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Abstract—In this note we present an approach to estimate the adjoint
sensitivity of wind power generation using numerical weatler prediction
(NWP) models. This approach augments the planning and opet®ns
of wind farms by improving the accuracy of wind forecasts obained by
either physics-based NWP or statistical data-based model§he proposed
analysis can be used to determine the simulation domain sizand
resolution, and suitable observation placement. We illusate the method
of determining sensitivities of wind speed at wind-farm loations with
respect to current ambient conditions in a northern Texas rgion using
real data and atmospheric conditions.
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|. INTRODUCTION

Accurate wind speed forecasts are essential in estimatieg t

amount of wind-power produced [1], [2]. The wind forecash d@
obtained by using time-series prediction (TSP) methodseahgloy
historical data (e.g., AR, ANN), by using physics-based erioal
weather prediction (NWP) models, or a combination of both[2]
we showed that large adoption levels require accurate gireqs for
cost-efficient operations. Arguably, optimal grid integpa of wind
farms is essential in the robust management of this enegprse
In this study we present an adjoint sensitivity analysis AAS
method that augments the wind prediction using either st

as the model state’ is evolved throughM, the sensitivityS; is
evolved by the gradient (also known as tangent linear) model
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wheret, € [to,tn]. We are interested in the effect that the initial
condition at location:, p; = xf“ := xz,(to), has at some targeted
locations in the final system state!~. Therefore, the sensitivity

takes the form

S¥ (z*=1,p)S* T + == (a1 p), S} =

)

tn .to
_ 0x'N m;

Si = .
v améo TtN
k2

)

and its evolution is described by
b = M Ou
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This is useful if one is interested in what effect a small pdration
at a single source location would have on the future statés,
Alternatively, one could consider the inverse amjoint process [5]

of observing some target state in the state space at futestand
inferring what states in the initial conditions have a sgromfluence
on that target state [4]. We aim to find the regions in theahitate
to which target points at later times are most sensitive.rdfoee,
the sensitivities are computed in terms of a cost functibat ts, a

(mtk,l)’skfl7 S? _

or physics-based methods. ASA is a method used to determ@e fynction of the state at the final time,
sensitivity of a model state or parameter (e.g., future wspeed) . {

T
with respect to input states (e.g., present ambient camdifi In the — G\It' . 8%’ } eRM,
context of wind power generation, we show how ASA can be used t Do Oxy° Oy
determine the simulation domain size and resolution, thentiies where A is the dimension of the initial state vector. By using the
that should be modeled more accurately, and suitable twati chain rule, one obtains
fo_r sensor_placement when u_smg NWP S|m_ulat|ons. quth&rmo 8\I/(l‘tN) oW (V) ozty 8\I/(l‘tN) .
this analysis can reveal meaningful observations to be usebe 0 = osin O Oain S;N.
AR-type/ANN models. In this study we give a brief mathemaitic Oz; v v v
presentation of ASA and illustrate its potential in a north@exas Following [4], one can extend (3) for all time indices
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region using real data and atmospheric conditions.

Il. ADJOINT SENSITIVITY ANALYSIS

Consider a numerical modg\ that evolves an initial state;, to
a given final timetx (e.g., 24 hours ahead):

:ck:/\/l(tk,hmk*l,p) , mozcci(tmp), ke{l...N}, (1)

where p are model parameters. For instanck! may represent
the discretization operator of a partial differential eipm Sensi-
tivity analysis reveals how a model solution is affected loyal
perturbations in the model variables and parameters [3].wiVe
the sensitivity of the solution: with respect to parametes; as

Si(t) = % or scaled to be unitlessy;(t) = 22 2o [4]. Just
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Alternatively, by transposing, the adjoint process evsltlge sensi-

tivity in reverse order:
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If the following equations are satisfied [4]:
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it can be shown that the adjoint variables or influence fomsti
'+ [5] represent the gradients of the cost function with respec

perturbations in the state at earlier tima% = %

V.4 ¥(z'V). Note that we evolve the adjoint variab\é: backwards
in time, starting at the final time and taking steps with #uoint

model M7 = (224)" back to the initial time. As we did in Equation



(2), we can also consider the scaled adjoint sensit&ityvhich can
be physically interpreted as the percentage change in gidugtction
when the variable:'* is changed:

Nk — oV(a'N) = ‘
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Large sensitivity values indicate areas of influence, thdobtcations
where errors or perturbations in the current state will posd

significant changes in the target sites and time as desctitvedgh
the cost function.
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Ill. RESULTS AND DISCUSSION

We illustrate the ASA method on a real test case and employ thi s

Weather Research and Forecasting (WRF) model [6], a stdteeo
art NWP system that will take the place @# (see [2] for imple-
mentation details). A simplified WRF model has been run tghou
a source-to-source program called Transformation of Aflgor in
FORTRAN (TAF) to automatically produce both gradiend ) and
adjoints of the gradientsMi?).

We estimate the sensitivity of the wind spe@d= /U? + V2,

whereU andV are the W-E and S-N wind components, respectively.

The initial adjoint values at the final time are thereforeegi\by the
gradient of the scaled cost function
~iy 0T e (e)
S el ©
The scaled version is useful because it allows us to comparsi-s
tivities in model states with different units of measure, iftstance,
wind speed and temperature.

To illustrate the results that can be obtained from such atysis,
we employ WRF with real data and perform simulations in JWée ’
In Fig. 1 we show the wind-speed sensitivity with respecthe t
wind speed in a northern Texas region (with a rich density wfdw
farms) 6 and 12 hours before the target time. The larger theeya
the more sensitive is the final-time target solution to theent state.
In other words, the sensitivity at the final time (5) is propizgl
backwards 6 and 12 hours and gives a measure of influence of
initial condition on the final target state 6 and 12 hours dh&de
direction of the wind sensitivity is illustrated in Fig. 2n iwhich
different sources are shown to affect the target area oardift days.
This analysis points to the dynamic size of the domain necgss
for such a simulation to efficiently achieve accurate fosexaln
Fig. 3a we show the sensitivity with respect to temperatuet fi
that indicates the temperature-wind relationship. In Biywe show
averaged most sensitive locations over a month that poitttetdest
locations for wind-speed sensors to improve wind-speedigiiens
12 hours ahead.

The high sensitivity regions illustrated in this study icate areas
with high impact on the future wind speed conditions. It isréfore
important that these regions be resolved accurately by tiéPN
models and observed by TSP methods.
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Fig. 1. Wind-speed sensitivity with respect to the wind spiea region in
northern Texas (solid line caret) with 6 hours (zoomed-fi) land 12 hours
(right) before the final time accumulated on all height lsvel
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Fig. 2. Wind-speed sensitivity with respect to the wind shéend 12 hours
before the final time on June 9, 12, and 23, 2006.
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Fig. 3. Wind-speed sensitivity with respect to the tempemtl2 hours
before the final time (a) and average of the most sensitivatitmts of the
wind field 12 hours before the final time for June 2006 (b).

We have presented an adjoint sensitivity analysis that eansed
?leindicate regions in the physical and state space thatldHpe
etter resolved or observed to improve forecast activiiesobust

planning and operation of wind farms. Specific informatidratt
can be extracted from such an analysis includes resolutiomain
size, and modeled states for NWP approaches. Furthermgeod
indication of the best sensor location and type can be odxdaiif
the forecast is done through TSP, one can obtain sensor gymbs
locations that are likely to improve the outcome of AR-tyjpel ANN
prediction techniques.
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