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Abstract: Moving horizon estimation for discrete-time nonlinear systems is addressed by using
fast optimization algorithms for which stability results under general conditions are ensured. The
solution of the on-line moving horizon estimation problem is obtained by using the sampling
time to solve a reference problem with model-predicted measurements while waiting for the
next measurement. In order to correct the resulting solution, a quick nonlinear programming
sensitivity calculation is accomplished as soon as the new measurement becomes available.
The stability properties of such moving horizon estimation algorithm is proved under general
conditions, which make the overall approach suitable for real settings with strong nonlinearities.
Preliminary simulation results confirm the effectiveness of the proposed method.

1. INTRODUCTION

Moving horizon (MH) estimation is often associated with
model predictive control (MPC) since such problems are
dual, as pointed out by Goodwin et al. [2005]. An MH
estimator is valuable in its own right as well as in the so-
lution of more complicated tasks such as output feedback.
In a common version of MH estimation, we are given a
system description with dynamic and measurement equa-
tions and a sliding-window algorithm that estimates the
state variables at each time step by using only a batch of
the last measures. In performing the estimation, one may
need to account also for constraints on the state variables
when it is known that they belong to some subsets of
the state space. Similarly, predictive control is generated
by minimizing a forward cost function, thus generating a
feedback control action that accounts for its future effects
by possibly taking into accounts constraints on both state
and input.

Ideas on what was later called MH estimation first were
presented by Jazwinski [1968]. An approach to the design
of asymptotic state observers was proposed by Moraal
and Grizzle [1995] that result from the numerical so-
lution of the measurement inversion problem by New-
ton’s method. Zimmer [1994] and Alamir [1999] developed
similar optimization-based techniques to construct esti-
mators for continuous-time dynamic systems. Michalska
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and Mayne [1995] proposed an MH observer for non-
linear continuous-time systems that performs estimation
at discrete-time instants by approximately minimizing an
integral error defined on the preceding time window. More
recently, research on MH estimation has been successfully
applied to linear systems (Rao et al. [2001], Alessandri
et al. [2003, 2004, 2005a]), hybrid systems (Ferrari-Trecate
et al. [2003], Alessandri et al. [2005b]), and nonlinear
systems (Rao et al. [2003], Alessandri et al. [2008a]).

The MH estimation scheme proposed by Rao et al. [2003]
allows one to explicitly take into account possible con-
straints on the system and requires the solution of a
nonlinear programming problem at each time step. More-
over, a sufficient condition for the non divergence of the
estimation error in the presence of bounded noises is pro-
vided. Unfortunately, such an approach requires the exact
on-line minimization of a nonlinear cost function, thus
reducing the practical possibility of applications. In order
to overcome this drawback, a method was proposed by
Alessandri et al. [1999] with the possibility of admitting
a certain error in the minimization of the cost function.
Moreover, the computation required to design the resulting
filter can be carried out off-line by using approximate opti-
mal estimation functions, typically implemented via neural
networks. These results were improved later by Alessandri
et al. [2008a] who accounted for the simultaneous presence
of system and measurement noises. In addition, the condi-
tions that guarantee the stability of the estimation error



were relaxed and the essentially local results of Alessandri
et al. [1999] were extended to regional stability.

It is well established that the minimization problem in-
volved in MH estimation cannot be solved on-line when
the dimension of the state vector is large. Therefore, there
exists the need of accomplishing this task as much as pos-
sible off line Diehl et al. [2009]. A possible approach relies
on the use of nonlinear approximate optimal estimation
functions to be chosen off-line (see, for an introduction,
the references reported in Alessandri et al. [2008a]). An
alternative idea presented in this paper involves using
fast optimization techniques for MH estimation recently
proposed by Kraus et al. [2005], Zavala et al. [2008, 2007],
Zavala and Biegler [2009]. Here, the idea is to use the
sampling time to solve a reference MH problem by using
model-predicted measurements while waiting for the next
measurement and to correct the reference solution by per-
forming a quick nonlinear programming (NLP) sensitivity
calculation as soon as the measurement becomes available.
These NLP sensitivity-based estimators are able to accom-
modate large-scale models in on-line environments while
dramatically reducing the feedback delay of MPC con-
trollers. The estimators presented by Zavala et al. [2008,
2007], Zavala and Biegler [2009] use the interior point
NLP solver IPOPT (Wichter and Biegler [2006]), which
is able to exploit the sparse structure of MH problems
automatically at the linear algebra level. This provides
an efficient approach to solve the reference MH problem
between sampling times. A drawback of sensitivity-based
estimators is that specialized sensitivity capabilities need
to be implemented inside the NLP solver which is a non-
trivial and often impossible task because the majority
of state-of-the-art NLP solvers are proprietary. From a
practical point of view, it is thus desired that fast MH
estimation formulations be implemented without the need
of sensitivity capabilities. Another drawback of sensitivity-
based estimators is that their stability properties might
deteriorate in the presence of large levels of noise as a re-
sult of increasing sensitivity errors. Therefore, other more
robust formulations and a deeper understanding of their
stability properties are needed.

In this work, we present an approach to MH estimation
that combines the reduced computational requirements of
the sensitivity-based methods presented in Zavala et al.
[2008, 2007], Zavala and Biegler [2009], Zavala [2009] with
the stability guarantees of the techniques developed by
Alessandri et al. [2008a]. To this end, in Section 2 the
problem is formulated. A general framework to find ap-
proximate solutions is described in Section 3. The stability
properties of the resulting MH estimation algorithms are
proved in Section 4. Preliminary simulation results are
presented in Section 5.

2. PROBLEM STATEMENT AND PRELIMINARY
RESULTS

Let us consider a dynamic system described by the
discrete-time equations

T = flag, w) + &,
Y =h(ze) + ¢,

for t =0,1,..., where z; € R" is the state vector (the
initial state xo is unknown) and u; € R™ is the control
vector. The vector & € R" is an additive disturbance
affecting the system dynamics. The state vector is observed
through the measurement equation (1b), where y; € RP is
the observation vector and 7, € RP is a measurement noise
vector. We assume the statistics of zg, &, and 7; to be
unknown, and we consider them as deterministic variables
of unknown character that take their values from known
compact sets.

We adopt the estimation scheme described in Alessandri
et al. [2008a], which is based on an MH strategy: At any
time ¢t = N,N +1,..., the estimate Z;_n of the state
vector x;_n is obtained on the basis of a prediction Z;_ N
of the state x;_n and of the information vector

A
It(N) :COI (yt7N7"' '7ut71)? (2)

where N + 1 measurements and N input vectors are col-
lected within a “sliding window” [t — N, ¢]. The prediction
Z4_n is obtained from the estimate Z;_n_1+—1 by apply-
ing the function f, that is,

y Yty Wt—Ny - -

t=N+1,N+2,....
The vector Zy denotes an a priori prediction of xg.

In the lines of Alessandri et al. [2008a] we make the
following assumptions.

TN = f(T—N—1t—1,Ut—N—1),

A1l. The sets =, H, and U, where &, n; and u; respec-
tively take their values, are compact sets, with 0 € =
and 0 € H.

A2. The initial state o and the control sequence {u;}
are such that, for any possible sequence of distur-
bances {&}, the system trajectory {z:} lies in a
compact set X.

Since, under Assumption A2, at every time step ¢ =
0,1,..., the state x; falls within the set X, the condition
Zy_n+ € X could be considered as a further constraint
in our estimation scheme. In general, fulfilling such a
constraint when applying a mathematical programming
procedure is a hard task. In order to mitigate this problem,
a compact convex outer-approximation of X will be
considered and denoted by X . Then, the constraint

Ty nr e X (3)
will be enforced.

The following assumption is also needed

A3. The functions f and h are C? functions with respect
to z on X for every u € U.

Of course, the fulfillment of constraint (3), together with
Assumption A3, ensures that the prediction Z;_y belongs
to the compact set X = f(x,U) for every t = N, N +
1,... (the a priori prediction Z is chosen inside the set
X).

Let Y and Z(™) denote the sets wherein the vectors y; and

It(N)7 respectively, take their values. One can immediately
see that



Y =hX)+H

and ZWN) C YN+ UN (here and in the following, the
set summation is intended in the sense of Minkowski).
Further, a more precise characterization of the form of the
set ZWV) can be given by defining the function !

(N) t—1 ¢t—1\ 2
F (xt*Nvuthv th) =

h (.I‘t_N)
ho fut—N»Et—N (xt—N)

ho f“t—lvft—l o-.. (.3 fut—th—N(xt_N)

. s 'y A
where “o” denotes function composition and f%i:% (z;) =

f (i, u;) + &. In fact, by exploiting such a definition one
can write
vy =FMN) (2N, ul N €N i

This, in turn, yields
IW) ={I =col (y,u):
weUN, ye F™M(x u,zN) +HN+1}.
Following a least-squares approach, in Alessandri et al.
[2008a] the minimization of the following cost function 2
is addressed:
JW) (it—N,t,ft—NJ,:(N))

t

= pll#-ne— T P+ > My = hl@i) I
i=t—N

(N)(

= plld—ne — Ton P+ ‘ yi_n—F

where the estimates Z;_ny1¢,...,T++ are generated here

by ;_n; through the noise-free dynamics, that is,
‘%i-i-l,t:f(i.i,taui)a Z:t_N77t_1 (5)

The last equality in (4) follows from recursive application

of (5). The positive scalar u expresses our belief in the
prediction Z;_y with respect to the observation model.

The following algorithm can be stated.

Optimal MH estimator (Algorithm E°). Given an a
priori prediction Zg, at any time t = N, N +1,...
(1) find a solution &7, to the NLP problem

minimize J(N)(i’t_N\t,ft—N,It(N))

, ) (6)
subject to &y_y; € X
(2) compute the optimal estimate sequence
82000 2 f(@5ui)  fori=t—Nt-N+1,... t—1

and extract the estimate i;" , of the current state;

I In general, given a sequence {z:}, we shall use the notation

t+t" &
zt+ =col(zt,. .., Zeqer)-

2 Throughout the paper, for a generic vector v, we denote its
Euclidean norm by ||v||. For a generic matrix M, we shall denote its
induced Euclidean norm by ||M]].

2
Te_Nt, Ui:}w 0) H
(4)

(3) set

Tr-N+1 = (E7 N we-N+1)-

3. APPROXIMATE SOLUTION

In fact, the minimization involved in Algotithm E° cannot
be completed instantaneously. This would induce a delay
in the estimation process. One possibility for facing such
a drawback consists in the use of parametrized functions
(to be optimized off-line) to approximate the optimal
estimation function obtained by applying algorithm E°.
Such a possibility was considered by Alessandri et al.
[1999] and, more recently, by Alessandri et al. [2008b]. Here
a different approach is adopted.

To derive an approximate MHE algorithm providing an
estimate of the continuous state almost in real time, one
can proceed as follows. Suppose that at each time ¢, the
most recent available optimal estimate is Zy_ No1jt—1 (of

course, this amounts to assuming that problem (6) can
be solved to the desired accuracy in less than one sample
time). Then, one can exploit the following fact.

Proposition 1. Let &7, _ be a solution of problem

1)t—1

(6) at time ¢ — 1. Then, x;’_N_l‘t_l is also a solution of
the NLP problem

—(N
minimize J(N“)(fct_N_ut—hﬂ_ﬂt—N—l,Ii +1)) (7)
subject to Ti_N_1p-1€ X,
where
F(N+1) A t—1 t—1 =
I, = col (w_ 1> Y- n—1:9t) -

_ A N
Yr=ho f(x(t)—”t—lvut—l) .

O

In light of Proposition 1, one can construct a linear update
formula of the form

Ti_noap = -y T Ke(ye — 9e) - (8)

To this end, suppose that the optimal estimate
£?7N71\t71 corresponds to a strict isolated minimizer of

TN Gy E v, T Y). As s well known,
a strict isolated minimizer satisfies the so-called strong
second-order sufficient conditions (SSOC) (see Nocedal
and Wright [1999]), which we present here in the context

of MHE.

Lemma 1. (SSOC Conditions) Let JV+1 (2, Z, T) be a C?
function w.r.t. & in a neighborhood of °, with £° not lying
at the boundary of the set X. If V. JN+D(2° 2, 7) = 0
and V, . JN+D(2° 2, T) is positive definite, then 2° is a
strict isolated minimizer.

The requirement of JN+Y (%, 2, 7) being a C? function
follows from Assumption A3. A detailed SSOC analysis in
the context of MHE can be found in Chapters 3 and 6 in
Zavala [2008].



The satisfaction of SSOC also has implications on the
sensitivity of the solution to perturbations on the problem
data T around a reference solution Z°(7) (Basu and Bresler
[2000b]). To explore this, we use the following well-known
result, adapted to our context.

Theorem 1. (NLP Sensitivity) Fiacco [1983, 1976]. If a

nominal solution #°(7') satisfies SSOC, then the following
hold:

e For T in a neighborhood of T' there exists a unique,
continuous, and differentiable vector function z°(7)
that is a strict isolated minimizer satisfying SSOC.

e The optimal cost is locally Lipschitz in a neighbor-
hood of T'.

provided that SSOC holds at

50 _ —(N+1)
Ty N1t for the cost JV+1) (T N—1p—1, Te-N—1,1; ),

the gain K; can be chosen on the basis of a first-order
Taylor expansion. For instance, exploiting the implicit
function theorem, one has

From these results,

Q2 g+ _ TV
(xt7N71|t717‘rt*N*17 t )

K= A~ o
' {(&Ct—N—lh:—l)2
82J(N+1) —(N+1)

X ————————————— (7 N1 Tt—N—1,1 .
8%_1\/_1“_18%( t—N—1[t—1> Vt=N—155¢ )

Of course, such a first-order Taylor expansion pro-
vides a good approximation for the minimizer of
J(N+1)( It(NJd))

Tp—N—1]t—1,Tt—N—1, only in a neighbor-

hood of T(NH)t. Conversely, for large values of y; — ¥y,
the linear update formula may even lead to a worse state
estimate than the original one. However, while it is not
possible to directly compare the two estimates &f_ No1)t
and 7 N—1lt-1 since the true state z; is unknown, it is
still possible to make an indirect comparison by means of
the cost JWV+L | For instance, one can argue that '%ngflhf
represents an improvement with respect to #y . _

only if

1)t—1

JOED( ")

¢ _
Ti_N—1]t> Tt—N—-1,

9)

< J(N+1)(x§7N71|t71>jt*N*h It(NH)) .

The foregoing discussion leads to the following approxi-
mate MHE algorithm.

Approximate MH estimator (Algorithm E€). Given
an a priori prediction Zg, at any time t = N, N +1,...

(1) if t = N, then go to Step 6;

else go to Step 2;

(2) if SSOC holds at @7 ,
updated estimate 7 . _
3;
else set :E:;

1e—1> then compute the

11¢ as in (8) and go to Step
53?—N—1|t—1 and go to Step 4;

+ _
t—N—1lt —

N1t —

if inequality (9) holds, then set & LONENRTIE

~+ __ 40 .
else set Ty N1t = Ti—N-1jt—1

compute the approximate estimate sequence

TN

xi-‘,—l‘t:f(m:"_ﬁui) fOI‘Z:t—N—l,t—N77t—1

and extract the estimate a?z‘rt of the current state;

set

Ty-N = f(f%?_N—ut—la Ut-N-1) (10)

find a solution &7_y,, to the NLP problem (6).

(6)

Remark 1. Here the estimate j_ is understood to

N—1|t
belong to the set A'. If that is not the case, then one can
either project oy _ N—1J¢ Onto the convex set X (provided
that this is computationally feasible) or consider the test in

step 3 automatically failed and set 53:;N71|t = L?:f_N_llt_l.

Remark 2. The main advantage of such an algorithm is
that the estimation recursion is unaffected by the linear
update formula. Further, thanks to the test concerning the
cost improvement, in the next section we will show that
stability of the estimation error z; — é‘zz‘rt is ensured under
the same assumptions of the optimal MHE algorithm.

Remark 3. Notice that in Step 5, the prediction is com-
puted from the optimal estimate i"f_N_llt_l instead that

Of course, since & is believed to be

t—N—1[t
it would be natural to

At
from Ty Ny

a better estimate than :E;’_N_llt_l,
replace (10) with

(11)
For such a modified algorithm, stability can still be en-

sured, but the condition on the parameter y becomes more
stringent (see Remark 6).

Tiy-N = f(fj__N_”t,Ut—N—l) .

In the following, the approximate MH estimation algo-
rithm obtained by replacing (10) with (11) will be denoted
as Algorithm E*.

4. STABILITY OF THE ESTIMATION ERROR

In order to study the stability properties of the proposed
approximate MHE algorithms, the following observability
assumption is made.

A4. System (1) is X-observable in N + 1 steps. That is,
there exists a K-function® (), such that

2
@ (o = 22ll?) < ||F® (@1,0,0) = F) (a0, 0)||

(12)
YV, 29 € X and Vu € UV .

The observabilty definition expressed by (12) has been
widely used in the framework of nonlinear state estimation
in both the discrete-time and the continuous-time settings
(see, for example, Moraal and Grizzle [1995], Alamir
[1999], Alamir and Cavillo-Corona [2002], Rao et al. [2003],
Alessandri et al. [2008a]). Recently, Hanba [2009] has
shown that such a definition is quite general in that taking

3 Recall that a function ¢ : RT — R* is a K-function if it is
continuous, strictly monotone increasing, and such that ¢(0) = 0.



into account observation windows of fixed length is not
restrictive. We point out that (12) implies that

2
@ (o1 = al?) < ||FOD (21,u,0) = FO (g, ,0)|
(13)
also holds for any observation window length M greater
than N.

Let us denote by ky an upper bound on the Lipschitz
constant of f(z,u) with respect to z on X for every
u € U. Further, let k;, an upper bound on the Lipschitz
constant of h(z). Then the following preliminary result
can be stated.

Lemma 2. Suppose that Assumptions A1, A2, A3, and A4
are satisfied. Moreover, suppose that the K-function ¢,
defined in Assumption A4, satisfies the following condition

¢ (lz1 — z2[?)

JAN
0= inf
|21 — 22|12

T1,L2€X; 1 F# T2

>0. (14)

Further, let £?7N71|t71, ﬁr:r_N_llt, and ﬁ:jlt be computed
as in Algorithm E€ or ET from a prediction Z;_ny_1.

Then, at any time t = N + 1, N + 2,...
inequalities hold:

the following

2
A0
Tt—N-1 — Lt N-_1|t—1 H

<o (W) oyt —FnalP+ 8 (15)
’ Tt—N-1 — i‘ijfﬂt i
<ot (u) llz—n—1 — Z_n_1]* + BT (16)
Hmt — &, “<n th_zv_l — &N QRN
where
a*(u) & T o) & i e g+ )
K= (Qk;)NH,
and 3°, BT, v are suitable scalars. O

Inequality (15) can be derived following the lines of The-
orem 1 of Alessandri et al. [2008a]. Inequality (16) can be
obtained with similar arguments by noting that, thanks to
the test (9) on the updated cost, one has

J(N+1)( ](N+1))

z —N— 1‘t7xt N—-1,
N+1 (N+1)
< JN+ )(xt_N_1|t_1;xt—N—1aI )

= JMN@_ 51y T N1, I + Ny — Tl

Inequality (17) descends directly from repeated applica-
tion of the Lipschitz inequality.

Remark 4. Since the set X is compact, condition (14)
turns out to be equivalent to

o(|lz1 — z2l|)

>0.
21 — 2|

HZElf"EQHHO'*'

Recalling that the K-function ¢ has to satisfy inequality
(12), one immediately sees that the fulfillment of condition

(14) ensures that small variations in the observation vector
F®)(z, uij\,, 0) always correspond to small variations of
the state vector x;. Such a requirement is typical in the
nonlinear programming literature, where a nonlinear least-
squares problem of the form

(18)

min
&

]yi_N—F( &uy "y H
is said to be stable if the mapping from the observations

vector y! 5 to the global minimum of the cost function
is sufficiently smooth (see Fiacco [1983],Basu and Bresler
[2000a]). Basu and Bresler [2000a]show that a sufficient
condition for the stability of the 1eabt squareb problem (18)

is that the gradient matrix F ) (z,ul"};,0)/0z has full
column rank.

Remark 5. We point out that the additive constants 3°,
BT, and 7 depend continuously on the “amplitudes” of the
noises (i.e., on the radii of the sets = and H). Moreover, if
system (1) is noise-free (i.e., E = {0} and H = {0}), then
such constants turn out to be zero.

In view of Lemma 2, the stability of the proposed approxi-
mate MHE algorithms can be analyzed. To this end, noting
that for Algorithm E€ the prediction update (10) yields

lwi—n—1 — fft—N—1||2

2
S 2]6? th—N—Q — j§7N72\t72H + 27"?

with r¢ = supgcz [|€], the following stability result can be
stated.

Theorem 2. Suppose that Assumptions Al, A2, A3, and
A4 are satisfied. Moreover suppose that condition (14) is
satisfied. Further let J%Jt be computed recursively accord-
ing to Algorithm E€.

Then, the estimation error is bounded as

T <o na (1) Gy p 2Rt () B by

where {(f} is a sequence generated recursively by

+
Hilft — Ty

(i =2kFa’(n) G +B°+2F, t=0,1,...

i~ 350
Moreover, if u is selected such that
2k70°(p) <1, (19)

the bounding sequence {(f} converges exponentially to the
asymptotic value

(8°+2r2)/(1 = 2kF () . (20)

O

Similarly, in the case of Algorithm ET, since the prediction
update (11) implies

lzi—n—1 — @—N—1||2

2
+ 2
t—N—2|t—1H +2r¢,
the following theorem follows at once.

< 2kF Hl“t—N—z -



Theorem 3. Suppose that assumptions Al, A2, A3, and
A4 are satisfied. Moreover suppose that condition (14) is

satisfied. Further let i;ﬁt be computed recursively accord-
ing to Algorithm E¥.

Then, the estimation error is bounded as

2
<Kk(E N+

ot
|2 - &%

where {¢;"} is a sequence generated recursively by

Ct6+1:2k]2”a+(:u)<té+ﬁ++2r§a t:Oala

2
€ __ ~+
G = on - $O|N+1H .

Moreover, if p is selected such that

Qkﬁ at(p) <1, (21)
the bounding sequence {(;"} converges exponentially to
the asymptotic value

(B +2rg)/(1 = 2kF o™ (). (22)

|

Some comments on Theorems 2 and 3 are in order.

Remark 6. Note that condition (19) can be easily satisfied
for any value of k; by imposing that the positive weight
1 does not exceed a certain stability threshold ug ... For
instance, if Sk]% < 1, one can choose any pu > 0 (i.e.,
Hax = +00). Instead, when 8k7 > 1, (19) one has
Hoax = 0/(8kF — 1). Thus, the smaller is ks (i.e., the
more contractive is the system) and the larger is 0 (i.e.,

the more observable is the system), the wider is the range
of values of p that satisfy condition (19).

Similarly, in the case of Algorithm E* and for any value of
kg there exists a strictly positive stability threshold pf, .
such that condition (21) is satisfied whenever 0 < p <
Uit In this case, however, the condition on the design
parameter p becomes more stringent in that 0 < g, <

Hrnax-:
In this connection, one can still adopt the improved

prediction step (11) without reducing the range of feasible
w’s by modifying the test in Step 3 as follows:

JV+1)( Jraa)

.’IJ;?N,th-fthfla t
_ N =
< J(N+1)(x1c‘,)—N—1\t—1>xt—N—l;It( +1)) —lye = 51 + v,

where v is some positive real. One can see that the further
the true measurement y; is from the predicted on ¥,
the more difficult is to satisfy such a condition. This
situation agrees with the fact that the first-order Taylor
expansion yielding (8) is a good approximation of the
optimal estimation function only for small values of y; — ;.

Remark 7. In view of the considerations of Remark 5, one
immediately sees that the asymptotic bounds in (20) and
(22) are equal to zero when system (1) is noise-free (i.e.,
E = {0} and H = {0}). Thus, in this case, both the
proposed approximate MHE estimators are exponential
observers, provided that the stability conditions (19) and,
respectively, (21) are satisfied.

5. NUMERICAL CASE STUDY

In this section, we illustrate the effect of numerical errors
on the performance of the approximate MH estimators
described in this paper and discuss some of the stability
properties developed in the previous sections. We consider
a simulated MHE scenario on the nonlinear continuous
stirred tank reactor studied by Hicks and Ray [1971]:

dot  zl(r) -1 1 -E,
G =g thoa(r) e [m)]
dx? 1‘2(7') — a:? 1 -FE,
T g heo()ew L%J

acu(r) - (@) - a2,).

The system involves two states: x = [z}, 22| corresponding
to the concentration and temperature, respectively, and
one control u corresponding to the cooling water flowrate.
The continuous-time model is transformed into a discrete-
time form through an implicit Euler discretization scheme.
The temperature is used as the measured output (y; = z7)
to infer the concentration z;. The model parameters are
2, = 0.38, x? = 039, E, = 5, a = 1.95 x 104,
and kg = 300. We use batch data generated from a
simulated closed-loop feedback control scenario. The sim-
ulated temperatures are corrupted with different levels of
Gaussian noise with standard deviation o. The corrupted
temperature values are used to study the effect of noise
disturbances n;. We use Zo = [0.15 0.15] as the initial
reference state and a regularization penalty p = 30. The
estimators are simulated over 250 time steps.

In Figure 1 we contrast the predicted ¢; and true measure-
ments y; corresponding to the temperature z7. These gen-
erate the perturbation ||y; — ;| for the approximate esti-
mators. The noise standard deviation is set to o = 0.0125.
In Figure 2 we compare the performance of Algorithms
E°, E¢, and ET. The performance is shown for a horizon
N =1 (top graph) and N = 10 (bottom graph). Note
that both approximate estimators remain stable despite
the large level of noise and the short horizons. Note also
that we have introduced a large error in the initial state
estimate that leads to large deviations during the first
50 time steps. Both estimators eventually converge to the
true states. The performance of Algorithm E¥ is close to
that of Algorithm E°. In other words, the sensitivity error
is negligible even for short horizons. Also interesting is
the fact that, as the horizon is increased, the performance
of Algorithm E€ converges to that of Algorithm E°. The
reason is that, as the horizon is increased, the effect of
the most current measurement on the state estimate be-
comes meaningless. This situation can be easily explained
from NLP sensitivity properties and the structure of MHE
problems Zavala et al. [2008]. In Figure 3 we analyze the
effect of the estimation horizon and noise level on the
performance of Algorithm E€. Here, we compare the sum
of squared errors (SSE) of the state estimates x; generated
with the approximate and the optimal estimators. The
SSE is defined as 377 (z} —x1 )2, As previously observed,
the effect of noise is appreciable at short horizons but this
effect dies out as the horizon is increased.
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Fig. 1. Nominal and noisy output measurement.
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Fig. 2. Performance of Algorithms E° (grey line), Algo-
rithm E€ (solid line), and Algorithm E* (dashed line).
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