponds to a local minimum of LPCC constraint violation. On tlleeo hand X # 0
does not imply that the problem is infeasible, because thslfte set is nonconvex. Con-
tinuing to solve LPCCs as presented in Algorithm 5 may find a Beagioint of the
LPCC, even aftetX # 0 was reached. In our experiments on 168 LPCCs in Section 7,
there are three problems where the infeasibility is resblwecause of continuing after
K # 0 in line 13. These problems aex9.1.6-1pcc, tollmpecl-siouxfls-1pcc,
andtollmpec-siouxfls-lpcc.

We illustrate our approach with the LPCC (14). Starting with fibasible vertexx =
(0,0,0,1,0) associated with the working s8t’ = {1,2,3,5, 7} determined in Phase I,
we now resolve the complementary violation by Algorithm 5eTdmly complementarity
condition not yet satisfied is € x4 L X3 — X3 + 2 > 0, for which the LPCC program (24)
reads as

minimize x4
X1,X2,X3,X4,X5
subject toxy, X, > 0, indexed by 1,2;
X1+ 2X4 > 2, indexed by 3;
X3 — Xq — X5 > —2, indexed by 4; (26)

0< X3 L X —X+X3+1>0,indexed by 5 and 8;
0< X4, Xg—X%3+22>0, indexed by 6 and 9;
0<Xs L X3—X3+1>0, indexed by 7 and 10

The multipliersy’= [¥]jew = A™lg, with g = (0,0, 0, 1, 0) the objective normal of (26),
are §/1,¥2, ¥, Vs, y7) = (—%, 0, % 0,0). Therefore, the standard constraint> 0 associated
with the only negative multipliey," = —% is the leaving constraint. The entering constraint
determined by the ratio test (13) %3 > 0, indexed by 6. So the updated working set is
W =1{2,3,5,6, 7}, and the vertex = (2,0,0, 0, 0) is feasible.

Global Optimality of the Phase/Phase Il Approach. We note that the proposed practical
Phase Il method may fail to find an initial feasible vertex, and getpped in a local
minimum of the constraint violation. For our purposes, thiscome is satisfactory since
we are interested only in computing local solutions. Fotaierclasses of LPCCs, how-
ever, we can easily find an initial feasible vertex or prove tiwme exists. One such class
of problems are bilevel LPs, where the lower level problem &sifele for every choice
of the upper level variables, and the upper level conssainvolve only the upper level
variables.



7. Numerical Experiments

We have a MATLAB implementation of our pivoting algorithm, whican handle more
general forms of linear constraints, including equalitpstoaints, range constraints, and
mixed complementarity conditions. We compare our solvehwhe filter MPEC solver
via the NLP reformulation [16] that solves MPEC by introducitarg variables and re-
placing complementarity conditionysL sbyy's < 0. Filter MPEC uses an SQP method
to solve the resulting NLP. We compare the two solvers on af$¢2GCs obtained by lin-
earizing the MPECs from MacMPEC [34], a collection of 168 MPEC tesblems writ-
ten in AMPL [18]. AMPL allows more general constraints, indlugl range constraints
and equations. AMPL also allows mixed complementarity cairsis. See Ferris et al.
[14] for information of expressing complementarity coiafis in AMPL.

Each LPCC can be characterized by the following numbers: thebauwf variables
n, the number of constraint®, the number of equalitiesy, and the number of com-
plementarity conditionp. Appendix A shows the characteristics of the 168 programs in
MacMPEC-LPCC test set, where we have sorted the programs\Wg have removed 12
LPCCS from the test set, which are LPs after AMPL’s presolve ebiteid all complemen-
tarity constraints. These problems &werd3-1pcc, bard3m-1pcc, andgnashlj-1pcc
forj=0,1,...,9.

Five outcomes are possible for our pivoting algorithm: glgbmfeasible, locally in-
feasible, B-stationary, strongly stationary, and unb@ahaobjective. In practice, problems
are expected during anticycling if we have a large set of mmhsomplementarity condi-
tionsD(X), defined in (5). Recall that Algorithm 4 for anticycling usesetl to track the
determination of optimality of LP pieces LR(P) for £ € D(X). The setld is initialized
as the power set aD(X), which is of size X, It meangD(X)|, the size of seD(X), can-
not be large in practice. We ca#D(X)| the degree of nonstrictnesmnd allow|D(X)| < 16
in our experiments.

Table 1. Result summary of the 168 programs in MacMPEC-LPCC test set.

Pivoting Algorithm Filter MPEC

Outcome # Programs Outcome # Programs
globally infeasible 21 linear infeasible 21

locally infeasible 2 locally infeasible 2
unbounded objective 30 unbounded objective 15
strongly stationary 111 optimal solution found 112
B-stationary 2 trust region too small 5

max deg. nonstrict. reached 2 max # iter. reached 13

We implemented a one-at-a-time Phase | method to get a lieeaible point. The

results are summarized in Table 1. We can see from Table thiha¢sults are consistent
except for the following

(1) In two cases the degree of nonstrictness exceeded 16itbuMPEC found so-
lutions. These problems amenteiroB-1pcc andmonteiro-1lpcc.

(2) In 5 cases filter MPEC stopped because the trust region wabesrtzan
its tolerance, which we had set as ~40 flp4-1-lpcc, flp4-3-lpcc,
incid-set2-32-1pcc, incid-set2c-32-1pcc, andpack-riglp-32-1pcc.

(3) In 13 cases filter MPEC was not able to solve within the maxinmumber of
iterations, which we had set as 10Qmpe-1pcc, design-cent-31-1pcc,
design-cent-3-1pcc, liswet1-050-1pcc, liswet1-100-1pcc,
liswet1-200-1pcc, outrata34-1lpcc, gpecgen-100-1-1pcc,
gpecgen-100-2-1pcc, gpecgen-100-3-1pcc, gpecgen-100-4-1pcc,
gpecgen-200-1-1pcc, andgpecgen-200-2-1pcc.



Figure 1 plots the numbers ot pivoting steps In Phase |, Phasadl ,Phase lll, Tor
the 168 LPCCs. We sorted the LPCCs by the number of variablas expected, larger
programs tend to take more pivoting steps to solve. On ther digind, no phase dominated
the computational cost in all cases. Detailed results a®ngn Tables A1-A4.
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Figure 1. Pivoting counts of our pivoting algorithm using tdacMPEC-LPCC test set.
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Figure 2. Performance profiles (lpgcale) using the MacMPEC-LPCC test set. Left: all 168 proisteright: excluding
30 unbounded problems.

Figure 2 shows the performance profiles [11, 12] of our pivoaigprithm and filter
MPEC. In the left plot we use all 168 test problems in the MacMPEC-CR€st set.
The plot indicates that our pivoting algorithm outperformgfiMPEC significantly. We
note that filter MPEC sometimes takes orders of magnitude moeotipg steps than does
our pivoting pivoting algorithm to verify the unbounded etiives. The reason may be
that filter MPEC solves nonlinear MPECs and cannot take advantdge possibility of
unbounded linear rays. Therefore, in the right plot we rentibge30 unbounded problems.
The results indicate that our pivoting algorithm still penfs better.



8. Conclusion

We give a pivoting algorithm to solve linear programs withelar complementarity con-
straints. Our algorithm is based on the active set metholihiear programming. It works
under degeneracy and includes an anticycling scheme thadetarmine B-stationarity
and avoid infinite loops. We also use an optimization-basdthigue that consists of two
phases to find an initial feasible vertex. Phase | is to find allifesssible vertex, whereas
Phase Il is to resolve complementary violations. The experialgesults indicate that
our method is an appealing alternative to existing techesqu
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Appendix A. MacMPEC-LPCC Program Characteristics

Tables A1-A4 list the following characteristic humbers bk t168 LPCCs in the
MacMPEC-LPCC test set: the number of variabheshe number of constraints, the
number of equalitiesn,, and the number of complementarity conditignsThe num-
bers of pivots of our pivoting algorithm and filter MPEC for each IdP@re also listed.
Three error codes are used in these tables: “(d)” for the maxirdegree of nonstrict-
ness reached, “(i)” for the maximum number of iteration<heal, and “(t)” for that trust
region is too small.
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abic AL, RESUIL O e Lo Progialtis i viaCiviFEL-LFLUL LESL SCL, Falt 1.
Program N m m o P_ivoting Algqr. _Filter MPE(_:
# Pivots Min. # Pivots Min.
bard1-1pcc 9 1 3 6 -16 8 -16
bardim-1pcc 6 10 1 3 5 19 8 -16
bard2-1lpcc 12 21 5 3 7 -7743.0 8 -7743.0
bard2m-1lpcc 12 21 5 3 7 -7743.0 9 -7743.0
bar-truss-3-1pcc 35 45 28 6 10 infeasible 15 infeasible
bilevell-1pcc 10 17 2 6 8 5 8 0
bilevellm-1lpcc 8 13 2 4 6 5 12 5
bilevel2-1pcc 16 29 4 8 12 -7733.3 20 -7743.0
bilevel2m-1lpcc 16 29 4 8 12 -7733.3 20 -7743.0
bilevel3-1pcc 10 14 6 2 5 -13.5 3 -13.5
bilin-1lpcc 8 15 0 6 8 -13 165 -5.6
bem-milanc30-s-1pcc | 3436 4901 1968 1464 8985 170.55 1517 170.55
dempe-1lpcc 3 3 1 1 2 unbounded 3 0)
design-cent-1-1pcc 12 15 6 3 8 -1.6794 97 -1.6794
design-cent-21-1pcc 13 19 6 3 10 -10.673 9 -10.673
design-cent-2-1pcc 13 19 6 3 10 -10.673 10 -10.673
design-cent-31-1pcc 15 15 6 3 13 unbounded 65 (0]
design-cent-3-1lpcc 15 15 6 3 9 unbounded 63 (0]
design-cent-4-1pcc 22 33 10 8 7 -4 7 -4
desilva-1lpcc 8 2 2 2 -8 0 -8
dfl-1pcc 2 2 0 1 1 -3 0 -3
ex9.1.10-1pcc 11 17 5 3 5 -3.25 4 -3.25
ex9.1.1-1pcc 13 18 7 5 6 -13 5 -13
ex9.1.2-1pcc 8 13 5 2 4 -3 2 -6.25
ex9.1.3-1pcc 23 35 15 6 10 -23 8 -29.2
ex9.1.4-1pcc 8 13 5 2 3 -37 3 -37
ex9.1.5-1pcc 13 20 7 5 6 -1 6 -1
ex9.1.6-1pcc 14 21 7 6 9 -15 8 -21
ex9.1.7-1pcc 17 26 9 6 9 -6 7 -23
ex9.1.8-1pcc 11 17 5 3 5 -3.25 4 -3.25
ex9.1.9-1pcc 12 18 6 5 6 9.2 7 3.1111
ex9.2.1-1pcc 10 15 5 4 6 -16 7 -16
ex9.2.2-1pcc 9 14 4 3 3 -100 6 -100
ex9.2.3-1pcc 14 23 8 4 6 5 6 5
ex9.2.4-1pcc 8 12 5 2 4 unbounded 4 unbounded
ex9.2.5-1pcc 11 4 3 5 -47 7 -47
ex9.2.6-1pcc 16 22 6 6 6 unbounded 4 unbounded
ex9.2.7-1pcc 10 15 5 4 6 -16 7 -16
ex9.2.8-1pcc 6 9 3 2 3 1.5 4 1.5
ex9.2.9-1pcc 14 5 3 4 2 2 2
flp2-1pcc 5 0 2 6 -375 8 -375
flp4-1-1pcc 80 90 0 30 90 unbounded 2829 (t)
flp4-2-1pcc 110 170 0 60 322 -25.636 211 -25.636
flp4-3-1pcc 140 240 0 70 376 unbounded 970 (t)
flp4-4-1pcc 200 350 0 100 1081 -51.150 548 -51.150
gauvin-lpcc 3 4 0 4 -256.25 5 -256.25
gnashl0m-1lpcc 10 15 5 5 -5325.6 -5325.6
gnashllm-1lpcc 10 15 5 4 5 -3428.5 8 -3428.5202




1abIC A, RESUIL O HNE L00 Progialtis [ ViaCVIFEL-LFLUL LESL SCL, Falt 1l
Program n m m p Eivoting Algqr. .Filter MPEQ
# Pivots Min. # Pivots Min.
gnashl2m-1lpcc 10 15 5 4 5 -1784.9 2 -1784.9
gnash13m-1lpcc 10 15 5 4 5 -1147.7 2 -1147.7
gnashl4m-1lpcc 10 15 5 4 5 -847.42 2 -847.42
gnashl5m-1pcc 10 15 5 4 6 -5325.6 9 -5325.6
gnashlém-1lpcc 10 15 5 4 6 -3428.5 9 -3428.5
gnash17m-1lpcc 10 15 5 4 6 -1784.9 4 -1784.9
gnash18m-1lpcc 10 15 5 4 6 -1147.7 4 -1147.7
gnash19m-1pcc 10 15 5 4 6 -847.42 4 -847.42
hakonsen-1pcc 9 17 3 4 0 infeasible 0 infeasible
hs044-i-1pcc 20 30 4 10 21 -1.0693 23 -8.6036
incid-setl-16-1pcc 371 637 225 111 292 0 205 9.28E-17
incid-set1-32-1pcc 1517 2559 961 489 1492 0.000002 935 0.000002
incid-set1-8-1pcc 100 170 49 32 75 0 62 6.59E-17
incid-setlc-16-1pcc 371 652 225 111 435 0.000353 237 0.000353
incid-setlc-32-1pcc 1517 2590 961 489 1583 0.000249 824 0.000249
incid-setlc-8-1pcc 100 177 49 32 88 0 78 6.59E-17
incid-set2-16-1pcc 450 681 225 190 471 0.299364 18038 0.299364
incid-set2-32-1pcc 1857 2767 961 829 2532 0.299167 101792 t)
incid-set2-8-1pcc 112 177 49 44 108 0.302232 975 0.302232
incid-set2c-16-1pcc 450 696 225 190 493 0.300847 13251 0.300714
incid-set2c-32-1pcc 1857 2798 961 829 2349 0.301222 28910 (t)
incid-set2c-8-1pcc 112 184 49 44 115 0.302271 742 0.302271
jrl-lpcc 2 1 0 1 1 unbounded 0 unbounded
jr2-lpcc 2 1 0 1 1 unbounded 0 unbounded
kthl-1pcc 2 1 0 1 1 0 0 0
kth2-1pcc 2 1 0 1 1 unbounded 1 unbounded
kth3-1pcc 2 1 0 1 1 0 1 0
liswetl-inv-050-1pcc | 152 203 52 50 155 unbounded 68 0]
liswetl-inv-100-1pcc | 302 403 102 100 309 -50.864 140 0]
liswetl-inv-200-1pcc | 602 803 202 200 647 -100.53 360 @
monteiroB-1lpcc 131 226 57 57 218 (d) 298 -3615.6
monteiro-lpcc 131 226 57 57 165 (d) 136 -2606.9
nashla-1lpcc 6 8 2 2 2 0 5 0
nashlb-1pcc 6 8 2 2 4 -95 10 -95
nashlc-1pcc 6 8 2 2 6 -240 12 -240
nashld-1lpcc 6 8 2 2 4 -53.3333 11 -100
nashle-1pcc 6 8 2 2 5 -140 -140
outrata3l-lpcc 5 8 0 4 4 -52.467 -52.467
outrata32-1lpcc 5 8 0 4 4 -56.973 -56.973
outrata33-lpcc 5 8 0 4 4 -52.467 -52.467
outrata34-lpcc 5 8 0 4 4 -56.473 795 0]
pack-compl-16-1pcc 467 753 225 225 1 infeasible 143 infeasible
pack-compl-32-1pcc 1955 3101 961 961 1 infeasible 624 infeasible
pack-compl-8-1pcc 107 179 49 49 1 infeasible 27 infeasible
pack-complc-16-1pcc 467 768 225 225 1 infeasible 141 infeasible
pack-complc-32-1pcc 1955 3132 961 961 1 infeasible 655 infeasible
pack-complc-8-1lpcc 107 186 49 49 1 infeasible 27 infeasible
pack-complp-16-1pcc 467 708 225 225 339 390.47 347 390.47
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Program n m m p Eivoting Algqr. .Filter MPE(?
# Pivots Min. # Pivots Min.

pack-complp-32-1pcc | 1955 2948 961 961 1115 201.78 1049 201.78
pack-complp-8-1pcc 107 164 49 49 84 884.69 83 884.69
pack-comp2-16-1pcc 467 753 225 225 1 infeasible 161 infeasible
pack-comp2-32-1pcc 1955 3101 961 961 1 infeasible 262 infeasible
pack-comp2-8-1pcc 107 179 49 49 1 infeasible 25 infeasible
pack-comp2c-16-1pcc 467 768 225 225 1 infeasible 161 infeasible
pack-comp2c-32-1pcc | 1955 3132 961 961 1 infeasible 251 infeasible
pack-comp2c-8-1pcc 107 186 49 49 1 infeasible 25 infeasible
pack-comp2p-16-1pcc | 467 708 225 225 294 884.99 293 884.99
pack-comp2p-32-1pcc | 1955 2948 961 961 1159 763.31 1003 763.31
pack-comp2p-8-1pcc 107 164 49 49 86 1953.7 93 1953.7
pack-rigl-16-1pcc 333 511 204 82 250 0.6 185 0.6
pack-rigl-32-1lpcc 1433 2171 856 505 781 infeasible 186 infeasible
pack-rigl-8-1pcc 70 109 46 9 47 0.6 32 0.6
pack-riglc-16-1pcc 333 526 204 82 253 0.6 174 0.6
pack-riglc-32-1pcc 1433 2202 856 505 781 infeasible 186 infeasible
pack-riglc-8-1lpcc 70 116 46 9 39 0.6 26 0.6
pack-riglp-16-1pcc 389 580 225 147 386 0.773051 240 0.773051
pack-riglp-32-1pcc 1711 2571 961 717 2387 0.82143 7443 (t)
pack-riglp-8-1lpcc 92 138 49 34 83 0.733602 72 0.733602
pack-rig2-16-1pcc 326 510 204 93 115 infeasible 65 infeasible
pack-rig2-32-1lpcc 1580 2694 856 661 756 infeasible 201 infeasible
pack-rig2-8-1pcc 75 120 46 17 58 0.6 40 0.6
pack-rig2c-16-1pcc 326 525 204 93 123 infeasible 65 infeasible
pack-rig2c-32-1pcc 1580 2725 856 661 765 infeasible 200 infeasible
pack-rig2c-8-1lpcc 75 127 46 17 61 0.6 40 0.6
pack-rig2p-16-1pcc 369 565 225 127 294 65.147 166 65.147
pack-rig2p-32-1pcc 1605 2490 961 611 1536 176.47 577 176.47
pack-rig2p-8-lpcc 91 139 49 33 76 1.5269 53 1.5269
pack-rig3-16-1pcc 360 573 204 129 346 0.653857 161 0.653857
pack-rig3-32-1pcc 1490 2342 856 584 746 infeasible 563 infeasible
pack-rig3-8-1pcc 85 139 46 28 65 0.6 42 0.6
pack-rig3c-16-1pcc 360 588 204 129 291 0.737292 130 0.737292
pack-rig3c-32-1pcc 1489 2371 856 585 755 infeasible 317 infeasible
pack-rig3c-8-1pcc 85 146 46 28 64 0.6 35 0.6
portfl-i-1-1pcc 87 99 13 12 62 -0.446267 28 -0.446267
portfl-i-2-1pcc 87 929 13 12 59 -0.502267 26 -0.502267
portfl-i-3-1pcc 87 99 13 12 60 -0.426667 36 -0.426667
portfl-i-4-1pcc 87 929 13 12 61 -0.371267 28 -0.371267
portfl-i-6-1pcc 87 99 13 12 60 -0.295667 32 -0.295667
gpecl-lpcc 30 39 0 20 30 unbounded 1 unbounded
gpec2-lpcc 30 39 0 20 20 unbounded 0 unbounded
gpecgen-100-1-1pcc 105 202 0 100 167 unbounded 7689 0]
gpecgen-100-2-1pcc 110 202 0 100 197 unbounded 19385 0]
gpecgen-100-3-1pcc 110 204 0 100 604 unbounded 16161 0]
gpecgen-100-4-1pcc 120 204 0 100 478 unbounded 23855 0]
gpecgen-200-1-1pcc 210 404 0 200 1047 unbounded 24243 0]
gpecgen-200-2-1pcc 220 404 0 200 1838 unbounded| 43704 0]
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# Pivots Min. # Pivots Min.
gpecgen-200-3-1pcc 220 408 0 200 2825 unbounded| 41805 -1.06E17
gpecgen-200-4-1pcc 240 408 0 200 1022 unbounded| 27416 -8.34E16
ralphl-lpcc 2 2 0 1 2 0 5 -6.86E-07
ralph2-1lpcc 2 1 0 1 1 unbounded 3 unbounded
ralphmod-1pcc 104 203 0 100 136 -208.88 1515 -502076073
scalel-1pcc 2 1 0 1 0 unbounded 2 unbounded
scale2-1pcc 2 1 0 1 0 unbounded 2 unbounded
scale3-1pcc 2 1 0 1 0 unbounded 3 unbounded
scale4-1pcc 2 1 0 1 0 unbounded 3 unbounded
scale5-1pcc 2 1 0 1 0 unbounded 3 unbounded
scholtesl-1lpcc 3 2 0 1 3 unbounded 2 unbounded
scholtes2-1pcc 3 2 0 1 4 -1 2 -1
scholtes3-1pcc 2 1 0 1 1 unbounded 1 -1.00E-20
scholtes4-1pcc 3 4 0 1 4 0 6 -3.42E-07
scholtes5-1pcc 3 3 0 2 1 unbounded 3 unbounded
sll-1pcc 8 11 2 3 6 -44 10 -44
stackelbergl-1lpcc 3 4 1 1 2 -19000 0 -19000
tap-09-1pcc 86 136 32 32 76 86.439 118 86.439
tap-15-1pcc 194 328 68 83 159 139.71 274 139.71
taxmcp-1lpcc 12 24 3 10 22 infeasible 134 infeasible
siouxfls-lpcc 2403 4703 628 1748 10800 -23.353 97578 -23.353
siouxflsl-1pcc 2403 4703 628 1748 11781 500.35 12225 500.35
water-net-1lpcc 66 116 36 14 37 467.60 11 467.60
water-FL-1pcc 213 373 116 44 135 2119.8 43 2119.8
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