
The Parallel-netCDF I/O Library

Robert Latham
Mathematics and Computer Science Division

Argonne National Laboratory

December 8, 2010

1 Synonyms

pnetcdf, High-level I/O Library

2 Definition

The serial netCDF library has long provided scientists with a portable, self-
describing file format and a straightforward programming interface based on
multidimensional arrays of typed variables (more detail in Section 3.2). Parallel-
NetCDF provides an API for parallel access to traditionally formatted netCDF
files. Parallel-NetCDF both produces and consumes files compatible with serial
netCDF, while providing a programming interface similar, though not identi-
cal, to netCDF. Parallel-netCDF API modifications provide a more appropriate
interface when expressing parallel I/O.

3 Discussion

Parallel-NetCDF is one of a family of libraries built to meet the needs of com-
putational scientists, as opposed to lower-level I/O libraries that deal more with
the details of underlying storage. Before going into more detail about Parallel-
NetCDF, let us see how it fits in the bigger picture of scientific computing and
application I/O.

3.1 Parallel-NetCDF and the I/O Software Stack

Today’s leadership computing platforms contain hundreds of thousands of pro-
cessors. In order to efficiently utilize these computers, applications use sim-
plifying abstractions provided by tools and libraries. MPI libraries provide a
standard programming interface for parallel computation on a wide array of
hardware. Math libraries such as BLAS hide the details of CPU-specific opti-
mizations. These lower-level math and communication libraries contribute to

1

Application

I/O Hardware

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

I/O Forwarding
bridges between app. tasks
and storage system and
provides aggregation for
uncoordinated I/O.

IBM ciod

Parallel File System
maintains logical space
and provides efficient
access to data.

PVFS, PanFS, GPFS, Lustre

I/O Middleware
organizes accesses from
many processes,
especially those using
collective I/O.

MPI-IO

High-Level I/O Library
maps application abstractions
onto storage abstractions
and provides data portability.

HDF5, Parallel netCDF, ADIOS

Figure 1: The I/O software stack. Parallel-NetCDF sits at the top, allowing
applications to express data manipulations more abstractly while lower levels
deal with coordination among multiple processes and maximize performance of
storage devices.

an overall software stack built to allow developers to focus on the science behind
their applications.

I/O performance on high-end computing platforms follows a similar story.
Performance comes from aggregating many storage devices. In fact, CPU per-
formance has consistently improved at a rate much faster than that of storage
devices. This discrepancy makes the need for parallel I/O across multiple de-
vices even more acute. Yet as the number of devices involved in I/O grows,
coordinating I/O across those devices becomes more of a challenge. In the same
way that communication and math libraries assist the parallel computation side
of scientific simulations, an “I/O software stack” assists data management.

The large number of storage devices mentioned above forms the foundation
of the software stack. Several additional layers provide abstractions to help
make the task of extracting maximum performance accessible to applications
programmers. The programming API and data model that Parallel-NetCDF
presents to the scientific programmer are conceptually closer to the tasks com-
mon to scientific applications and hide many lower-level details. A discussion of
the lower levels of the software stack, though hidden by Parallel-NetCDF, will
provide a better appreciation of Parallel-NetCDF’s role at the upper level.

• Storage systems contain thousands of individual devices to increase the
potential bandwidth. The parallel file system manages those separate de-
vices and collects them into a single logical unit. The file system does lack
some important features: typically file systems have no mechanism for co-
ordinated I/O, and the data model is still fairly low level for computational
scientists to use directly.

• The I/O forwarding layer typically exists only on the largest computer
systems. Applications do not interact with this layer directly. Rather,
this layer simplifies the scalability challenge: a large number of compute
nodes communicate with a smaller number of I/O forwarding nodes, and
these nodes in turn talk to the file system.

2

• The middleware, or MPI-IO [6], layer introduces more sophisticated algo-
rithms tailored to parallel computing. This layer coordinates I/O among a
group of processes, introducing collective I/O to the stack. MPI datatypes
allow applications to describe arbitrary I/O access patterns. Applications
can use the MPI-IO layer directly, but the programming model is still
rather low-level and not a perfect fit to the needs of common applications.
MPI-IO libraries, however, provide an excellent foundation for higher-level
libraries such as Parallel-NetCDF.

Parallel-NetCDF sits atop these lower-level abstractions; it belongs to the
high-level I/O library layer. Libraries in this layer introduce concepts such
as multidimensional arrays of typed data, which are better suited to scientific
applications. For example, a climate code can represent temperature in the
atmosphere with a three-dimensional array – latitude, longitude and altitude
– containing the number of degrees Celsius. In addition to array storage, ap-
plications can also provide descriptive information in the form of attributes on
variables, dimensions, or the dataset itself. These libraries also define the layout
of data on disk. These annotated, self-describing file formats make exchanging
data with colleagues now and in the future much easier.

3.2 History

The netCDF library has long provided a straightforward programming API and
file format for serial applications. In the summer of 2002, Argonne National
Laboratory and Northwestern University started a joint effort to build a parallel
I/O library while keeping the best parts of netCDF.

Parallel programs had been using netCDF for some time, though the serial
library forced programmers to use serial approaches when writing out netCDF
datasets. In one approach, each process writes out its own data set. This
“N-to-N” model can put significant strains on both the file system and any
postprocessing tools, especially since large systems today can have hundreds
of thousands of processes. Another approach sends all data to a master I/O
process, and that process in turn writes out the dataset. This “send-to-master”
technique imposes an obvious bottleneck because all data must be funneled
through a single process.

Without changing the existing netCDF file format, Parallel-NetCDF intro-
duced a new programming API. This parallel-oriented API is not identical to
serial netCDF, but is comfortable to anyone familiar with the existing serial
netCDF API. The Parallel-NetCDF API allows computational scientists to write
out datasets in parallel: all processes can participate in an “N-to-1” operation,
producing a single dataset while leveraging a host of parallel I/O optimizations.
Section 3.3 contains examples and more discussion of the Parallel-NetCDF API.

Parallel-NetCDF has become an important tool for high-performance I/O
in the climate and weather domains. These domains have long-established
netCDF-based workflows, using netCDF datasets for archiving, analysis, and
data exchange. Since Parallel-NetCDF retains the same file format as netCDF,

3

researchers in climate and weather can make changes to their simulation codes
while leaving other components of their workflow the same. Parallel-NetCDF is
useful in other domains as well: the programming API and file format make it
possible to deliver good parallel I/O performance without having to master all
of MPI-IO.

3.3 The Parallel-NetCDF API and File Format

Discussions about Parallel-NetCDF need to cover two main points: the pro-
gramming model and the on-disk data format. The API simplifies many MPI-IO
concepts while retaining several key optimizations. The on-disk format affects
I/O performance, but it also matters when exchanging data with collaborations
and colleagues.

If applications were to use MPI-IO directly, the “basic type” they would
build on would be a linear stream of bytes. In contrast, Parallel-NetCDF offers
a more application-friendly model based on multidimensional arrays of typed
data. Operations on these arrays could be as simple as reading the entire array,or
more complicated such as having each process write a sub-cube representing a
chunk of the Earth’s atmosphere. In addition to operations for manipulating
data, the API contains routines to annotate the data in the file or the file itself.
Such annotations may include timestamps, machine information, experiment
or workflow information, or other provenance information to better understand
how an application produced the data in this file. Section 3.3.1 goes into more
detail about the programming interface as well as how Parallel-NetCDF inter-
acts with the underlying MPI-IO library.

In addition to the programming interface, the file format plays a major role
in how useful Parallel-NetCDF can be to application groups. Parallel-NetCDF
applications create a self-describing, portable file with support for embedded
metadata. API routines allow programs to query the contents of data files
without any prior knowledge of the contents. The structure of the datasets
extends to the representation of bytes on disk: even if a dataset is moved to a
different machine, the library will still be able to understand that file. The IBM
Blue Gene/P system, for example, has a 32-bit, big-endian architecture, while
the Cray XT5 has a 64-bit little-endian architecture. Despite these differences,
files created on one can be read on the other and vice versa.

Figure 2 depicts a simple Parallel-NetCDF application. A climate code wants
to create a checkpoint file to store some key pieces of information. Atmospheric
temperature is stored as a three-dimensional array of double-precision float-
ing point values. Barometric pressure at the Earth’s surface requires only two
dimensions and only single-precision floating points. Further, the application
wants to ensure that future consumers of this dataset know which units these
variables use. It therefore stores this information as an attribute on each vari-
able. On disk, the dataset contains a small header describing the size and type of
both variables and any attributes, followed by the actual data for the variables.
This fairly simple file format comes with some restrictions, but the trade-off
results in efficient file accesses for parallel I/O.

4

netCDF File "checkpoint07.nc"

< Data for "temp" >

< Data for "surface_pressure" >

Variable "temp" {
 type = NC_DOUBLE,
 dims = {1024, 1024, 26},
 start offset = 65536,
 attributes = {"Units" = "K"}}

Variable "surface_pressure" {
 type = NC_FLOAT,
 dims = {512, 512},
 start offset = 218103808,
 attributes = {"Units" = "Pa"}}

netCDF header describes

the contents of the file:

typed, multidimensional

variables and attributes

on variables or the dataset

itself.

Data for variables is stored

in contiguous blocks,

encoded in a portable binary

format according to the

variable's type.

O
ffset in

 File

Double temp

26

1024

1024

Float surface_pressure

512

512

Application Data Structures

Figure 2: On the left, how an application views netCDF objects. On the right,
how netCDF and Parallel-NetCDF store those objects on disk.

Parallel-NetCDF uses the same file format as netCDF, making it easier for
applications groups to adopt Parallel-NetCDF. A programmer can change the
computationally intensive simulation code to use Parallel-NetCDF while the
other components of the workflow (e.g., visualization, analysis, archiving) can
continue to use serial netCDF.

Annotated Examples Parallel-NetCDF shares many netCDF concepts but
uses a slightly different API. The following simple example programs should
make the differences clear.

3.3.1 Standard Interface

Figure 3 contains a full, correct Parallel-NetCDF program to create a simple
dataset and write data into that dataset in parallel. This program, though brief,
demonstrates many key features of the library.

Because Parallel-NetCDF relies on MPI-IO, the program must include the
mpi.h header file (line 1) and initialize (line 9) and finalize (line 28) the MPI
library.

The ncmpi create routine (line 10) adds two arguments to netCDF’s cre-
ation function: an MPI communicator and an MPI Info object. These two
arguments do expose a bit of the underlying MPI library, but they give the
programmer some flexibility and the ability to tune operations if needed. In
this example, the communicator is just MPI COMM WORLD, or all processes in this
MPI program. In some situations, though, the application may wish to have
only a subset of processes participate in a dataset operation. The Info object
in this example is empty, but Section 3.4 will cover some situations where the
object is used.

Parallel-NetCDF, like netCDF, has a bimodal interface: when creating a
dataset, an application starts in define mode, where it must first describe what
variables it will write, the size and type of those variables, and any attributes.

5

1 #include <mpi.h>
2 #include <pnetcdf.h>
3
4 int main(int argc , char **argv) {
5 int ncfile , nprocs , rank , dimid , varid1 , varid2 , ndims =1;
6 MPI_Offset start , count =1;
7 char buf [13] = "Hello World\n";
8
9 MPI_Init (&argc , &argv);

10 ncmpi_create(MPI_COMM_WORLD , "demo.nc",
11 NC_WRITE|NC_64BIT_OFFSET , MPI_INFO_NULL , &ncfile);
12
13 MPI_Comm_rank(MPI_COMM_WORLD , &rank);
14 MPI_Comm_size(MPI_COMM_WORLD , &nprocs);
15
16 ncmpi_def_dim(ncfile , "d1", nprocs , &dimid);
17 ncmpi_def_var(ncfile , "v1", NC_INT , ndims , &dimid , &varid1);
18 ncmpi_def_var(ncfile , "v2", NC_INT , ndims , &dimid , &varid2);
19 ncmpi_put_att_text(ncfile , NC_GLOBAL , "string", 13, buf);
20
21 ncmpi_enddef(ncfile);
22
23 start = rank;
24 ncmpi_put_vara_int_all(ncfile , varid1 , &start , &count , &rank);
25 ncmpi_put_vara_int_all(ncfile , varid2 , &start , &count , &rank);
26
27 ncmpi_close(ncfile);
28 MPI_Finalize ();
29 return 0;
30 }

Figure 3: Basic Parallel-NetCDF program using the standard interface. Each
process collectively writes its MPI rank into two variables. For brevity, error
checking/handling has been omitted.

6

This example defines a single dimension (line 16) and assigns that dimension to
two variables (lines 17 and 18).

Datasets can contain a great deal of metadata. Both variables and dimen-
sions have human-readable labels. In addition to those labels, attributes may
be defined and placed on dimensions, variables, or the dataset itself. Line 19
places an attribute on the entire dataset.

In the example, line 21 calls ncmpi enddef to switch from define mode to
data mode. By asking the programmer to predefine variables and attributes,
the library can allocate space with little overhead. Re-entering define mode can
potentially trigger an expensive rewriting of the dataset. For a large class of
problems, however, one knowns ahead of time which information will be written
out.

Lines 24-25 do the actual work of storing information into the dataset.
Parallel-NetCDF provides one set of functions for uncoordinated independent
I/O and another parallel set for coordinated collective I/O. This example uses
the collective version (as shown by the all suffix). Every MPI process par-
ticipates in these writes, each writing out its MPI rank. In a traditional serial
netCDF program, each rank would send data to a master process, and this
process would in turn write out the information. This “send-to-master” model
quickly becomes untenable, however, as the number of MPI processes increases
and as the amount of memory available to each MPI process gets smaller.

The collective Parallel-NetCDF routines in turn call collective MPI-IO rou-
tines. MPI-IO collective routines can use powerful optimizations such as two-
phase I/O [4] or data shipping [3]. It’s possible to use independent I/O with
Parallel-NetCDF, but the opportunities for optimization are greatly limited in
that case.

Once executed, this example will produce a file “demo.nc.” This dataset will
contain two variables, as can be verified with either netCDF or Parallel-NetCDF
utilities.

The Parallel-NetCDF standard interface shares much in common with the
serial netCDF interface. The function name explicitly states whether the oper-
ation is a read or write (put or get), the type of access (e.g., var, vara),
and the type (e.g., int, float, double. For example, from the name alone a
programmer knows that the function ncmpi put vara int writes integers into
a subarray.

A more realistic example This simple example, operating on a one-dimensional
array, may not give the most insight into all the work going on behind the scenes.
Figure 4 depicts a two-dimensional array of which this example program wants
to only write a smaller subarray. Perhaps this array represents one frame of a
movie and a parallel program renders portions of each frame.

Figure 5 contains the Parallel-NetCDF code needed to write the indicated
region. First, the program must describe the entire variable: lines 6, 7, and 9
describe the overall shape of the variable and the type of data it will contain.
Lines 13 and 14 set up the shape of the desired selection or subregion of the

7

Y

X

Figure 4: Writing a subarray of a two-dimensional array

1 ...
2 #define NDIMS 2
3 int dims[NDIMS], varid1 , ndims=NDIMS;
4 MPI_Offset start[NDIMS], count[NDIMS];
5
6 ncmpi_def_dim(ncfile , "y", 4, &(dims [0]));
7 ncmpi_def_dim(ncfile , "x", 6, &(dims [1]));
8
9 ncmpi_def_var(ncfile , "frame", NC_DOUBLE , ndims , dims , &varid1);

10
11 ncmpi_enddef(ncfile);
12
13 start [0] = 0; start [1] = 4;
14 count [0] = 2; count [1] = 2;
15 ncmpi_put_vara_double_all(ncfile , varid1 , start , count , data);
16 ...

Figure 5: Writing the selected portion of the above array.

8

1 /* function prototype */
2 int ncmpi_put_vara_all(int ncid , int varid ,
3 /* start and count describe access in file */
4 const MPI_Offset start[], const MPI_Offset count[],
5 /* ’buf ’ ’bufcount ’ and ’datatype ’
6 describe data in memory */
7 const void *buf , MPI_Offset bufcount , MPI_Datatype datatype);
8
9 ...

10 start = rank;
11 ncmpi_put_vara_all(ncfile , varid1 , &start , &count ,
12 &rank , count , MPI_INT);
13 ...

Figure 6: Prototype for and usage of one of the Flexible Data Mode routines.

variable and pass these arguments as parameters to the call at line 15.
These few lines of Parallel-NetCDF code trigger a lot of activity behind

the scenes. Even though the desired region is logically contiguous, when the
array is stored on disk, this selection will end up scattered across the file in a
noncontiguous access pattern. Fortunately for Parallel-NetCDF, MPI-IO makes
it easy to describe these accesses with a file view.

Storage systems yield the best performance with a few large, contiguous
accesses. The MPI-IO library will apply several optimizations to transform a
noncontiguous access into one more likely to give good bandwidth. The Parallel-
NetCDF call in this example is collective, which means that the lower MPI-IO
layer can in turn use collective I/O optimizations: the MPI-IO library can com-
municate with the other processes participating in this I/O call and rearrange
the requests. To the file system, this subarray access will end up looking like a
more performance-friendly contiguous request.

While this discussion glosses over many of the details, the important point
is that a few Parallel-NetCDF functions convey a great deal of information to
the lower levels of the I/O stack. Applications using Parallel-NetCDF thus get
the benefits of a self-describing portable file format and a relatively straightfor-
ward API while still achieving performance without requiring the application
programmers to master MPI-IO.

3.3.2 The Flexible Interface

Parallel-NetCDF provides an additional set of routines to allow for even more
freedom in describing an application’s data model. In Figure 6, a write operation
from Figure 3 is converted to the Flexible Data Mode interface. This interface
allows an application to use MPI datatypes to describe how information is laid
out in memory.

The datatype in this example is simple (MPI INT), but a more complicated
MPI datatype might, for example, write out all the data in a multidimensional
array while skipping over the “ghost cells.” Ghost cells, copies of data belonging
to other MPI processes, are used to optimize communication in nearest-neighbor
simulations and do not actually need to be written to disk. In many cases, the

9

1 NCMPI_Request requests [2];
2 int status [2];
3 ...
4 ncmpi_iput_vara_int_all(ncfile , varid1 , &start , &count ,
5 &rank , count , &(requests [0]));
6 ncmpi_iput_vara_int_all(ncfile , varid2 , &start , &count ,
7 &rank , count , &(requests [1]));
8 ...
9 ncmpi_waitall (2, requests);

Figure 7: The “implicit” nonblocking interface: no progress occurs in the back-
ground, but operations can be batched together when completed.

Flexible Data Mode interface permits an application to avoid an additional
buffer copy before making a Parallel-NetCDF call.

3.3.3 Nonblocking Interface

Parallel-NetCDF further extends the traditional netCDF API through the in-
troduction of nonblocking I/O routines. Programmers familiar with MPI non-
blocking communication routines will note strong similarities between MPI non-
blocking routines and those in Parallel-NetCDF. A program posts one or more
operations and then waits for completion of those operations.

In Figure 7 the example from Figure 3 has been modified yet again, this time
to use Parallel-NetCDF nonblocking operations. Throughout the I/O software
stack, more information about I/O activity results in more opportunities for op-
timization. In this example, even though the calls operate on separate variables,
those variables are still in the same dataset and appear to the MPI-IO layer as
parts of a single file. Parallel-NetCDF can take these nonblocking requests and
optimize them into a single, larger I/O operation [1].

Parallel-NetCDF can optimize these nonblocking requests in this way be-
cause the library makes no guarantees about when work will occur (sometimes
called “make progress” in the MPI context). It may appear to the program
that I/O work happens in the background when calling these nonblocking rou-
tines. Actually, when the operation is posted (lines 4 and 6), no work happens.
Instead, the library defers all work until the application makes an additional
“wait for completion” function cal (line 9). Once Parallel-NetCDF has a list of
all the outstanding operations, it can then construct a single I/O request en-
compassing all operations. Typically, storage systems perform better with larger
I/O requests, so coalescing operations in this way can yield good performance
improvements.

3.4 Tuning Parallel-NetCDF

Extracting good performance out of Parallel-NetCDF comes down largely on
following a handful of best practices: perform collective I/O to a small num-
ber of files. Doing so provides the most information to the lower I/O software

10

stack layers, and allows for those layers to make as many optimizations as possi-
ble. For even more fine-tuning, the library does provide some additional tuning
mechanisms for applications. For the most part, these tuning knobs help tweak
parameters for layers farther down the software stack. The MPI Info parameter
passed to the create and open calls can direct the optimizations the underlying
MPI-IO library chooses to make. For example, on Lustre file systems file locks
are exceedingly expensive. By setting the MPI Info hint romio ds write to
"disable," the ROMIO implementation of the MPI-IO library, the most com-
mon implementation on systems with Lustre installed, will avoid using locks.
Knowing more about the characteristics of the storage system and the appli-
cation workload will make the selection of appropriate hints easier and more
productive. The available MPI-IO tuning parameters vary based on the MPI-
IO implementation and file system used. Users should consult their MPI-IO
library’s documentation.

Often, the most effective way for a computational scientist to improve the
I/O performance of a program is to enlist the aid of the Parallel-NetCDF com-
munity (see Section 5). If the scientist can remove the simulation and science
aspects of the program, leaving only the representative data structures, the
resulting “I/O kernel” becomes a valuable resource for exploring all tuning op-
tions available. I/O kernels leave no doubt as to what the scientist requires from
the Parallel-NetCDF library and storage system. Because these small programs
have few if any dependencies on additional libraries, they can become part of
the library’s correctness and performance tests, ensuring that modifications and
improvements made to Parallel-NetCDF also benefit applications.

A discussion about tuning Parallel-NetCDF would not be complete without
a few words concerning record variables. In Parallel-NetCDF and netCDF,
variables can have an unlimited dimension. Often, variables that change over
time use this feature: each iteration of the simulation can append data along
the unlimited “time” dimension. When more than one variable contains an
unlimited dimension, those variables are stored on disk in an interleaved fashion.
The writing and reading of data interleaved in this way will often yield poor
performance. Programmers must weigh the flexibility of record variable storage
against the cost of performance. With an I/O kernel, Parallel-NetCDF experts
can likely find a set of tuning parameters to mitigate some of the performance
loss, and the project will be looking at more sophisticated ways of dealing with
record variables in the future.

3.5 Conclusion

The Parallel-NetCDF library provides a more natural programming interface
for high- performance storage systems. By implementing parallel I/O concepts
in terms of multidimensional arrays, many computational science simulations
are able to naturally express their data structures.

Parallel-NetCDF provides a further benefit in that it encapsulates a great
deal of I/O expertise. Computer scientists working on high-performance stor-
age may not know a great deal about weather, climate, combustion, or other

11

scientific domains but know much about how to get the best performance out
of storage devices, the file system, and MPI-IO. Application scientists in turn
specialize in modeling phenomena, developing numerical methods, and explor-
ing other topics more relevant to computational science. Parallel-NetCDF and
other high-level I/O libraries provide a middle ground where scientists and stor-
age experts can come together to maximize productivity.

3.6 Related Work

The HDF5 library [5] was the first high-level I/O library to be built on top
of MPI-IO. HDF5 provides a large and flexible API. For example, HDF5 ap-
plications do not need to enter a define mode to describe the variables and
dimensions. HDF5 writes all metadata for the file on an as-needed basis. The
trade-off for this flexibility is some additional overhead if the application is cre-
ating many new variables or other metadata-intensive workloads. HDF5 has the
further benefit of allowing variables to grow without bound in any dimension.
The HDF5 library allocates space for variables on demand. Consider the stor-
age of a sparse matrix: only those values actually present in the matrix would
be stored on disk. When multiple processes are updating variables in this way,
however, this on-demand space allocation can result in some performance and
consistency challenges. HDF5 currently forces all parallel metadata updates
through rank 0, though the group is working on more sophisticated techniques.

More recently, the serial netCDF developers released netCDF-4 [7], a li-
brary with the netCDF programming API on top of the HDF5 file format. This
project brought several HDF5 features to netCDF, including parallel I/O sup-
port, support for variables with multiple unlimited dimensions, and support for
much larger variables. While introducing a new file format, it still can operate
on older netCDF datasets. The netCDF-4 API does not have some of the more
sophisticated Parallel-NetCDF features like the Flexible Mode interface or the
Nonblocking interface.

4 Related Encyclopedia Entries

• Parallel-NetCDF fits squarely under the topic of Parallel I/O, designed
with the goal of making parallel I/O accessible to a wider audience.

• It is closely related to HDF5, the first high-level I/O library. The two
libraries make different design choices with regards to API and file format
design. The friendly competition between HDF5 and Parallel-NetCDF
ensures that both remain high-quality I/O libraries.

• Parallel-NetCDF sees most use in Distributed Memory environments, par-
ticularly those using message passing (though nothing precludes shared-
memory platforms from using Parallel-NetCDF effectively).

• MPI, particularly the MPI-IO portion of MPI, provides the foundation on
which Parallel-NetCDF is built.

12

• Benchmarking ties into Parallel-NetCDF in that correctly benchmarking
Parallel-NetCDF requires understanding the entire I/O software stack.
Parallel-NetCDF should yield performance close to that of straight MPI-
IO: should a benchmark show significantly higher or lower performance,
that would certainly warrant further examination.

• The Weather and Climate Simulation fields make use of Parallel-NetCDF,
particularly as per-node memory sizes become smaller and smaller. With
less memory per-node, parallel approaches to I/O become important not
just to enhance performance but to be able to run on these systems at all.

5 Bibliographic Notes and Further Reading

For more technical insight into Parallel-NetCDF, Jianwei Li et al.’s SC 2003
paper [2] presents the design choices made in developing the library; experimen-
tal results are also presented.. The multivariable I/O optimizations are covered
further in [1].

The Paralllel-NetCDF website is www.mcs.anl.gov/parallel-netcdf. The
site hosts pointers to additional Parallel-NetCDF papers and projects as well as
links to production releases and the latest code.

The Parallel-NetCDF community of users and developers communicates on
the parallel-netcdf@mcs.anl.gov mailing list. The quality of discourse on
the list has been high from the beginning. Any topic related to Parallel-NetCDF
is open for discussion.

Parallel-NetCDF developers regularly give tutorials and workshops covering
the library.

Acknowledgments

This work was supported by the U.S. Dept. of Energy under Contract DE-
AC02-06CH11357.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

13

References

[1] Kui Gao, Wei keng Liao, Alok Choudhary, Robert Ross, and Robert Latham.
Combining i/o operations for multiple array variables in parallel netcdf. In
Proceedings of the Workshop on Interfaces and Architectures for Scientific
Data Storage, held in conjunction with the IEEE Cluster Conference, New
Orleans, Louisiana, September 2009.

[2] Jianwei Li, Wei keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur,
William Gropp, Rob Latham, Andrew Siegel, Brad Gallagher, and Michael
Zingale. Parallel netCDF: A high-performance scientific I/O interface.
In Proceedings of SC2003: High Performance Networking and Computing,
Phoenix, AZ, November 2003. IEEE Computer Society Press.

[3] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and Alice
Koniges. MPI-IO/GPFS, an optimized implementation of MPI-IO on top
of GPFS. In Proceedings of SC2001, November 2001.

[4] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective
I/O in ROMIO. In Proceedings of the Seventh Symposium on the Frontiers
of Massively Parallel Computation, pages 182–189. IEEE Computer Society
Press, February 1999.

[5] The HDF Group. HDF5. http://www.hdfgroup.org, 2008.

[6] The MPI Forum. MPI-2: Extensions to the Message-Passing Interface, July
1997.

[7] Unidata. netCDF4. http://www.unidata.ucar.edu/software/netcdf/index.html.

14

