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Abstract

Large-scale marine sequencing projects promise insights into the catalytic potential of marine genomes
or entire communities and have the potential to enhance our ability to monitor, model, and predict
changes in the marine ecosystem. The number of base pairs generated in sequence projects is growing
with each generation of sequencing platforms. Thus, bioinformatics and computational resources are

becoming critical factors in the success of marine genomics projects.

However, only a few such resources currently are dedicated to marine genomics. Moreover, there exists
a tremendous need for community-based bioinformatic infrastructures that meet twofold challenges of
(1) efficiently processing and managing large amounts sequence data and (2) consistently integrating

domain-specific contextual data to facilitate large-scale comparative genomic studies.

Introduction

Molecular biology has undergone a paradigm shift in the past few years. Data-driven high-throughput
studies are revolutionizing many research areas. The genomic revolution is rooted in medicine and
biotechnology, but marine genomics currently delivers a great quantity of data in its own right. At the
time of publication, the marine metagenome sequencing of the Global Ocean Sampling (GOS) campaign
doubled the content in the public sequence repositories (Yooseph, et al., 2007) and confirmed the
astonishing diversity of microbes. Currently, the Gordon and Betty Moore Foundation Marine Microbial
Genome Sequencing Project, founded in 2004, has sequenced nearly 180 marine microorganisms, of
which 80% are already published. The project is motivated by the fact that marine ecosystems cover
more than 70% of the Earth’s surface, host the majority of biomass, and significantly contribute to global

organic matter and energy cycling. Microorganisms are known to be the “gatekeepers” of these



processes. Therefore, insights into the genomic basis of their catalytic activities and interaction with the

environment will enhance our ability to monitor, model, and predict changes in the marine ecosystem.

The impressive number and size of marine genome and metagenome projects are driven by astonishing
advancements in sequencing technologies. Current and predicted trends in the development of new
sequencing technologies show that the sheer pace of sequence data growth is unlikely to slow (Gupta,
2008, Hall, 2007, Metzker, 2010, Shendure and Ji, 2008, ten Bosch and Grody, 2008). Thus, genomics —
including ecological genomics — is being transformed into a data-intensive science with an exponential

increase of data (Szalay and Gray, 2006).

The rapid development of platforms for high-throughput experiments at lower costs can be observed in
the fields of transcriptomics, proteomics, and metabolomics as well, providing scientists with a more
holistic view of microbes in their natural, environmental context through multiomic studies.
Furthermore, these multiomics studies are extended to metatranscriptomics and metaproteomics,
involving analysis of entire microbial communities. Indeed, multiomic studies not only significantly
increase the size and complexity of genomic data; they demand the integration of diverse data to
maximize scientific insights. The paradigm shift toward high-throughput experiments also shifts the
workload toward bioinformatics and computational resources, which have become a critical factor for
success. Indeed, the rate of sequence data generation is far outpacing the rate of increase in CPUs, and
the cost of analyzing large datasets produced by, for example, Solexa, already exceeds the cost of
generating them (Metzker, 2010, Meyer, 2006, Nature, 2009, Wilkening, et al., 2009). This situation is
often characterized by fear-inducing metaphors such as “data tsunami,” “data avalanche,” and “data
deluge.” Rather than being a threat to humankind, however, the technological improvements open
challenging, but excellent opportunities for marine biology and biotechnology. The current exponential

data production is a universal fact in biology and will enable a new kind of research limited only by our
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computing power and bioinformatic capacity (Committee on Metagenomics: Challenges and Functional
Applications, 2007, Szalay and Gray, 2006). The metagenomic approach may open a wide door to the
rich metabolic and enzymatic repertoire of bacterial and archaeal communities for research in molecular
ecology, ecological genomics, and marine biotechnology. However, the ability to make scientific use of
the raw sequencing data heavily depends on the bioinformatic resources available to the marine

genomics community.

Bioinformatics Resources

The value of sequences is realized only through its annotation, which expresses a scientific
understanding of the raw data. Today, a range of annotation systems exists for single-genome analysis.
These systems support the management and integration of data from computational analyses using
diverse sets of bioinformatic algorithms and software tools (Médigue and Moszer, 2007). Examples
include sequence assembly (Scheibye-Alsing, et al., 2009), gene finding, protein domain prediction (Finn,
et al., 2008), protein function assignment (Juncker, et al., 2009, Rentzsch and Orengo, 2009), prediction

of gene expression, and gene regulation accompanied by data from laboratory studies.

Large-Scale Sequence Analysis

While the computational needs for single-genome analysis are solved and can be performed on today’s
commodity hardware, the new large-scale metagenomic sequencing projects — which generate 2,000-
3,000 genome equivalents of sequence information per project — bring new challenges. On the one
hand, the challenge is the sheer amount of sequence data per metagenome. On the other hand, all
metagenome sequences are mere fragments of unknown organismal origin. Taken together, these
challenges demand further development of software for assembly, gene calling, and annotation.

Recently, several new and dedicated data processing and database resources have emerged to address
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the current need for large-scale metagenomic data analysis and management, for example, CAMERA
(Seshadri, et al., 2007), IMG/M (Markowitz, et al., 2008), and the MG-RAST platform (Meyer, et al.,
2008). However, just a “simple” automatic annotation based on BLAST sequence similarity searches
poses a severe computational bottleneck. Consider the following example: in November 2009, the MG-
RAST server processed 278 metagenomes with an average of 33 Mbp of sequence data per project (see
Figure 1). On a single high-end server (Xeon E5540, 8 cpu’s, 2.53 GHz, 16 GB ram) a complete BLAST
analysis of a single project against a 2 Gbp nonredundant reference database would take three days.
Hence, it would take more than two years to calculate all metagenome projects that were submitted to
MG-RAST in a single month, or 30 such servers. Because BLAST computing time grows linearly with the
reference database size, and the reference databases double every year, a comparable growth in the
number of servers is needed. In other words, any institution that aims to keep pace with the growth of
sequence data needs to double its budget each year. Even when accounting for the 15% yearly increase
in CPU speed, a 1.7 factor budget growth is needed. This simplified example does not yet incorporate
concomitant costs incurred as a result of increases in memory consumption, storage capacities, and
network bandwidth for data exchange, as well as power consumption and cooling. The issue becomes
even more severe when one considers that, unlike BLAST, several analysis tools have nonlinear
computational time consumption and the growth of metagenomic datasets continues steadily (see

Figure 2).

From Sequence Data to the Environmental Context

It is increasingly apparent that the isolated analysis of genes and genomes provides limited information
with respect to gaining deeper insight into the function of ecosystems. Environmental sequence data
needs to be analyzed on the basis of geographic and environmental context (Field, 2008, Field, et al.,

2008). The contextual data can describe the geographic location and habitat, the processing details,

-6-



from the time of sampling up to sequencing, and subsequent analyses of any sequence. Each such
contextual data item expands the number of dimensions available in comparative genomics and
downstream hypothesis testing (Hughes Martiny and Field, 2005) and is therefore important for
hypotheses about functions of predicted genes and, on higher levels, for modeling species' responses to
environmental change or the spread and niche adaptation of marine microbes. The addition of
contextual data to sequences is therefore becoming as valuable as the four nucleotides that make up
the sequences. An important prerequisite for successful usage of contextual data is the availability and

storage of such data in an accurate, structured, and accessible fashion.

Integrating Sequence and Contextual Data

Unfortunately, even conceptually simple contextual data-driven requests, such as “Give me the
temperature at the sampling site of the microbial isolate of interest” or “Give me all unknown genes

sampled at temperatures greater than 80 degrees Celsius,” are far from trivial.

The reason is as simple as it is profound. From the time of field sampling to final sequence analysis, a
range of diverse data is produced among different scientific communities, where individual researchers
process the samples with different protocols in different time frames. Often, the data is not deposited in
public resources at all, or the submitters have the choice of up to a dozen repositories. Therefore,
current molecular, environmental, and diversity data is fragmented, imprecise, or lost in lab books or
proprietary private archives. Moreover, environmental data, such as temperature, cannot be stored
consistently in the current records of sequences in the INSDC databases (Benson, et al., 2010, Leinonen,
et al., 2010); and nor can a genome sequence be stored in databases dedicated to environmental data

(compare Figure 3).



An important source of contextual data is the data taken in the field (on site), such as the geographic
and environmental origin of the sample, as well as information about subsequent processing to obtain
the DNA, and the sequencing itself. Given that each DNA sequence from the marine environment is
properly geo-referenced, with geographic location, depth in the water column or sediment, and time of
sampling, the environmental context can be significantly complemented with data from environmental

databases.

Environmental Databases

Environmental databases collect a variety of geo-referenced observations of different bio- and
physicochemical conditions. Hundreds of such databases exist worldwide. European databases targeting
the ocean include Pangaea, the British Oceanographic Data Centre (BODC), and SeaDataNet, which store

a wide range of environmental measurements, mostly from cruise expeditions.

From the international community, the World Ocean Atlas provides a set of objectively analyzed (one
decimal degree spatial resolution) climatological fields of in situ measurements (World Ocean Atlas,
2005). The World Ocean Database is a collection of scientific, quality-controlled ocean profiles (World

Ocean Database, 2005). SeaWIFS provides chlorophyll a data based on remote sensing (SeaWIFS, 2009).

Together they provide a rich set of biotic and abiotic data for the marine ecosystem that can be used for

integrated analysis.

Toward More Contextual Data in Bioinformatic Resources

Only recently have bioinformatic resources begun to invest in better management and integration of
contextual data. CAMERA hosts the fully geo-referenced GOS data set. IMG/M integrates rich details
about the hosted genomes and metagenomes. Megx.net is the first resource to provide a

comprehensive annotation of the environment of microbial genomes (Kottmann, et al.). The Barcode of
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Life initiative (Ratnasingham and Hebert, 2007) successfully collaborated with INSDC to store latitude

and longitude in the public sequence repositories.

From Single Systems to a Network of Resources

A rich landscape of hundreds of bioinformatic resources exists (Cochrane and Galperin, 2010). Each of
these resources has its own data processing approach and data model according to its biological
research focus. IMG/M, MG-RAST, and CAMERA can be grouped as processing resources for genomes
and metagenomes. They host large-scale genomic and metagenomic datasets and are backed with
large-scale computing resources for a variety of sequence analysis tasks. CAMERA and megx.net are the
only resources that explicitly support marine microbiology, though megx.net focuses on the integration

of marine environmental and sequence data and should not be considered a processing resource.

More technically, these resources differ significantly in the nature of the data stored, the way the data is
presented to users, and the way the data is published and made available to the public. Consequently,

there exists a plethora of different data formats, storage systems, and data access methods.

For an individual user it is a laborious task to ascertain the best way to make use of the resources. To get
the “big picture,” each user must locally download all data from all resources needed. This ad hoc
integration of data is time consuming, error prone, and often infeasible because local resources are

insufficient in terms of bioinformatic skills as well as computing and storage capabilities.

Integrated community resources are urgently needed. They would share the burden of data processing
and provide each user with a single, easily accessible view on complete, quality-controlled data. This
goal can be fulfilled only if resources join in a federated, but community coordinated, network of

resources to work together and share processing resources, common data models, data formats,



synchronized data exchange, and data presentation. In order to build such a networking system, several

issues must be taken into account.

Interoperability

Interoperability describes the capabilities of computing systems to exchange data. Given the multitude
of databases in genomics, metagenomics, biodiversity, and environmental research, integrated access is
of fundamental importance to exchange data. Today the World Wide Web is key to such exchanges of

scientific data.

The possibility to browse the World Wide Web is based on dozens of low-level communication protocols
and data format specifications that are hidden from the casual user. What the user sees is the graphical
representation of text documents in HyperText Markup Language (HTML) conveyed using the Hypertext
Transfer Protocol (http). The World Wide Web not only allows users to browse hyperlinked web pages
("human-web") but also allows software programs to automatically access and exchange data
("machine-web"). While users surf the web by means of web browsers, software programs
communicate and remotely process data via web services. Several different architectures and
frameworks for building web services exist. While SOAP (Simple Object Access Protocol) enjoyed
popularity in the past, the REST (Representational State Transfer) approach (Fielding, 2000) has gained
increasing attention recently. The popularity of REST is based on its simplicity. REST is merely a guide to

how to best use the http protocol for machine-machine communication.

These technologies provide the functionality now essential to everyday scientific research. Biology,
especially molecular biology, is said to be one of the first sciences to co-evolve with the digital

repositories and now completely relies on the Internet. To achieve interoperability, however,
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bioinformatic resources must decide on a common web service framework, a common data model, and

a specified data format.

Semantics and Ontologies

The query “Give me all metagenomes sampled at temperatures higher than 80 degrees Celsius from the
marine environment” introduces the problem of semantics encoded in the data. Submitting this query
to two different resources can lead to different answers, since the two resources have different
understandings of the term “marine environment.” Is it the ocean water column? Or does it include all
environments influenced by the ocean, such as mangroves, tidal areas, and estuaries? This semantic
problem is called homonymy, where same terms have different meanings. Another frequent issue of
semantics is known as synonymy, whereby two different terms have the same meaning; for example,

one resource uses the term “marine environment” and another resource uses “maritime environment.”

Today, ontologies are perceived as the best approach for solving semantic issues in data management.
Ontologies are elaborated, controlled vocabularies that attempt to capture and hierarchically structure
the semantics of main concepts in a knowledge domain (Gruber, 1993, Rubin, et al., 2008, Schulze-

Kremer, 2002).

The Environmental Ontology (EnvO) (EnvO Consortium, 2009) defines and organizes the semantics of
environment descriptions. For example, EnvO defines the term “marine habitat” as “a habitat that is in
or on a sea or ocean containing high concentrations of dissolved salts and other total dissolved solids
(typically >35 grams dissolved salts per litre)." Given that EnvO is shared by several resources, it
guarantees that a user asking to retrieve information from “marine habitat” gets information based on a
shared common understanding. Moreover, because EnvO, like all ontologies, is hierarchically structured,

a resource implementing EnvO will return information for all items classified as “freshwater habitat” and
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n

“marine habitat” if it is asked for information items from “aquatic habitat.” By incorporating an “is-a
relationship between the various expressions, it knows semantically that both freshwater and marine

habitats are aquatic habitats.

The availability of a controlled vocabulary and the hierarchical structure to model “is-a” relationships
can greatly facilitate semantic coherent data exchange. Because ontologies are themselves technically
encoded data, however, successful usage of ontologies again depends on efficient solutions to
interoperability. Thus, ontologies not only promise better semantic consistency of data but also

contribute to the complex issue of interoperability and data management.

Standards, Standards, and Standards

Standards are everywhere. Every product we use is subject to some quality, processing, or production
standard. These standards are either de facto standards, resulting from the wide acceptance of a
common specification, or official standards resulting from the work of experts in national, international,
or industry standards organizations. The Internet would not function without the standards defined by
the World Wide Web Consortium (W3C). Scientific activities are similarly based on standards ranging
from the International System of Units (SI), which defines the standard metric system and system of
measurement, to standardized laboratory protocols for specialized experiments. Molecular biology and
marine sciences further prosper through the use of standardized methods and protocols. Astonishingly,
genomics so far has progressed without standards for critical analyses, such as assembly, gene finding
and function predictions. Moreover, it lacks standards for the storage and exchange of raw sequence

data and their respective analysis results (Kyrpides, 2009).

In 2005, the Genomics Standards Consortium (GSC) was established. Its goal is to promote mechanisms

that standardize the description of genomes and thus facilitate the exchange and integration of genomic
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data. This is the first well-organized effort to establish a constant community debate on standardization
issues in genomics. Although the GSC is mostly a grass-roots community of volunteers, it has already
established several successful projects, including the EnvO-Lite project, which established a manageable
subset of terms from EnvO, especially accessible to non-ontology experts. The Standards in Genomic
Sciences (SIGS) is an open-access, standards-supportive journal that seeks to rapidly disseminate concise
genome and metagenome reports in compliance with GSC standards (Garrity, et al., 2008). In 2008, the
GSC published the "Minimum Information about a (Meta-) Genome Sequence standard" (MIGS/MIMS),
a specification of the minimum set of contextual data to accompany a genome sequence, which will aid
comparative analyses (Field, et al., 2008). With the development of the Genomic Contextual Data
Markup Language, the GSC also provides an XML implementation of MIGS/MIMS for use in web
services-based data exchange (Kottmann, et al., 2008). Currently, the GSC further extends MIGS/MIMS
to specify a checklist for the “Minimum Information about an ENvrionmental Sequence” (MIENS) for

better description of marker genes from cultured organisms or the environment.

These standards are integral components in achieving an interoperable bioinformatics world (Stein,
2002, Stein, 2003). Of course, standards alone do not guarantee success (Ball, 2006, Brooksbank and
Quackenbush, 2006, Burgoon, 2006). The value of standards in solving interoperability, integration, and
semantic data issues depends on the quality of the standard itself and its acceptance and adoption in

the scientific community.

Cyberinfrastructures and e-Infrastructures

The advances in sequence technologies have led to petabyte-scale raw sequence data at an accelerating
pace (Metzker, 2010). Already, this development makes the bioinformatic analysis a serious bottleneck.

It is becoming apparent that no single computing infrastructure, not even a supercomputing center, can

-13-



keep pace in providing the computing power for the basic analysis tasks of sequence assembly, gene

calling, and automatic annotation.

The first challenge is to create better algorithms and new strategies for the bioinformatic analysis of the
raw sequence data. The second challenge is to supplement sequence data with contextual data to
facilitate analyses in dimensions beyond gene annotation and comparative sequence studies. The key to
successful and effective use of these datasets is interdisciplinary and international collaboration among
computer scientists, software engineers, statisticians, theorists, and field researchers. The development
of bioinformatic infrastructures is now a priority: biology has become a data-driven science, with

computers and the Internet as essential for scientists as the laboratories in which they work.

To address these needs, European and U.S. funding agencies are developing strategies to better fund
infrastructures, termed “cyberinfrastructures” in the U.S. and “e-infrastructures” in Europe. In the U.S,,
current infrastructures in biology include the Cancer Bioinformatics Grid (caBIG); the Biomedical
Informatics Research Network (BIRN); and iPlant, a $50 million program to tackle the biggest

computational challenges in plant biology.

European development of research infrastructures is consolidated in the ESFRI (European Strategy
Forum on Research Infrastructures) Roadmap. This roadmap comprises more than 30 infrastructure
projects in research fields across Europe. ESFRI clearly defines e-infrastructures as critical to all projects.
Notable e-infrastructure projects include Lifewatch (Science and Technology Infrastructure for
Biodiversity Data and Observatories) for environmental sciences and ELIXIR (European Life-Science

Infrastructure for Biological Information) for biological science.

These infrastructures will provide digital grid computing-based research environments that combine

data and software for scientific communities. Furthermore, these infrastructures allow the scientific
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communities to run sophisticated computational analyses on their domain specific data; facilitate
visualization and interpretation; and allow exchange, sharing, and publication of the knowledge arising

from those analyses.

Domain-Specific e-Infrastructure for Marine Genomics

The most important reason current e-infrastructures are developed for specific domains of knowledge is
that they are most applicable and accessible by users when developed by and for a specific research
community. In marine genomics, “Community Cyberinfrastructure for Advanced Marine Microbial
Ecology Research and Analysis” (CAMERA) is established in the U.S. Currently, there is no such

infrastructure for marine genomics in Europe.

In Europe, megx.net is the first resource to provide access to geographically integrated information on
microbial genes and genomes in their marine environmental context. It makes available contextual data
on several hundreds of genomes and metagenomes from prokaryotes and phages, as well as over a
million small and large subunit ribosomal RNA sequences. In addition to storing all available “on-site”
data describing sampling time, location, and field measurements of genomic sampling events, megx.net
allows post factum retrieval of interpolated environmental parameters, such as temperature and pH, for
any location in the ocean waters based on global profile and remote sensing data from environmental

databases.

The ever growing mass of sequence and associated data, however, demands bioinformatic skills and
resources often exceeding the available computing resources in marine laboratories. Additionally, the
accurate and consistent handling of the complex contextual data needed for high-dimensional analysis
and modeling demands dedicated standardization, software, and integrated database development. A

European bioinformatic e-infrastructure for marine genomics would need to integrate bioinformatic
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predictions with environmental data from the ocean, seas, and European coasts to gain knowledge
about the genomic basis of microbial lifestyles, adaptations, and fitness in response to the marine
environment (see Figure 3). Notably, the integration, visualization, analysis, and interpretation of the
data are domain-specific tasks that can be done only by a community of marine experts. Such a specific
e-infrastructure, implemented as an integral component of ELIXIR, would gather a virtual community
across disciplines and borders and would allow and safeguard vital open access to integrated marine

specific data.

Conclusions

Marine genomics greatly benefits from rapid development in sequencing technologies. Marine large-
scale sequencing projects promise insights into the catalytic potential of marine genomes or entire
communities. Full use of the sequence data can be made, however, only if appropriate community-
based bioinformatic infrastructures exist that meet twofold challenges of (1) efficiently processing and
managing the ever growing amount of sequence data and (2) consistently integrating domain-specific
contextual data to facilitate large-scale comparative studies of different marine samples. Such
infrastructure would allow better and cost-effective use of computing resources that already exceed the
laboratory costs of sequence generation. A standard information infrastructure integrating diversity and
genomics of ecosystem functioning is the basis for an international and interdisciplinary community
resource in marine genomics. Tools for the visualization and analysis of the integrated information allow
researchers to effectively develop better approaches to monitor, model, and predict changes in the
marine ecosystem. Such newly generated knowledge will help us to make better, sustainable use of our

largest ecosystem on earth.
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Figure 1. From 2007 until 2009 the MG-RAST has processed 4,429 metagenomic data sets, of which 420 have
been made publicly available and can be accessed through the MG-RAST web interface. The average number of
jobs per month has increased from 6 to 220 (as of December 2009). Additionally, the average size of a
metagenomic dataset increased up to 40 Mbp with a maximum average size of 69 Mbp. The largest dataset has
a size of 1.8 Gbp.
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Figure 2. MG-RAST processed a total number of 120 Gbp by the end of 2009 (red) alongside the steady increase
in Gbp processed per month.
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Figure 3. A model for marine genomics e-infrastructure. The positioning in the middle between genomic- and
environmental science, both having own data flows, emphasizes the importance of contextual data integration.
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