
High Performance Data Transfer in Grid Environment Using GridFTP
over InfiniBand*

Hari Subramoni, Ping Lai, Raj Kettimuthu, and Dhabaleswar K. Panda

Department of Computer Science and Engineering, The Ohio State University

{subramon, laipi, panda}@cse.ohio-state.edu

Mathematics and Computer Science Division, Argonne National Laboratory

{kettimut}@mcs.anl.gov

Abstract

GridFTP has established itself as a popular tool for

data transfer in the grid environment. GridFTP is designed

on top of the Globus XIO framework which makes the task

of integrating new transport protocols and storage systems

into it a very easy one. The performance of GridFTP is

highly dependant on the disk I/O techniques, as well as

the underlying network communication protocols. Though

GridFTP has many optimizations for disk I/O operations,

the relatively low communication bandwidth offered by

the existing network protocols presents a bottleneck to

next generation exascale applications which would want

to transfer exabytes of data across long distances. On

the other hand, modern interconnects such as InfiniBand

have introduced many advanced communication features,

like zero-copy protocol and RDMA operations which can

greatly improve the communication efficiency. Moreover,

the recently introduced InfiniBand WAN routers such as

Obsidian Longbows now give us the ability to extend the

reach of InfiniBand to WAN distances.

In this paper, we take on the challenge of combining

the ease of use of the Globus XIO framework and the

high performance achieved through InfiniBand commu-

nication, thereby natively supporting GridFTP over In-

finiBand based networks. The Advanced Data Transfer

Service (ADTS) designed in our previous work provides

the low level InfiniBand support to the Globus XIO layer

*This research is supported in part by U.S. Department of Energy
grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755 and contract
#DE-AC02-06CH11357 ; National Science Foundation grants #CNS-
0403342, #CCF-0702675, #CCF-0833169, #CCF-0916302 and #OCI-
0926691; grant from Wright Center for Innovation #WCI04-010-OSU-
0; grants from Intel, Mellanox, Cisco, QLogic, and Sun Microsystems;
Equipment donations from Intel, Mellanox, AMD, Obsidian, Advanced
Clustering, Appro, QLogic, and Sun Microsystems.

so that it can be used by GridFTP as well as by end-user

Grid applications built on top of Globus XIO. In order to

achieve efficient disk based data transfers, we introduce the

concepts of I/O staging in the Globus XIO ADTS driver. We

evaluate our design in both LAN and WAN environments

using microbenchmarks as well as communication traces

from several real world applications. We also provide

insights into the communication performance with some in-

depth analysis. The results of our experimental evaluation

shows a performance improvement of up to 100% for

ADTS based data transfers as compared with TCP or UDP

based ones in LAN as well as high delay WAN scenarios.

Keywords: GridFTP, RDMA, Zero-Copy, Globus-XIO,

Cluster-of-Clusters, InfiniBand, Obsidian Longbow XR,

InfiniBand WAN, iWARP

I. Introduction

Ever increasing demands in high end computing and

intensive data exchange together with the cost effectiveness

of high performance commodity systems have led to

massive deployments of compute and storage systems on

a global scale. In such grid based scenarios, as shown

in Figure 1, bulk data transfer within and across these

physically separated clusters or data-centers has become

an inescapable requirement for the uses of scientific data-

set distribution, content replication, remote data backup,

etc. Generally, File Transfer Protocol (FTP) [1] is used for

handling bulk data transfers. Through the years since the

earliest FTP implementation based on TCP/IP, there have

been a lot of efforts on its improvement and extensions

[2], [3], [4], [5], [6], [7]. Among these, GridFTP, designed

specifically for high-bandwidth wide area networks, has



emerged as the most popular FTP implementation in the

Grid environment.

Cluster

Computing

Computing

Cluster Cluster

Visualization

Storage

Cluster

Storage

Cluster

Fig. 1. Typical Scenario in Modern Grid Envi-
ronment

On the other hand, System Area Networks (SAN) such

as InfiniBand (IB) [8] and 10 Gigabit Ethernet/iWARP [9]

are rapidly gaining momentum for designing the high-

end clusters and data-centers. These high performance

interconnects have revolutionized the communication capa-

bilities of modern systems. In addition to providing high

bandwidth and low latency, they also provide advanced

features like zero-copy communication and Remote Direct

Memory Access (RDMA) that enable the design of novel

communication protocols. Furthermore, industry vendors

[10], [11] have recently introduced IB WAN routers to

extend these capabilities beyond a single cluster or data-

center, e.g., across multiple campuses or even across WAN

range. Hence, communication libraries are now capable

of zero-copy communications over WAN, which also pro-

vides a new scope for designing newer FTP mechanisms.

The Advanced Data Transfer Services (ADTS) [12] is

one such high performance FTP library designed to run

natively over IB based networks and thereby leverage the

various performance benefits offered by it.

Though IB based communication offers excellent per-

formance benefits, it is not easy to port an existing applica-

tion to use IB due to the difference in communication se-

mantics. The Globus XIO framework [13], used to design

GridFTP, offers an easy to use interface to the end users

as well as applications, to perform file transfers over the

network without having to worry about the communication

semantics of the underlying devices (network or disk). In

this paper, we take on the challenge of combining the

ease of use of the Globus XIO framework and the high

performance achieved through InfiniBand communication

by natively supporting GridFTP over InfiniBand based net-

works. In particular, ADTS library is ported to the Globus

XIO framework so that it can be utilized by GridFTP to

transfer files. We also enhance the disk I/O performance of

the existing ADTS library by adding support to decouple

the network processing from the disk I/O operations.

We evaluate our design at both the microbenchmark and

application levels. The results of the microbenchmark level

experiments show that the implementation of the Globus

XIO framework over the ADTS library offers up 100%

improvement in performance over the TCP or UDP based

ones (IPoIB) in both LAN as well as WAN scenarios. We

also see that the separation of network processing from

the disk I/O processing has an impact on the performance,

especially when we go to WAN scenarios where delays can

be of the order of tens or even hundreds of milliseconds.

Similar trends are seen with the application level evaluation

as well. We simulate the communication patterns of various

high end computing applications such as the Community

Climate System Model [14] and Ultra Scale Visualization

[15] which transfer large quantities of data over high delay

networks.

The remainder of this paper is organized as follows:

Section II describes the motivation of this work. Section III

gives a brief overview of GridFTP and InfiniBand. In

Section IV-B we present our design of Globus ADTS

XIO driver. We evaluate and analyze the performance in

various scenarios in Section V, describe the related work

in Section VI, and summarize the conclusions and possible

future work in Section VII.

II. Motivation

Distributed Petascale Science computations and exper-

iments require unprecedented wide-area, end-to-end ca-

pabilities in the form of high throughput data transport.

Such requirements arise in a number of science areas

including climate, high energy physics, astrophysics, com-

bustion, nanoscience, genomics, and others. The modeling

of complex systems, such as climate [16] or supernova

[17], at higher fidelity generates proportionately larger

volumes of data that must be visualized, examined, and

studied by widely dispersed scientific teams for gaining

insights and making new discovery. Unfortunately, the

amount of data now being created by major computational

codes exceeds the capability of current network-based data

distribution, despite the available 10Gbps capacities of

network backbone connections. Several examples exist,

including supernova simulation and combustion modeling

where data distribution has been delayed or thwarted.

However, one of the most dramatic examples is the collec-

tion of computed data from climate models from remote

supercomputer centers for the current 5-year international

2



normalization. It is being done using a large wheeled

RAID (Redundant Array of Inexpensive Disks) array that

is physically shipped to participating institutions such as

Oak Ridge National Laboratory (ORNL), where it is filled

and returned to Livermore where the effort is coordinated.

The current network transport limitations are no longer

an artifact of the limited capacity of the network backbone

as originally surmised. Indeed, the 10Gbps backbones of

either ESnet [18] or Science Data Network (SDN) can

currently offer such capacity to connect pairs of sites for

extended periods, which corresponds to 500 Megabytes

per second or 50 Terabytes per day. The fact that science

users neither see nor use this bandwidth is symptomatic of

much deeper challenges, which will only get worse with

the next generation of Petascale and Exascale projects.

Historically, wide-area data transport is handled mostly by

Transmission Control Protocol (TCP), which has been the

basis for File Transfer Protocol (FTP), GridFTP [2], [19],

and HyperText Transfer Protocol (HTTP). The unprece-

dented demands that Petascale applications place on data

transport will push TCP well beyond its useful envelope.

The fundamental problem with TCP ultimately reduces to

its treatment of bandwidth as a shared resource, and there

have been a number of efforts to develop high-performance

versions of TCP [20], [21], [22], [23] and reliable layers

on top of UDP [24], [25] but only with limited success.

Existing research shows that a reliable UDP (UDT) is

able to achieve a much higher throughput than a TCP

connection. However, the user level processing incurred by

UDT requires GridFTP to consume a lot more resources

then even a regular TCP connection would incur[26].

On the other hand, InfiniBand [8], originally designed

for short range data transfers between high-performance

storage and computing systems now have WAN capabili-

ties thanks to devices such as the Longbow ER/XR routers

[10] from Obsidian. Such capabilities and the introduction

of newer communication technologies such as RDMA

over Ethernet (RDMAoE) [27] is also accelerating the

acceptance of high performance IB as a suitable candidate

for WAN communication. Given all these, there now exists

multiple ways for the end user to perform a long distance

data transfer, which we summarize in Figure 2.

Of the various communication options shown in Figure

2, we have already seen that TCP, UDP and protocols

adapted from them (e.g., IPoIB or SDP) cannot achieve

good performance in IB based systems. Our earlier work

on ADTS [12] shows, taking GridFTP as an example,

the various application level limitations imposed by these

adaptations. Given this scenario, we are left with two

choices to design our high performance FTP library -

IB Verbs and RDMA over Ethernet. These options are

highlighted in gray color in Figure 2. We focus on the first

(IB Verbs), of the two design choices in this paper. Due to

technical issues, we are not able to perform experiments on

RDMA over Ethernet enabled HCA’s at present. We will

include these preliminary numbers in the camera-ready

version of the paper.

III. Background

In this section we give some brief background material

on the topics covered in the paper.

A. GridFTP

GridFTP [2] is a high-performance, secure, reliable

extension of the standard FTP data transfer protocol,

optimized for high-bandwidth, wide area networks. The

Globus implementation of GridFTP [19] provides a soft-

ware suite optimized for a broad range of data access

applications, including bulk file transfer and data extraction

from complex storage systems. Thousands of installations

around the world rely on GridFTP for over 6 million

transfers per day. GridFTP has been used in record-setting

DOE/HEP Large Hadron Collider Computing Grid data

service challenges [28] and is a fundamental building block

for a wide range of distributed data management and

computing systems. Many other projects and facilities use

GridFTP for data transfers, including;

• The Earth System Grid project uses GridFTP to move

datasets for analysis,

• CMS and ATLAS employ GridFTP for data transport,

• Advanced Photon Source facility at Argonne uses

GridFTP to transfer Terabytes of data to various

collaborator locations around the world,

GridFTP High Performance Computing Applications

Globus XIO Framework

IPoIB TCP/IP

10 GigE Network

IB Verbs RDMAoE

Obsidian Routers

Fig. 2. Communication Options Available in

Modern Grid Environment

3



• the FLASH project employs GridFTP to move mas-

sive data sets from LLNL to various sites for visual-

ization, and

• DOE’s leadership computing facilities use GridFTP to

move data in and out of their HPSS storage system.

Some key advantages of GridFTP include:

• Performance: GridFTP provides order of magnitude

performance improvements over standard FTP by

using parallel streams to minimize bottlenecks inher-

ent in TCP and non-TCP protocols such as UDT.

GridFTP performs coordinated data transfer using

multiple computer nodes at the source and destination,

resulting in further performance increases. GridFTP

allows the client to simultaneously maintain multi-

ple outstanding, unacknowledged transfer commands,

which greatly improves performance when transfer-

ring large numbers of small files.

• Security: GridFTP supports the PKI/X.509 based Grid

Security Infrastructure (GSI). A dynamically loadable

authorization module allows for site-specific autho-

rization of every operation. Simple options are avail-

able to encrypt data or perform integrity checking.

GridFTP also supports SSH security, allowing users to

initiate transfers using their SSH credentials without

the need to obtain X.509 certificates.

• Robustness: Restart markers allow interrupted trans-

fers to restart with minimal delay overhead.

• Extensibility: The Data Storage Interface (DSI) com-

pletely shields the user from the complexities of the

underlying storage systems. DSIs are currently avail-

able for POSIX-compliant storage systems, HPSS

(tape archive) and the Storage Resource Broker.

Moreover, GridFTP utilizes a read-write-open-close

abstraction called the Globus eXtensible IO (XIO)

system that makes it transport protocol agnostic.

B. InfiniBand and InfiniBand WAN

InfiniBand Architecture (IBA) [8] defines a switched

network fabric for interconnecting processing nodes and

I/O nodes. It uses a queue-based model. A Queue Pair

(QP) consists of a send queue and a receive queue. The

send queue contains instructions for transmitting data and

the receive queue contains the instructions describing the

location of the receive buffer. At the low level, InfiniBand

supports different transport services including Reliable

Connection (RC) and Unreliable Datagram (UD).

IBA supports two types of communication semantics:

Channel Semantics (Send-Receive communication model)

for RC and UD, and Memory Semantics (RDMA commu-

nication model) for RC. Remote Direct Memory Access

(RDMA) [29] operations allow processes to access the

memory of a remote process without the intervention

of the remote node’s CPU. Both the approaches can

perform zero-copy data transfers. i.e. the data can di-

rectly be transferred from the application source buffers

to the destination buffers without additional host level

memory copies. IBA also supports Shared Receive Queue

(SRQ) mechanism that enables high server scalability

while providing efficient flow control. With SRQ, receive

buffers can be posted on a common receive queue for

multiple connections. Further, it also provides a feature

which notifies the application when the number of such

receive buffers fall below a threshold. The receiver can post

additional buffers upon getting the notification making sure

that sufficient buffers are always available for incoming

data. Thus flow control designs are significantly simplified.

TCP/IP network protocol stack can be adapted for

use on InfiniBand through IPoIB driver [30]. When it is

applied, an InfiniBand device is assigned an IP address and

can be accessed just like any regular TCP/IP device.

Fig. 3. Cluster-of-Clusters Connected with

Obsidian Longbow XRs

InfiniBand Range Extension with Obsidian Longbows:

Obsidian Longbows [10] primarily provide range extension

for InfiniBand fabrics over modern 10 Gigabit/s Wide Area

Networks (WAN), supporting IB traffic at SDR rates (8

Gbps). The Longbows work in pairs, establishing point-

to-point links between two clusters with one Longbow at

each end of the link as shown in Figure 3. The Longbows

unify both the networks into one InfiniBand subnet which

is transparent to the InfiniBand applications and libraries,

except for the increased latency added by the wire delays.

Typically, a delay of 5 us is expected per each km

of wire length in WAN. The Obsidian Longbow routers

provides a web interface for each to specify the delay.

We leverage this feature to emulate cluster-of-clusters with

varying degrees of separation in our experiment.

IV. Design and Methodology

In this section we describe our approach to transferring

large volume data over the grid.

A. Design of the Globus ADTS XIO Driver

The ADTS library provides us with a standard set of

Open, Close, Read, Write (OCRW) interfaces similar to

4



what expected by the Globus XIO framework from an

underlying transport or transform driver. Given this, the

job of creating a new transport driver for GridFTP using

the ADTS library was one that involved little difficulty.

The research challenges are encountered when we try

to perform disk based file transfers over LAN as well

as high delay WAN scenarios. The ADTS library was

initially designed for memory based file transfers, and

the performance bottlenecks introduced by devices with

a slower data rate such as a hard disk or RAID’s [31]

were not given much importance. However, considering

that most of the current as well as next generation grid

based scientific applications would require movement of

petabytes or exabytes of data, support for disk based

transfer becomes critical to achieve high performance file

transfers for real world applications.

Due to the relatively low bandwidth offered by the

existing networking stacks (TCP or UDT), the disk I/O

is not such a big performance bottleneck. However, with

the introduction of the Globus ADTS XIO driver, the LAN

as well as WAN performance will take a big leap as we

saw in our previous work on the ADTS library [12]. In

this scenario, it becomes imperative for us to effectively

decouple the network from the disk I/O in order to achieve

faster file transfers. For this purpose, we re-design the

ADTS library to introduce multiple threads (read, write,

and network thread) as well as a set of buffers to stage

the data and thus decouple the disk from the network. The

new architecture of the ADTS library is shown in Figure 4.

Such decoupling of network from the slower speed mass

storage devices will especially be useful in high delay

WAN scenarios where keeping the network pipe full for

good performance is a challenge.

As shown in Figure 4, the read thread pre-fetches a

set of locations from the disk and keeps it ready for

the network thread to send over the physical link. To

prevent too many context switches between the threads

and ensure that the network thread gets a large amount of

the processing time, we define low and high water marks

for the read and write threads. We begin reading only when

the number of available buffers goes below the low water

mark. The high water mark is set to the maximum size

of the circular buffer. We have similar low and high water

marks for the write thread as well. The values need to be

carefully tuned to achieve best performance for a given

network delay.

There are multiple buffers with configurable sizes

within the ADTS XIO library.

• Network Buffers: This is the size of a buffer that is

injected / retrieved from the network in one operation

by the ADTS driver.

• File Buffers: This is the size of the circular buffer used

by the ADTS library to buffer the received packets

File System

Disk

Thread

Read

Thread

Write

Disk

Circular Buffer

Communication

Thread

Network

Host Channel Adapter

InfiniBand

Link

Physical

Fig. 4. I/O Staging Design for ADTS XIO Driver

before writing it to the disk.

From our earlier work on the ADTS library [12], we

found out that we are able to saturate the link bandwidth in

LAN as well as high delay WAN scenarios at a packet size

of 1 MB. So, for all our experiments we set the network

buffer size to be 1 MB. The file buffer is a configurable

parameter and will be critical in determining the level of

decoupling obtained between the network and the disk I/O.

There is always a trade off between the amount of memory

consumed and the file transfer performance obtained, based

on this parameter. A smaller buffer size would mean less

memory consumed as well as more frequent writes or reads

from the disk. This would result in spending more time

performing disk I/O operations than network file transfers.

The impact of such frequent disk I/O operations may not

be readily visible in low latency networks where it is easier

to keep the pipeline full. But in WAN scenarios with high

delays, we will see the true impact of buffer size on the

performance of applications.

B. Methodology

”Grid computing is the combination of computer re-

sources from multiple administrative domains applied to a

common task, usually to a scientific, technical or business

problem that requires a great number of computer process-

ing cycles or the need to process large amounts of data”

[32], [33]. According to this statement, we can envision

a scenario where we have many applications running

on computational systems in geographically distributed

locations, attempting to work on pieces of huge dataset.

Such a mechanism would automatically involve sending

and retrieving data and results from other applications or a

5



central location. For such an architecture it is more natural

for the application to fetch the data in-band, i.e while the

application is in operation, rather than out of band, i.e

work on a piece of data which was fetched previously and

consequently could be stale at this point in time. Hence

it would make more sense for such applications to use

the Globus XIO framework directly (integrating it into

applications) to retrieve data in-band instead of relying on

GridFTP to pre-fetch the data for it in an out of band

fashion. This will not make any difference in terms of

performance because GridFTP ultimately uses the Globus

XIO framework itself for transferring data.

Hence, apart from the standard set of comparisons

using GrdiFTP, we also use this approach to evaluate our

design. We integrate the Globus XIO based file transfer

mechanisms into sample applications based on the client -

server model similar to the one shown in Figure 5. As we

can see, with the Globus XIO framework, it takes very

little effort for an application to effectively use a high

performance file transfer library such as the ADTS.

V. Experimental Results

In this section we describe the experimental setup,

provide the results of our experiments and also give in-

depth analysis of the results.

A. Experimental Setup

The experimental setup consists of two hosts connected

through the Obsidian WAN routers as shown in Figure 6.

The hosts are equipped with the Intel Nehalem series of

processors with Dual quad-core processor nodes operating

at 2.40GHz with 12 GB RAM and a PCIe 2.0 interface.

Though we have DDR/QDR rate cards available, the total

available bandwidth is limited by the ingress and egress

transmission rates offered by the Obsidian routers. The

Obsidian router provides one IB SDR port and two GigE

ports at the ingress and one 10 GigE Sonet port at the

Egress. So in effect, the bandwidth attainable through

the Obsidian routers for an IB device is limited to the

8Gbps transmission rate the ingress SDR port affords us.

Red Hat Enterprise Linux Server release 5.3 with Linux

Kernel version 2.6.18-128 was used on both the hosts. For

all IPoIB (TCP/IP) based tests, auto-tuning of the socket

buffers was enabled. Due to the bug [34] with the CUBIC

congestion control protocol [23] in the 2.6.18 kernels, the

HTCP congestion control mechanism was used. OFED

version 1.4.2 was installed on both the hosts.

int

main(

int argc,

char * argv[])

{

globus_result_t res;

globus_xio_driver_t adts_driver;

globus_xio_stack_t adts_stack;

globus_xio_handle_t handle;

globus_size_t nbytes;

char * contact_string = NULL;

char buf[256];

int server = 0;

contact_string = argv[1];

adts = argv[2];

server = argv[3];

globus_module_activate(GLOBUS_XIO_MODULE);

res = globus_xio_driver_load(

"adts",

&adts_driver);

assert(res == GLOBUS_SUCCESS);

res = globus_xio_stack_init(&adts_stack, NULL);

assert(res == GLOBUS_SUCCESS);

res = globus_xio_stack_push_driver(adts_stack,

adts_driver);

assert(res == GLOBUS_SUCCESS);

res = globus_xio_handle_create(&handle,

adts_stack);

assert(res == GLOBUS_SUCCESS);

res = globus_xio_open(handle, contact_string, NULL);

assert(res == GLOBUS_SUCCESS);

if (server) {

res = globus_xio_write(handle, buf,

sizeof(buf) - 1, 1, &nbytes, NULL);

assert(res == GLOBUS_SUCCESS);

} else {

res = globus_xio_read(handle, buf,

sizeof(buf) - 1, 1, &nbytes, NULL);

assert(res == GLOBUS_SUCCESS);

}

globus_xio_close(handle, NULL);

globus_module_deactivate(GLOBUS_XIO_MODULE);

return 0;

}

Fig. 5. Example Globus XIO ADTS Program

B. Microbenchmark Level Evaluation

In this section we present the results of the microbench-

mark level experiments carried out on the experimental

systems mentioned above.

C. Memory to Memory Data Transfer

In this experiment, the data transfers were performed

from host memory directly to target memory. This was

done so as to measure the raw performance of the under-

lying network protocol with varying network delay. As we

can see from Figures 7 (a) and (b), while the ADTS based

implementation is able to either saturate the link bandwidth

6



WAN Link

WAN Router
Host Node

Obsidian

WAN Router

Obsidian
Host Node

Fig. 6. Experimental Setup

 0

 200

 400

 600

 800

 1000

 1200

0 10 100 1000

B
a
n
d
w

id
th

 (
M

e
g
a
 B

y
te

s
 p

e
r 

S
e
c
o
n
d
)

Network Latency (us)

2 MB
8 MB

16 MB
32 MB
64 MB

 0

 50

 100

 150

 200

0 10 100 1000

B
a
n
d
w

id
th

 (
M

e
g
a
 B

y
te

s
 p

e
r 

S
e
c
o
n
d
)

Network Latency (us)

2 MB
8 MB

16 MB
32 MB
64 MB

Fig. 7. Performance Memory Based FTP Get Operation for (a) ADTS Driver and, (b) TCP Driver

or consume a substantial portion of it successfully, the

IPoIB based implementation is only able to utilize 10%

- 15% of the total link bandwidth. Each point in the

graph represents the throughput number obtained while

transmitting 128 GB of aggregate data as multiples of

256 MB files. An interesting thing to note here is that,

for low delay scenarios, the best performance is obtained

when we use smaller file buffers. Buffering packets helps

in improving file transfer performance only when I/O

performance is worse than the network performance or

when there is high delay in the network. Since we are

doing memory transfers and the performance of memory

operations is much better than that of network based

operations, we will in fact see a reduction in performance

in low delay scenarios as the size of the file buffer size.

But when there is considerable delay in the network, as

is the case with 1 ms network delay, buffering the packet

actually helps as we are able to dedicate more time to

polling the network. Overall, we see that a file buffer size

of 32 MB gives the best performance for varying network

delays.

D. Disk to Disk Data Transfer

The performance comparison of ADTS and IPoIB based

GridFTP Get operation for disk to disk data transfer is

shown in Figure 8. Though the performance is consider-

ably less as opposed to the memory based file transfers, the

trends seen are similar to those observed for the memory

to memory transfers. From the figure, we can see that the

performance of ADTS based GridFTP is almost twice as

better compared to that of IPoIB based GridFTP in almost

all scenarios. As the IPoIB numbers do not show any

difference in performance for varying delays for any of

the file buffer sizes used, we only show the case which

gives the best performance (64MB file buffer size). From

this graph, we can conclude that there is no one size of the

file buffer that suits all possible network delays. The file

buffer size will have to chosen carefully and dynamically

based the network characteristics prevalent at that time.

E. Disk to Disk Data Transfer with Data
Staging and Asynchronous I/O

The performance of staged asynchronous disk to disk

I/O based GridFTP operations is shown in Figure 9. Here

we can clearly see that we are able to get better perfor-

mance by using larger file buffer size. As expected, the

staged asynchronous I/O based approach does better than

the synchronous I/O based approach seen in the previous

section for medium to large delays as it helps in keeping

the pipeline full by allowing the network thread to poll the

7



 0

 50

 100

 150

 200

 250

 300

 350

0 10 100 1000 10000

B
a

n
d

w
id

th
 (

M
e

g
a

 B
y
te

s
 p

e
r 

S
e

c
o

n
d

)

Network Latency (us)

ADTS-8MB
ADTS-16MB
ADTS-32MB
ADTS-64MB
IPoIB-64MB

Fig. 8. Performance of FTP Get Operation for

Disk Based Transfers

network more frequently. The IPoIB based approach gets

saturated at a much lower level as usual. As the IPoIB

numbers do not show any difference in performance for

varying delays for any of the file buffer sizes used, we only

show the case which gives the best performance (64MB

file buffer size).

 0

 50

 100

 150

 200

 250

 300

 350

0 10 100 1000 10000

B
a

n
d

w
id

th
 (

M
e

g
a

 B
y
te

s
 p

e
r 

S
e

c
o

n
d

)

Network Latency (us)

ADTS-8MB
ADTS-16MB
ADTS-32MB
ADTS-64MB
IPoIB-64MB

Fig. 9. Performance of FTP Get Operation for

Disk Based Transfers with Staging and Asyn-
chronous I/O

F. Application Level Evaluation

We have mentioned in Section III-A that GridFTP is

widely used in many applications. In this section, we use

two applications to evaluate the performance of our design.

The first application is the replication of Community

Climate System Model (CCSM) [14] hosted at National

Center for Atmospheric Research (NCAR) as part of the

Earth System Grid [16] project. The intention is replicate

large volumes of data (in the order of 160 TBytes) sourced

at NCAR to other participating sites such as Lawrence

Livermore National Laboratory (LLNL). The files are in

the order of 256 MBytes. We use our design to emulate

this data replication between two clusters connected with

Obsidian Longbows. The latency between NCAR and

LLNL is around 30 ms which we use to configure the

Longbow latency. The other application is the Ultra Scale

Visualization project that transfers large numbers of 2.6

GB files between ORNL and UC Davis. As before, we

use Obsidian Longbows to simulate the distance between

these two sites by setting the latency to 80 ms.

Figure 10 shows the bandwidth of our design and the

IPoIB based design during the data replication. We clearly

see that the new design outperforms the IPoIB based design

by more than a factor of two. Even with such large delay,

our design can sustain good performance. This presents

the prospective future use for the new design in real grid

scenarios.

Fig. 10. Performance of FTP Get Operation for
CCSM Application and Large Scale Visualiza-

tion Traces

VI. Related Work

Researchers have investigated FTP from multiple angles

including security, performance, distributed anonymous

FTP and extensibility [3], [35]. The extension to support

IPv6 and transfer files over Network Address Translators

(NATs) is introduced in [7]. In [2], the authors have

proposed GridFTP which performs efficient TCP based

transfers through the use of multiple streams for each

transfer. Also, scientists aimed to improve multiple file

transfers using SCTP multi-streaming, parallel transfers

8



[6]. The use of UDP based transfers has been explored

in [5], [4], in order to overcome some of the limitations

in TCP. Our group has investigated the use of high per-

formance transport protocols supported by advanced inter-

connects in FTP design [12]. In this work, we designed

and implemented the ADTS layer and evaluated its impact

on the FTP performance.

There has been an active development of solutions

to address limitations of TCP’s AIMD-based congestion

control mechanism [36]. These solutions include improve-

ments to TCP such as Binary Increase Congestion Control

[37], CUBIC [23], High-Speed TCP (HSTCP) [38], Hamil-

ton TCP (HTCP) [22], Scalable TCP [21], new transport

protocols such as XCP [39], XTP [40] and reliable layers

on top of UDP [24], [25], [41], [42] that target high data

rates over wide-area connections. But the task of sustaining

end-to-end throughput at rates of 10 Gbps over thousands

of miles still remains complex. Recently, UDT has been

integrated into GridFTP as an alternative transport protocol

for TCP [26], However, the user level processing in UDT

require more CPU and memory resources than TCP.

Regarding InfiniBand area, researchers have explored

its advanced features to design better middleware and

applications. The work on NFS over RDMA demonstrates

better performance [43] due to the benefits of RDMA in

several scenarios. Literature [44], [45], [46], [47] inves-

tigate various aspects of the performance characteristics

over IB WAN.

VII. Conclusions and Future Work

In this paper we take on the challenge of designing an

easy to use, high performance FTP library, drawing on

the advantages of ease of use given by the Globus XIO

framework used by GridFTP and the high performance

nature of the ADTS FTP library designed by us. We en-

hance the existing ADTS design by adding new elements to

efficiently decouple the network and disk I/O processing.

Such decoupling allows us to get better performance for

real world applications in WAN scenarios with large delays

as evidenced by the results of our microbenchmark as

well as application level evaluations. The results of our

experimental evaluation clearly indicates the benefits of

using a high performance transport driver like ADTS for

GridFTP. We see that the ADTS based design outperforms

the existing designs based on IPoIB (TCP/IP, UDP) by a

factor of 2 in LAN as well as WAN scenarios.

As part of future work we plan to evaluate the per-

formance of GridFTP running over ADTS on InfiniBand

interfaces that have support for the RDMA over Ethernet

protocol. This will allow us to run directly on real 10GigE

networks and perform more in-depth analysis of the effects

of TCP/IP cross traffic on IB flows in ethernet networks.

Such an experimental setup would also allow us to com-

pare IB directly with TCP/IP - something that we have

not been able to do well till now. We also plan to run I/O

benchmarks such as IOZone [48], Bonnie [49] and FIO

[50] to evaluate how effective our disk I/O performance is

as opposed to the best possible value that can be obtained

as shown by these benchmarks.

References

[1] J. Postel and J. Reynolds, “File Transfer Protocol. RFC 959.”

[2] W. Allcock, “GridFTP: Protocol Extensions to FTP for the Grid.
Global Grid ForumGFD-R-P.020,2003.”

[3] M. Allman and S. Ostermann, “Multiple Data Connection FTP
Extensions,” Ohio University, Tech. Rep., 1996.

[4] D. Bush, “UFTP,” http://www.tcnj.edu/ bush/uftp.html.

[5] K. R. Sollins, “The Trivial File Transfer Protocol – TFTP 2 RFC
1350. July, 1992.”

[6] S. Ladha and P. D. Amer, “Improving Multiple File Transfers Using
SCTP Multistreaming,” in Int’l on Performance, Computing, and
Communications Conference, April 2004.

[7] M. Allman, S. Ostermann, and C. Metz, “FTP Extensions for IPv6
and NATs. RFC 2428. Sep. 1998.”

[8] “Infiniband trade association,” http://www.infinibandta.org.

[9] “Architectural Specifications for RDMA over TCP/IP,”
http://www.rdmaconsortium.org/.

[10] “Obsidian research corp.” http://www.obsidianresearch.com/.

[11] Net NX 5010 High Speed Exchange, http://www.net.
com/products/products-nx.shtml.

[12] P. Lai, H. Subramoni, S. Narravula, A. Mamidala, and D. K. Panda,
“Designing Efficient FTP Mechanisms for High Performance Data-
Transfer over InfiniBand,” in the 2003 International Conference on

Parallel Processing (ICPP 09), Sep. 2009.

[13] William Allcock and John Bresnahan and Rajkumar Kettimuthu and
Joseph Link, “The Globus eXtensible Input/Output System (XIO):
A Protocol Independent IO System for the Grid,” Parallel and

Distributed Processing Symposium, International, vol. 5, p. 179a,
2005.

[14] Community Climate System Model, http://www.ccsm.ncar.edu.

[15] Institute for Ultra Scale Visualization, “Ultravis: Ultra Scale Visu-
alization,” http://ultravis.ucdavis.edu/.

[16] “Earth System Grid,” http://www.earthsystemgrid.org/.

[17] “SciDAC Computational Astrophysics Consortium,”
http://www.supersci.org/.

[18] “Energy Sciences Network (ESnet),” http://www.es.net/.

[19] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, “The Globus
Striped GridFTP Framework and Server,” in Proceedings of the

2005 ACM/IEEE conference on Supercomputing, 2005.

9



[20] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation,
Architecture, Algorithms, Performance,” in Proceedings of IEEE

Infocom, 2004.

[21] T. Kelly, “Scalable TCP: Improving Performance in Highspeed
Wide Area Networks,” in First International Workshop on Protocols
for Fast Long Distance Networks, 2003.

[22] M. Allman, V. Paxson, and W. Stenvens, “TCP Congestion Control,”
in IETF, RFC-2581, 1999.

[23] H. S, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-
Speed TCP Variant,” in SIGOPS Operating System Rev, 2008.

[24] Y. Gu and R. L. Grossman, “UDT: UDP-based Data Transfer
for High-speed Wide Area Networks,” in Computer Networks:
The International Journal of Computer and Telecommunications

Networking, 2007.

[25] “Faster Bulk Transfer Starring: UDP,”
http://www.csm.ornl.gov/ dunigan/netperf/udp/UDP RBUDP.html.

[26] J. Bresnahan, M. Link, R. Kettimuthu, and I. Foster, “UDT as an
Alternative Transport Protocol for GridFTP,” in Proceedings of the

7th International Workshop on Protocols for Future, 2009.

[27] “Open fabrics enterprise distribution,” http://www.openfabrics.org/.

[28] “LHC: Large Hadron Collider,” http://en.wikipedia.org/wiki/
Large Hadron Collider.

[29] R. Consortium., http://www.rdmaconsortium.org/home/draft-recio-
iwarp-rdmap-v1.0.pdf.

[30] Mellanox OFED Stack for Linux Users Manual,
http://www.mellanox.com/pdf/products/software/
Mellanox OFED Linux User Manual 1 20.pdf.

[31] Davtd A Patterson, Garth Gibson, and Randy H Katz, “A Case
for Redundant Arrays of Inexpensive Disks (RAID),” University of
California, Berkeley, Tech. Rep., 1988.

[32] “Grid Computing,” http://en.wikipedia.org/wiki/Grid computing.

[33] Ian Foster, Carl Kesselman, Steven Tuecke, “The Anatomy of the
Grid.”

[34] Office of Science, DOE, http://fasterdata.es.net/TCP-
tuning/linux.html.

[35] F. Anklesaria and et.al, “ The Internet Gopher Protocol. RFC 1436.
Network Working Group, Mar. 1993.”

[36] M. Allman, V. Paxson, and W. Stevens, “Tcp congestion control,”
United States, 1999.

[37] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion
control (bic) for fast long-distance networks,” in IEEE
Infocom. IEEE, 2004. [Online]. Available: http://www.ieee-
infocom.org/2004/Papers/52 4.PDF

[38] “HighSpeed TCP,” http://www.icir.org/floyd/hstcp.html.

[39] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for
high bandwidth-delay product networks,” in SIGCOMM ’02: Pro-

ceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications. New
York, NY, USA: ACM, 2002, pp. 89–102.

[40] W. T. Strayer, M. J. Lewis, and R. E. Cline, Jr., “Xtp as a
transport protocol for distributed parallel processing,” in HSNS’94:

Proceedings of the High-Speed Networking Symposium on USENIX

1994 High-Speed Networking Symposium. Berkeley, CA, USA:
USENIX Association, 1994, pp. 6–6.

[41] . Tsunami Network Protocol Implementation, http://www.indiana.
edu/ uits/cpo/tsunami.

[42] R. L. Grossman, M. Mazzucco, H. Sivakumar, Y. Pan, and
Q. Zhang, “Simple available bandwidth utilization library for high-
speed wide area networks,” J. Supercomput., vol. 34, no. 3, pp.
231–242, 2005.

[43] “Sun Microsystems, Inc. and The Ohio State University. NFS over
RDMA Design, Version 1.1, Aug 2007.”

[44] S. Carter, M. Minich, and N. S. V. Rao, “Experimental evaluation
of infiniband transport over local- and wide-area networks,” in High

Performance Computing Symposium, 2007.

[45] W. Yu, N. S. Rao, P. Wyckoff, and J. S. Vetter, “Performance of
rdma-capable storage protocols on wide-area network,” in Peta-byte

Storage Workshop, in conjunction with SC08, 2008.

[46] S. Narravula, H. Subramoni, P. Lai, R. Noronha, and D. K. Panda,
“Performance of HPC Middleware over InfiniBand WAN,” in Int’l
Conference on Parallel Processing, Sep. 2008.

[47] N. S. V. Rao, W. Yu, W. R. Wing, S. W. Poole, and J. S.
Vetter, “Wide-area performance profiling of 10GigE and InfiniBand
technologies,” in Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, 2008.

[48] “IOzone Filesystem Benchmark,” http://www.iozone.org/.

[49] “Bonnie - IO Throughput Benchmark,”
http://www.garloff.de/kurt/linux/bonnie/.

[50] “FIO - Linux IO Benchmarking Tool,”
http://freshmeat.net/projects/fio/.

The submitted manuscript has been created in part by UChicago Argonne,

LLC, Operator of Argonne National Laboratory (”Argonne”). Argonne, a

U.S. Department of Energy Office of Science laboratory, is operated under

Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,

and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide

license in said article to reproduce, prepare derivative works, distribute copies

to the public, and perform publicly and display publicly, by or on behalf of

the Government.

10


