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Abstract

Understanding and tuning the performance of complex applications on modern
hardware are challenging tasks, requiring understanding of the algorithms, implemen-
tation, compiler optimizations, and underlying architecture. Many tools exist for mea-
suring and analyzing the runtime performance of applications. Obtaining sufficiently
detailed performance data and comparing it with the peak performance of an archi-
tecture are one path to understanding the behavior of a particular algorithm imple-
mentation. A complementary approach relies on the analysis of the source code itself,
coupling it with a simplified architecture description to arrive at performance estimates
that can provide a more meaningful upper bound than the peak hardware performance.

We present a tool for estimating upper performance bounds of C/C++ applications
through static compiler analysis. It generates parameterized expressions for different
types of memory accesses and integer and floating-point computations. We then incor-
porate architectural parameters to estimate upper bounds on the performance of an
application on a particular system. We present validation results for several codes on
two architectures.

1 Introduction

Developing high-performance applications and optimizing their performance require a thor-
ough understanding of the algorithms, their implementation, compilers and external libraries,
and the underlying hardware. Often, the performance achieved is a small fraction of peak,
and substantial time and effort are invested in trying to improve that fraction. As others
have noted over the years (e.g., Gropp et al. [4]), theoretical peak performance is not a good
upper bound estimate for the majority of applications. Furthermore, different computations
fail to achieve good performance for different reasons: some are memory intensive (e.g.,
sparse linear algebra), while others are operation intensive (such as dense linear algebra).
Determining whether a code fragment is memory- or CPU-bound by manual inspection of
the code is a nontrivial task and is only practical for relatively small and self-contained
kernels. Thus, such determination is usually done by using postmortem analysis of detailed
performance data that includes counts of memory accesses, cache misses, and floating-point
operations. A number of performance tools enable the collection of this data, but the process
is still involved and must be customized for each platform. As an alternative to hardware
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counter-based analysis, we have developed a tool for computing more realistic (than theo-
retical peak) upper performance bounds based on source analysis and transformation. We
refer to this tool as PBound in the remainder of this paper. It has been built and is available
at : http://trac.mcs.anl.gov/projects/performance/wiki/Pbound for use.

Theoretical peak performance is a frequently used method for comparing architectures
and evaluating the performance of applications. The most popular peak performance values
are based purely on the clock rate and the number of floating-point units available in the
system. Less frequently, the latency and bandwidth of data transfers between different
levels of memory and the processor are also taken into consideration. Peak performance is
not realistically achievable even by heavily optimized synthetic benchmarks, and is thus not
a good upper bound for guiding labor-intensive performance tuning of scientific applications.

The usual approach to generating more accurate estimates the efficiency of a given code
is to execute it on a given architecture (or a simulator) and collect performance information
ranging from wall-clock time to low-level hardware performance counters. The performance
counter data can then be used to build a profile of the execution which can be used to
pinpoint different bottlenecks, such as memory- or computationally-intensive regions. The
disadvantage of this approach is that performing these studies is a nontrivial task and re-
quires familiarity with and availability of performance tools on the architectures of interest.
Furthermore, depending on the tool, multiple runs for the same inputs may be necessary,
some with substantial profiling overheads resulting in heavy, non-production, resource use
for the performance data gathering process.

PBound generates upper performance bounds for C/C++ applications through static
analysis of the source code. It generates parameterized expressions for different types of
memory accesses and computations. Combined with architectural information, the upper
bounds on the performance of an application on a particular platform can be estimated.
Application designers can test observed performance against these bounds to calculate the
efficiency of their implementation where efficiency is defined to be the ratio of achieved per-
formance to the performance bound. Different aspects of performance can be considered,
including memory bandwidth, floating-point operations per second (FLOP/s) or wall-clock
time. A more realistic estimate of ideal efficiency can save a lot of wasted optimization
effort. For example, if a code is achieving 7% of the theoretical peak FLOP/s rate, and the
performance bound is equivalent to 10% of the peak FLOP/s rate (e.g., if the implemen-
tation is memory-intensive), it would not be possible to optimize the existing algorithm to
achieve anything more than 10% and substantially different algorithms with lower memory
bandwidth requirements should be considered if possible.

PBound can be used to study the maximum achievable performance of an application
on a given architecture without having to either run the application on that architecture or
a simulator. Therefore, it can be used for rapid exploration of the application performance
space for different architectures or architectural configurations. Static analysis, however,
can at best conservatively estimate the dynamic behavior of some codes. Recursion, run-
time parameters and dynamic memory allocation can complicate the source-based counts
of memory accesses and arithmetic operations. Furthermore, competition for resources be-
tween applications cannot be modeled. However, we believe that the bounds estimates can
be invaluable in critical kernels organized as a series of nested loops, which are at the heart
of many scientific applications.
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(a) Original code:

void axpy4 ( i n t n , double ∗y , double a1 , double ∗x1 ,
double a2 , double ∗x2 , double a3 , double ∗x3 ,
double a4 , double ∗x4 )

{
r e g i s t e r i n t i ;
f o r ( i =0; i<=n−1; i++)

y [ i ]=y [ i ]+a1∗x1 [ i ]+a2∗x2 [ i ]+a3∗x3 [ i ]+a4∗x4 [ i ] ;
}

(b) Generated code:

#inc lude ” pbound l i s t . h”
void axpy4 ( i n t n , double ∗y , double a1 , double ∗x1 , double a2 ,

double ∗x2 , double a3 , double ∗x3 ,
double a4 , double ∗x4 )

{
#i f d e f pbound log

pboundLogInsert (” axpy . c@6@5” ,8 ,0 ,40 ∗ ( ( n − 1) + 1) + 32 ,
8 ∗ ( ( n − 1) + 1) ,3 ∗ ( ( n − 1) + 1) + 1 ,4 ∗ ( ( n − 1) + 1 ) ) ;

#e n d i f
}

Figure 1: Example code (a) and generated performance bounds (b).

1.1 Example

We illustrate the use of PBound with a simple example code implementing a generalized
axpy computation of the form y = y + a1x1 + · · · + anxn, where a1, . . . , an are scalars and
y, x1, . . . , xn are one-dimensional arrays. Figure 1(a) shows the source code for n = 4. The
results are generated by first giving the code as input to the tool, which generates : (1) a log
file containing memory access and arithmetic operation counts for each loop and function
and (2) a new version of the original code (shown in Figure 1(b)). The generated code is
a slice of the original computation and contains only the statements that are necessary for
computing the bounds. The parameterized counts in either the log file or the transformed
code can be evaluated either manually (by substituting appropriate values for all variables)
or by simply compiling the generated source code and executing it in the same manner as the
original application. The generated code contains a call to the pboundLogInsert function
with parametrized expressions for the number of loads, stores, and arithmetic operations,
with separate expressions for integer and floating-point values. A simple runtime library
implements pboundLogInsert to keep track and output the loads, stores, and arithmetic
operations. Since the generated code contains only a few simple expressions, it normally
takes much less time than the original application. Thus, in many cases one can compute
the performance bounds for a large parallel application on much smaller resources such as a
laptop.
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Table 1 shows the different expressions that are generated. The expressions contain the
parameter n, which is the upper bound of the loop in the example code. After the code is
executed, the arguments of the function call are computed by using the runtime parameter n.
For example, if n = 2, 000, 000, then there are 8,000,000 floating-point operations performed,
requiring 10,000,000 loads, indicating that the application is memory bound on most modern
architectures.

Table 1: Performance metric expressions for example code in Fig. 1.

Metric Expression

Integer loads 2
Integer stores 0
Floating-point loads 5 * ((n - 1) + 1) + 1 + 4
Floating-point stores 1 * ((n - 1) + 1)
Integer operations 3 * ((n - 1) + 1) + 1
Floating-point operations 8 * ((n - 1) + 1)

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents our implementation approach. Section 4 contains experimental validation
results. Section 5 concludes with a discussion of future work.

2 Related Work

The paper by Gropp et al. [4] provided the motivation for developing a tool for computing
performance bounds automatically. The manual process described in that paper relies on
the definition of a “general” form of the computation, which is then analyzed statement
by statement to count the number of loads, stores, and arithmetic operations for integer
and floating-point values. PBound does not require the creation of a separate high-level
representation; instead it analyzes the source code directly, as described in Section 3.

Vuduc et al. [17] manually derive upper bounds on the performance of a sparse ATAx
kernel. Sparse computations usually contain indirect memory accesses and thus present
a challenge to optimizing compilers, as well as to source analysis tools such PBound. In
Section 3 we describe our current handling of computations containing indirect addresses.

Williams et al. [18] introduce the Roofline performance model approach, in which an
upper bound on performance of a kernel is set depending on the kernel’s operational intensity.
Operational intensity is defined as “operations per byte of DRAM traffic”. While the ideas
and implementation of PBound were conceived many years ago, they are similar in spirit to
the Roofline model. As far as we know, PBound is the first tool that relies on source code
analysis to partly automate the generation of performance models of applications.

A wide selection of performance tools, including PAPI [6], TAU [15], HPCToolkit [5],
Scalasca [2], Kojak [19], PerfSuite [7], gprof [3], CATCH [1], and Active Harmony [16] can
be used to collect, process, analyze, and visualize performance data. Because our focus
is on source-based performance modeling, we do not enumerate all the runtime modeling
approaches and tools available.
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3 Implementation

Our implementation is based on the ROSE compiler framework, which provides parsing and
abstract syntax tree (AST) generation and traversals for C, C++, and Fortran [13,14]. ROSE
can be used to build source-to-source transformation tools that support various compiler
analyses and optimizations. For parsing C and C++, ROSE relies on the commercial EDG
parser. The EDG parse trees are converted into a higher-level, ROSE-specific SAGE abstract
syntax tree (AST). The leaf nodes of the AST include variable references or constants, while
the internal nodes include various statements (e.g., declarations, assignment statements),
function definitions, or expressions. ROSE provides mechanisms for manipulating the AST
through tree traversals while ensuring syntactic correctness. The AST can be modified
through interfaces provided by ROSE. Nodes in the AST can be decorated with either
inherited or synthesized attributes. ROSE can also be used with external analysis tools.

PBound’s implementation uses the ROSE AST traversal mechanism to count Integer and
floating-point memory and arithmetic operations. Optionally, PBound determines whether
instructions can be fused into one instruction such as fused multiply-add. Loops are op-
tionally vectorized to the extent supported by the architecture. Architectural information,
such as the presence of fused instructions and vector length for single-instruction multiple-
data (SIMD) operations, is provided via a configuration file (discussed in more detail in
Section 3.1). The generated parameterized expressions are stored in a log file and also
(optionally) inserted into the generated source code. As briefly mentioned in Section 1.1,
PBound optionally performs slicing when generating the instrumented version of the code
to make the bounds computation as easy and as cheap as possible. When slicing is enabled,
the generated code contains only those statements whose results are used in the generated
performance metrics. The current analysis for determining the dependencies between the
metric expressions and statements is limited to simple cases, but we plan to extend it with
context-sensitive more versatile dependence analysis. The generated metric expressions can
be inserted either as comments or as calls to a function that records the values of current
memory access and operation counts. Currently, C and C++ input codes are supported.

Figure 2(a) shows a highly simplified AST for the assignment statement contained in the
loop body in the example code in Figure 1(a). Our tool traverses the AST in a TopDown-
BottomUp manner, which means that first traversal proceeds from root to leaves, then from
the leaves up. As the traversal heads downward, context information in the form of inherited
attributes are passed down the tree. This helps identify regions of interest such as function
definitions and avoids the traversal of system header files.

Next, the AST is traversed from the leaves to the root. Only the portions of interest
that are identified in the preceeding top-down pass are processed by our tool. The following
actions take place at each type of node (we highlight the interesting actions performed at
the relevant subset of the nodes):

• Variable references. A variable reference is in effect a memory operation. Integer
and floating-point memory operations are counted separately. If a variable is a scalar,
we assume that it can be held in the registers and repeated accesses to it do not result
in multiple loads. For now, the tool does not perform register allocation to determine
whether the number of scalars in a function exceeds the number of registers. Accesses
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Figure 2: Simplified AST fragments corresponding to the example code in Figure 1.

to arrays (and point array references) are treated as loads from memory if the load
is on the right-hand side (RHS) of an assignment statement or a store if it is on the
left-hand side (LHS). Figure 2(b) shows the loads and stores that are identified for the
array memory operations in the assignment statement. The figure ignores the scalars
for the sake of clarity. Currently, array index calculations are treated as free; in other
words, they are not counted. The effects of doing so are more pronounced when an
array is indexed by the contents of another array, for example, A[B[i]]. In such cases,
only the load or store of the top level array A is counted and not the load of array B.
PBound will be modified to account for both memory accesses.

• Binary expression. At each binary expression, the memory accesses from the RHS
and LHS of the expression are summed up. Depending on the data types of the RHS
and LHS, an appropriate number of integer or floating-point operations are considered
necessary to perform the operation. Because the binary operation may be a parent
in an expression that has other binary operations, the integer and floating-point op-
erations required to calculate the RHS and LHS are added to the operations required
for the current binary operation. Figure 2(c) shows that 8 floating-point operations
are performed in the AST fragment. At present, all binary operations are assumed
to take the same number of cycles. We are planning extensions to allow more accu-
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rate cost estimates for different operations that normally have higher latencies, such
as floating-point division, square root and other standard mathematical functions.

• Assignment statement. At each assignment statement, all the memory and com-
putational operations of the child nodes are summed and passed on to the statement’s
parent. The statement itself does not result in any computation or memory operations.
The example assignment statement in Figure 2 contains a total of 5 load operations, 1
store operation, and 8 floating-point operations.

• Basic block. The memory and computational operations of all the child nodes (usu-
ally assignment statements) are summed and passed on to the basic block’s parent.
The basic block itself does not contribute any computation or memory or arithmetic
operations. In the example in Figure 2 , the for loop body (which is a basic block)
contains only the assignment statement, resulting in a total of 5 load operations, 1
store, and 8 floating-point operations.

• For loop statement. At each loop statement, we first evaluate whether the iteration
count of the loop can be determined statically. Currently, we handle only cases in
which the loop iterates from 0 to some constant N with an increment (or decrement)
of 1. In the future, this requirement will be relaxed through the use of the Omega
Library, which solves counting solutions expressed using Presburger Arithmetic [12].
If the loop is summable, then the computational and memory operation count of the
body is multiplied by the iteration count value to generate the computational and
memory operation measurements for the entire for loop. If the loop iteration count or
the body’s computational and memory operation requirements are expressions and not
integers, a corresponding multiplication expression is created for the loop. Figure 2(d)
shows the expressions that are created. The expressions are then saved for insertion
into the argument list of the pboundLogInsert function call.

3.1 Configuration File

In order to achieve good accuracy on a variety of architectures, PBound can take into account
a configuration file that contains information about different pertinent hardware capabilities.
Table 2 shows some of the PBound configuration options and their default values. While
this list provides an adequate starting point, we are continuously exploring new architecture-
specific options that would ensure that PBound produces useful and accurate upper bounds.

Table 2: Configuration parameters.
Category Parameter Default Value (Type)
Vector operations vector ops true (boolean)

vector length 2 (int)
Fused operations fp mul add true (boolean)

fp mul sub true (boolean)
fp div add true (boolean)
fp div sub true (boolean)
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The first class of options is used to account for potential SIMD operations. If SIMD
operations are enabled, the processing of the for loop is modified, resulting in different
expressions for memory and computational operation counts. At present, PBound considers
a loop to be simdizable if the following conditions are met.

1. The types of the different operations involved are the same.

2. The alignment of the values being operated on are the same in the vector register.

3. The loop increment (or decrement) is 1.

If the loop is determined to be simdizable, the number of computational and memory oper-
ations is divided by the vector length.

If fused operations are enabled, we implement the following greedy approach to esti-
mating the number of potential fused operations. When a binary operation is encountered
during AST traversal, it is inserted into a set. If the current binary operation can be fused
with an operation already present in the set, then the two binary operations are treated
as fused, and their computational requirements are not summed. Instead, the appropriate
fused operation’s computational requirements are used.

4 Experimental Validation

We conducted experiments using three applications (summarized in Figure 3): the triad
operation from the Stream [8] benchmark (with vector size 2, 000, 000); a generalized AXPY
operation shown earlier in Section 1.1 (with vector size 22, 612); and a sparse matrix-vector
multiplication kernel (using compressed sparse row storage and an input matrix from the
MatrixMarket repository [10], with 90,449 rows and columns and 1,921,955 nonzeros).

Table 3: Description of validation benchmarks.

Benchmark Description

Stream triad zi ← xi + αyi

Generalized AXPY yi ← yi + α1x1i
+ α2x2i

+ · · ·+ αnxni

Sparse matrix-vector product ∀Ai,j
6= 0 : yi ← yi + Ai,j · xj

To validate the statically generated operation counts, we compared them with experi-
ments performed on a multicore Intel Xeon workstation and a Blue Gene/P.

To show the effects of configuration options on the operation of PBound, we created four
configurations: basic, SIMD-enabled, fused-enabled, and SIMD- and fused-enabled. The size
of the SIMD vector was 2 (which is the correct value for both the Xeon and the BG/P for
computations involving doubles). Figure 4 lists the absolute values of the loads, stores, and
floating -point operations performed by the benchmarks under these configurations.
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Table 4: PBound output for different configuration parameters
Kernel Configuration Loads Stores FLOP

axpy

Basic 113,066 22,612 180,896
SIMD 56,533 11,306 90,448
Fused 113,066 22,612 90,448

SIMD+Fused 56,533 11,306 45,224

stream

Basic 4,000,002 2,000,000 4,000,000
SIMD 2,000,001 1,000,000 2,000,000
Fused 4,000,002 2,000,000 2,000,000

SIMD+Fused 2,000,001 1,000,000 1,000,000

spmv

Basic 5,765,867 180,898 4,024,808
SIMD 2,882,934 90,449 2,012,404
Fused 5,765,867 180,898 2,012,404

SIMD+Fused 2,882,934 90,449 1,006,202

4.1 Intel Xeon Results

The Intel workstation has dual quad-core E5462 Xeon processors (eight cores in total) clocked
at 2.8 GHz (1600 MHz FSB) with 32 KB L1 cache, 12 MB of L2 cache (6 MB shared
per core pair), and 2 GB of DDR2 FBDIMM RAM, running Linux kernel version 2.6.25
(x86-64), and using Intel compilers version 10.1. We validated the statically generated
performance bounds by using TAU (Tuning and Analysis Utilities) performance system,
which is a portable profiling and tracing toolkit for performance analysis of parallel programs
written in Fortran, C, C++, Java, and Python [15]. We profiled the benchmark applications
by (1) instrumenting the portions of interest, (2) compiling the instrumented application, (3)
executing the compiled application with specified performance counters, and (4) examining
the performance counters. TAU relies on the PAPI [6] interface to performance counters,
including native hardware counters on Xeon. Table 5 summarizes the counters we used to
profile the benchmarks. Two runs were needed to obtain the values for all the counters: one
for the standard PAPI counters and one for the native counters.

Table 5: Description of the counters used on the Intel Xeon

Counters Description

UNHALTED CORE CYCLES Core cyles
TOT CYC Core cyles
FP INS Floating-point inst. retired
INST RETIRED:LOADS Load instructions retired
INST RETIRED:STORES Store instructions retired
UOPS RETIRED:MACRO FUSED Fused instructions retired
SIMD COMP INST RETIRED:PACKED DOUBLE SIMD instructions retired

Figure 3(a) shows the ratio of actual loads performed by each benchmark for different
optimization levels w.r.t. the static prediction. Similarly, Figure 3(c) shows the ratio of
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Figure 3: Validation results on an Intel Xeon workstation and Blue Gene/P.
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stores performed by each benchmark for different optimization levels w.r.t. the predicted
value. Figure 3(e) shows the equivalent ratio for the number of floating-point operations.
The bounds values in the comparison with codes compiled with the “-O0” and “-O1” options
were computed by setting the SIMD configuration options to false because the Intel compiler
does not perform simdization at those levels. The bounds values in the comparison with
codes compiled with the “-O2” and “-O3” options were computed by setting the SIMD
configuration options to true and the vector length option to 2 (fused operations were set
to false in all cases because they are not available on the Xeon). A ratio of one indicates
a perfect match between the predicted and measured values. A value above one indicates
that expected compiler optimizations (e.g., SIMD code generation or blocked stores) were
not performed and that the generated code was not as efficient as expected. A ratio of
less than one means that the predicted value is not an accurate ideal estimate and thus
cannot be used reliably in computing an upper bound to performance (since the execution
data was better than the predicted “ideal” value). There was only one such value (for the
sparse matrix-vector product and runtime data based on compiling with “-O0”), which we
must investigate further in order to determine which of the assumptions in our counting
approach caused the observed discrepancy. For most applications, however, the highest level
of optimization is of greatest interest. The results for “-O3” indicate that actual loads and
stores were within a factor of two of the ideal bound. The floating-point operation counts
were accurate to within a fraction of a percent.

Predicting wallclock time. In addition to raw counts validation, we computed wallclock
time estimates based on several simple performance models that integrate the static pre-
dictions with hardware characteristics for different memory access patterns. We obtained
hardware parameters such as bandwidth to various levels of memory by running LMbench [9]
on the Xeon. We then computed the expected (predicted) time based on peak FLOP counts
(4FLOPS/cycle × 0.3573ns/cycle × 1−9 seconds). The first set of bars in Figure 4 show
the ratio of predicted vs. measured wall-clock time based on peak FLOP counts using code
compiled with “-O3”. Clearly, the measured times are much larger than the predicted times.

Next, we evaluated several simple models based on adding the floating-point operation
costs based on the peak FLOP rate to the time required to load all values from different
levels of cache or memory (assuming no prefetching and overlapping stores). Specifically, T1
is the time for performing the computation and loading values from L1, T2 is the time for
performing the computation and loading values from L2, and T3 is the time for performing
the computation and loading values from memory. On a single core, the LMbench-measured
read bandwidth from memory is 3585 MB/s, so we have 3585/2800 = 1.28 bytes per cycle.
The theoretical peak is 4 floating-point operations per cycle. Thus, any computation that
requires more than 1.28/4 = 0.32 bytes per FLOP is memory bound. The bytes per FLOP
values (based on PBound-generated expressions) for the main loop in each of the three
applications are : 0.625 for AXPY, 1 for Stream, and 1.5 for SPMV. Thus, they are all
memory bound but to a different degree. This is reflected in the validation results in Figure 4:
the most accurate AXPY model is T3 (loads from memory), indicating little reuse in either
L1 or L2; the most accurate Stream model is T2, indicating that data is successfully being
prefetched into L2; and the most accurate prediction for SPMV is T1, indicating a significant
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Figure 4: Efficiency estimates based on peak performance values and several statically com-
puted predictions (for a fixed problem size): ratio of predicted time vs. measured time.

proportion of L1 reads.
Our simple models do not capture potential reuse or the prefetching capabilities of the

hardware. To enable construction of more realistic performance models automatically, we
must incorporate dataflow analyses and implement additional PBound configuration param-
eters for taking prefetching into account.

Example bound computation. In addition to producing models for predicting wallclock
time, the PBound-generated expressions can be used to compute more realistic bounds on the
achievable performance. For example, for memory-limited computations, the peak GFLOP/s
rate can be expressed as UB GFLOP/s = N FLOPs/Byte∗Pm Bytes/sec∗1.e−9, where
N is the ratio of the number of FLOPs to the number of bytes for each loop body, and
Pm is the peak memory reads bandwidth, which on the Xeon is 3.585GB/s for one core
(for simplicity, we do not consider the cost of stores). Table 6 shows the best achievable
GFLOP/s rate computed with the PBound-based static information and compares it to the
theoretical peak performance of a single core (11.2 GFLOP/s), designated by Pc.

4.2 Blue Gene/P Results

Each compute node of the Blue Gene/P is equipped with four cores, each one a 850 MHz
IBM PowerPC 450 processors with a dual floating-point unit. While L1 cache (32 KB) and
L2 cache (4 MB) are private for each processor, L3 cache (8 MB) is shared on each Blue
Gene/P node. The total memory per node is 2 GB. The operating system on Blue Gene/P
is based on Linux 2.6.16 (ppc64). We used the IBM XL C/C++ V9.0 compiler. On the
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Table 6: Upper bound on the achievable GFLOP/s rate.

Application N UB UB / Pc
FLOPs/Byte GFLOP/s

AXPY 1.60 6.01 53.70%
Stream 1.00 3.76 33.56%
SPMV 1.67 2.51 22.38%

Table 7: Counters used on the Blue Gene/P

BGP PU0 FPU QUADWORD LOADS BGP PU0 FPU ADD SUB 1
BGP PU0 FPU QUADWORD STORES BGP PU0 FPU MULT 1
BGP PU0 FPU OTHER LOADS BGP PU0 FPU DIV 1
BGP PU0 FPU OTHER STORES BGP PU0 FPU FMA 2
BGP PU0 FPU ADD SUB 2 BGP PU0 FPU MULT 2
BGP PU0 FPU FMA 4

Blue Gene/P, we used the Hardware Performance Monitor (HPM) toolkit [11] to access the
values of the native hardware counters.1 First, we manually instrumented the input code
with calls to the library version of the HPM toolkit. Then, we executed each application and
examined the values of the counters summarized in Table 7. Some of the counters reflect the
loads and stores performed, while the rest reflect various floating-point operations.

Figure 3(b) shows the ratio of loads performed by each benchmark for different opti-
mization levels w.r.t. the predicted count. Similarly, Figure 3(d) shows the ratio of stores
performed by each benchmark for different optimization levels w.r.t. the predicted metric.
Figure 3(f) shows the ratio of floating-point operations w.r.t. the statically predicted number
of floating-point operations. In the comparison for codes compiled with “-O4”, we set the
SIMD and fused options to true in computing the static counts, in order to reflect a fully
optimized code. As the results indicate, for some of the codes (AXPY and Stream), the
compiler did not generate SIMD or fused floating-point instructions. For all other optimiza-
tion levels, these PBound configuration options were set to false. Equivalent to the Xeon
experiments, ratios close to one indicate accurate predictions. For the Blue Gene/P the
agreement between prediction and measurement was not as close as for the Xeon, but in all
cases the prediction was better than the measurement, implying that the static predictions
can reliably produce upper performance bounds.

1TAU is also available on the BG/P, but most standard PAPI counters are not supported, and we deemed
HPM easier to use because it does not require setting any environment variables, while allowing 256 different
counters to be measured simultaneously.
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5 Conclusions and Future Work

We have described a new tool for automatically generating parameterized memory and com-
putational metrics from C/C++ source code. Our initial validation with three small applica-
tions shows that the static operation counts can provide useful insight into the characteristics
of performance-critical numerical kernels.

We consider the current PBound implementation a good first step toward automated
performance bounds modeling. Much work remains, some of which we briefly summarize
here. We plan to add support for Fortran in the near future by leveraging the recent addi-
tion of Fortran parsing capabilities in ROSE. We will continue expanding the list of possible
configuration options to further improve the accuracy of the operation estimates. We will
also incorporate more rigorous analysis that can help create more accurate memory per-
formance models, for example, by measuring reuse distance and incorporating it into the
bounds calculations. So far we have focused on single-core performance; the next step is to
incorporate multicore scenarios by leveraging existing polyhedral analysis approaches. We
are also working on enabling less conservative slicing and thus making bounds computations
cheaper. In the long term, we plan to investigate the generation of parallel performance
bounds for MPI codes by employing new context-sensitive MPI analyses.
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