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Advances in Moving Horizon Estimation for Nonlinear Systems

Angelo Alessandri, Marco Baglietto, Giorgio Battistelli, and Victor Zavala

Abstract—In the past decade, moving horizon estimation
(MHE) has emerged as a powerful technique for estimating the
state of a dynamical system in the presence of nonlinearities
and disturbances. MHE is based on the idea of minimizing an
estimation cost function defined on a sliding window composed
of a finite number of time stages. The cost function usually
comprises two contributions: a prediction error computed on
a recent batch of inputs and outputs and an arrival cost
that serves the purpose of summarizing the past data. The
diffusion of such techniques has been hampered by the difficulty
in choosing the arrival cost so as to ensure stability of the
overall estimation scheme and by the need for an adequate
computational time.

In this paper, both problems are addressed and possible
solutions are proposed. First, by means of a novel stability
analysis, we show that in most situations a quadratic arrival
cost is sufficient to ensure the stability of the estimation error
provided that the weight matrix is adequately chosen. Second,
we propose a novel approximate MHE algorithm based on
nonlinear programming sensitivity calculations. This approxi-
mate algorithm has the same stability properties as those of the
optimal counterpart and hence is suitable for on-line settings.
Preliminary simulation results confirm the effectiveness of our
proposed method.

I. INTRODUCTION

Ideas about moving horizon estimation (MHE) date back
to the 1960s ([1]), motivated by the intrinsic robustness of
such a technique. MHE seeks to minimize an estimation cost
function defined on a sliding window involving a finite num-
ber of time stages. The cost function usually comprises two
contributions: a prediction error computed on a recent batch
of inputs and outputs and an arrival cost that summarizes
past data.

An approach was proposed in [2] for designing asymptotic
state observers that result from the numerical solution of the
measurement inversion problem via the Newton’s method. In
[3] and [4], similar optimization-based techniques were de-
veloped to construct estimators for continuous-time dynamic
systems. In [5] an MH observer for nonlinear continuous-
time systems was proposed that performs estimations at
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discrete-time instants by approximately minimizing an in-
tegral error defined on the preceding time window. More
recently, advances have been obtained for MHE applied to
linear systems [6], [7], [8], [9], hybrid systems [10], [11],
and nonlinear systems [12], [13].

The MH estimation scheme proposed in [12] allows one
to explicitly take into account possible constraints on the
system and requires the solution of a nonlinear programming
problem at each time step. Moreover, a sufficient condition
for the non divergence of the estimation error in the presence
of bounded noises is provided. Unfortunately, this approach
requires an exact on-line minimization of a nonlinear cost
function, thus reducing the possibility of practical applica-
tions. In order to overcome this drawback, a method was
proposed in [14] with the possibility of admitting a certain
error in the minimization of the cost function. The results
were improved later in [13], where the simultaneous presence
of system and measurement noises was accounted for. In
addition, the conditions that guarantee the stability of the
estimation error were relaxed, and the essentially local results
of [14] were extended to regional stability.

In this paper, we follow the same approach proposed in
[13], but we address the minimization of a more general
cost function that involves estimates of all the state vectors
in the observation window. In this way, we can estimate
the current state without incurring delays or resorting to
the propagation of the nominal system. The observability
conditions required in [13], based on a suitable C-function,
were recently demonstrated to be very general in that they
are equivalent to uniform observability conditions based on
the injectivity of the “observation map” or full rankness of
its Jacobian (see [15], [16] and references therein). Here
such conditions are made less restrictive by removing the
requirement for a “finite sensitiveness” of the KC-function.
Even in this more general case, stability of the proposed
estimation technique can be proved, and explicit bounds
on the estimation error can be guaranteed provided that a
quadratic arrival cost is adopted and its weight matrix is
adequately chosen.

One reason for the limited diffusion of MHE techniques is
the need for adequate computational times. In order to cope
with this, in [14] an approach was proposed that relies on the
use of nonlinear approximate optimal estimation functions
able to provide on-line estimates of the state variables. Such
functions are implemented via neural networks with pa-
rameters determined off line. Further improvements to such
methodology are reported in [17]. An alternative strategy
to deal with the computational complexity is based on the
use of the fast optimization techniques recently proposed for
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both MHE and model predictive control in [18], [19], [20],
[21]. The idea is to use the sampling time to solve a reference
problem only with the available prediction of the state, while
waiting for next and more precise information that allows
one to correct the reference solution by performing a quick
nonlinear programming (NLP) sensitivity calculation. These
NLP sensitivity based controllers and estimators are able
to accommodate large-scale models in on-line environments
while dramatically reducing dangerous feedback delays.

Fast optimization techniques such as those described in
[19], [20], [21] are based on the interior-point NLP solver
IPOPT [22], which exploits the sparse structure of MHE
problems automatically at the linear algebra level. This pro-
vides an efficient approach for solving the reference problem
in between sampling times.

Here, an approach to MHE that combines the reduced
computational requirements of the sensitivity-based methods
presented in [19], [20], [21], [23] with the stability guaran-
tees of the techniques developed by [13].

The paper is organized as follows. In Section II the
MHE problem is formulated with particular attention to the
definition of the arrival cost. The stability properties of the
resulting MH estimation algorithms are proved in Section
IIT in relation to the observability requirements. A general
framework to find approximate solutions is described in
Section IV, and preliminary simulation results are presented
in Section V.

II. PROBLEM STATEMENT

Let us consider a dynamic system described by the
discrete-time equations

Tyl fwe,ug) +we, (1a)
ye = h(z) + v, (1b)
for t = 0,1,..., where z; € R"™ is the state vector (the

initial state x is unknown) and u; € R"™ is the control
vector. The vector w; € R"™ is an additive disturbance
affecting the system dynamics. The state vector is observed
through the measurement equation (1b), where y; € RP is
the observation vector and v; € RP is a measurement noise
vector. We assume the statistics of xg, w;, and v; to be
unknown, and we consider them as deterministic variables
of unknown character.

In this paper, state estimation is addressed within an MHE
framework [7], [9], [14], [13]. More specifically, at any time
t=N,N+1,..., the objective is to derive estimates of the
state vectors x;_n,...,x; on the basis of the information
vector!

A
It(N) = col (yt—N,t; Ut—N,t—l) s )

where N + 1 measurements and N input vectors are col-
lected within a “sliding window” [t — N,t]. Hereafter,
Zy_Njgs- -, Ty Will denote the estimates (to be made at
time t) of z;_n,...,x;, respectively.

n general, given a sequence {z;} and two time instants 0 < ¢1 < to,

we use the notation z¢; t5 = col(2ty,. .., 2ty)-

Since we have assumed the statistics of the disturbances
and of the initial continuous state to be unknown, we use a
least-squares approach to derive the estimator. To this end,
at any time t = N, N + 1,... , the minimization of the
following cost function can be addressed:?

K (51 1)
t—1

=To_n (T4_np) + Z H53i+1\t - f(j?i|taui)H2Q
i—t—N

t
+ 37 v = b |3 3)

i=t—N

where the initial penalty function I';_  (+) is assumed to be
non-negative and the matrices (), and R are assumed to be
positive definite and can be regarded as design parameters.
The first term, known in the MHE literature as arrival cost
[6], [12], summarizes the past data, 9o —n—1, Uo,t—N—1, NOL
explicitly accounted for in the objective function. The second
contribution, weighted by the matrix (), takes into account
the evolution of the state in terms of the state equation
(1). The third term, weighted by the matrix R, penalizes
the distances of the “expected output” (based on the state
estimates) from the actual measurements.

Clearly, the form of the arrival cost in (3) plays a crucial
role in determining the behavior and the performance of
the overall estimation scheme. In this connection, a first
possibility [6], [12] would consist of choosing each function
Ti—n (-) as the true arrival cost; that is, the arrival cost
obtained by imposing that minimization of the MH cost (3)
at time ¢ corresponds to minimization of the full-information
cost

t—1 )
IE (0,00 1) = To (o) + D i = Fl@a i)
i=0

3 |y — Bt |-
1=0

It is straightforward to show that, under mild assumptions,
such a choice always leads to a stable estimation error
dynamics. Unfortunately, an algebraic expression for the true
arrival cost exists only in a few particular cases (e.g., the
linear unconstrained case [6]). Therefore, when the system
is nonlinear or constrained, some approximation must be
used. For instance, in [6], [12], it is shown that stability
of the estimation error dynamics can be preserved provided
that the approximate arrival cost is bounded from above by
the true one (this condition corresponds to requiring that the
approximate arrival cost not add information not specified in
the data). While from the theoretical point of view such a
choice allows for a clean stability analysis, from a practical
perspective its applicability is severely limited by the fact
that (with the notable exception of the linear constrained case

2Throughout the paper, given a symmetric positive definite matrix M

. A
and a vector z, ||z||ps denotes the weighted norm of z, |z|lar =
(2T M2z)1/2.



[6]) no constructive method is available for determining the
approximate arrival cost.

A second possibility [14], [13] involves assigning to the
arrival cost a fixed structure that penalizes the distance of the
estimate Z;_ |, of the state at the beginning of the sliding
window from some prediction Z;_n. With this respect, a
natural choice is the quadratic arrival cost

Lo n (Zi-np) = |[Te—npe — fft—NHf;, P>0 )

with the prediction Z;_n chosen as the estimate of x;_n
made at the previous time instant ¢ — 1 (the vector Zj
denotes an a priori prediction of zg). In Section III, we show
that, under general assumptions, such a simple arrival cost
is sufficient to ensure the stability of the estimation error
dynamics provided that the weight matrix P is adequately
chosen. Hereafter, the MH cost with the quadratic arrival cost
(4) will be denoted by J™) (:EFN,W,%N, LSN))

As in [12], [13], the following preliminary assumptions
are needed.

Al. The sets W, V, and U, where w;, v; and u; (respec-
tively) take their values, are compact sets, with 0 € W
and 0 € V.

A2. The initial state xo and the control sequence {u;} are
such that, for any possible sequence of disturbances
{w;}, the system trajectory {z:} lies in a compact
set X.

Note that Assumptions Al and A2 are reasonable from a
practical point of view when considering the state estimation
problem for a physical system: the state variables as well
as the exogenous inputs typically are bounded. Since, under
Assumption A2, at every time step t = 0,1, .. ., the state z;
falls within the set A&, it is natural to include the constraints

when addressing the minimization of the cost functional
(3). Further, when the sets WW and V are also known, the
additional constraints

i=t—N,...,t —1(6)
i=t—N,....t (1)

Zigae — f( @i, wi) €W,

can be imposed. We note that the state constraints (5)
are in general crucial for ensuring the applicability of the
approach (in fact, most nonlinear programming algorithms
are designed to work only for bounded solution sets). On
the contrary, the constraint sets (6) and (7) turn out to be
unessential, not only for the applicability of the approach,
but also for the stability analysis (as will be shown in the
next section). Moreover, in some applications, it may be
difficult to know an upper bound on the exogenous inputs (for
example, because of the presence of outliers). Consequently,
only the state constraints (5) will be taken into account in
the subsequent problem formulation.
The following algorithm can now be stated.

Algorithm 1 (¢-optimal MHE). Given an a priori prediction
Zo and a desired accuracy € > 0, at any time ¢t = N, N +
1,..., do the following:
1) Find state estimates &;_p, € X,...,%j, € & such
that

J (Zr_ e Tt It(N))
<INy T I 46 @®)

forany Z,_n € X,..., %y € X.
2) Set

— _ A€
Tt—N+1 = Tt N1t

The positive real € represents the desired accuracy in
the minimization of the MH cost. In fact, condition (8)
amounts to requiring that the cost related to the “approximate
estimates” Zy_ ~,¢|+ should not exceed the optimal cost

min

N) /A — (N)
N eXN+1J( )(-rth,t\taxt—N;It )
t—N,t|t

by more than €. Of course, a compromise must be accepted
when selecting such a quantity. In fact, the smaller the ¢, the
better the expected estimation, but a larger computational
effort is required to guarantee such an accuracy. In practical
situations, a large enough £ must be considered so that the
optimization process may end in each sampling period.

III. STABILITY OF THE ESTIMATION ERROR

In order to study the stability properties of the proposed
MHE algorithm, some preliminary definitions and assump-
tions are needed.

First, let co(X') be the convex closure of X' . Then, the
following smoothness requirement on system (1) can be
introduced.

A3. The functions f and h are C? functions with respect
to x on co(X) for every u € U.

Let the observation map on a window of length N + 1 be
defined as

>3

N
F( ) (l't—N7ut—N,t—1awt—N,t—1)

h (l‘t_]\/‘)
ho fut—N,wt—N (It—N)

ho fuf,—l,wt—l 0--+0 fut—N,wt—N(xt_N)
. ... s A
where “o” denotes function composition and f“iWi(x;) =

f (x4, u;) + w;. Notice that, by exploiting such a definition,
one can write

ye-ng = FN (2N, e Npo1, WeeNa—1) + VN
Further, by defining the estimated system disturbances as

N JANIN ~ .
wi\t:‘ri+1\t_f(xi\t7ui)a Z:t_N7"'at_17



the MH cost with quadratic arrival cost can be rewritten as
. - (V)
Ji (xth,t|t7$t7N7 I;
. _ 2 . 2
= l[2e-mie = Ze-nl[p + l[@-ni-1iellg

2
+‘ Yene — FN (& vy wem N1, Wi np—1pt)) HR(9)

where A A
RQ=Iy®Q, R=IN:1®R

with ® the Kronecker product and Iy the N x N identity
matrix.

We are now able to introduce the following observability
definitions.

Definition 1: System (1) is said to be observable in N +1
steps if there exists a K-function® (+) such that

2
@ (o1 = 22)?) < [FO (21,0,0) = FY) (2,0,0)|

’

(10)
Vi, z9 € X and Yu e UV .

Definition 2: System (1) is said to be observable in N 41
steps with finite sensitivity 1/§ if it is observable in N +
1 steps and, in addition, the K-function ¢(-) satisfies the
following condition:

o (1 — 22?)
|21 — 222

2

1) inf >0.

z1,22E€X;T1£T2

(1)

The observabilty definition expressed by (10) has been
widely used in the framework of nonlinear state estimation
in both discrete time and continuous time settings (see, for
example, [2], [4], [24], [12], [13]). The additional condi-
tion (11) was introduced in [13] by taking into account
the sensitivity of the inverse mapping from the noise-free
observations y = F(N)(x,u,0) to the state x. In fact, the
fulfillment of condition (11) ensures that small variations
in the observation vector y always correspond to small
variations of the state vector x. Recently, it has been shown
[15], [16], [23] that such definitions are general and natural
in that, under mild assumptions: Definition 1 is equivalent
to the injectivity of the mapping from the state x to the
noise-free observations y = FV)(z,u,0); Definition 2 is
equivalent to the observability rank condition

OF M) (z,u,0)

rank———= =n,

ox

and taking into account observation windows of fixed length
is not restrictive.

Let us denote by k¢ an upper bound on the Lipschitz
constant of f(x,u) with respect to z on X for every u € U.
Further, let

Vo e X, Vuelul;

ro 2 max [[v]|?.

N
e = max ||wl|?, max

weWwW

3Recall that a function ¢ : RT — Rt is a K-function if it is continuous
and strictly monotone increasing such that ¢(0) = 0.

For the sake of simplicity, suppose that the matrix P is
diagonal with P = pl,, and where p a positive real. Note
that this can be done without loss of generality because the
general case can be subsumed to this special one by means
of a suitable linear change of variables. Then, the following
stability result can be stated.

Theorem 1: Suppose that assumptions A1-A3 are satisfied
and that system (1) is observable in N + 1 steps with
finite sensitivity 1/d. Further, let the estimates Z;_,/, and
d}fﬁNytfl‘t, t=N,N+1,..., be computed recursively via
Algorithm 1. Then, the following upper bounds hold:

12)

||$t—N*@§—N|t||2 < &G-n

2
Wiyl S @ (13)

where the sequences {&;} and {w;} are generated by the
linear system

[ e ] = A9 [ Py } +B(p,9) [ i } +C(p,0)e

(14)
with )
A(p,d) = _ cgp/(2£03 §) ¢ kfgl/gi ¢30) }
B(p,d) = I (crp +ci§)7(;5+ c30) C9/(pcff c30) ] ’
Clp,0) = _ Cn/(;li c3d) |7
and ¢;, i = 1,...,11 are suitable positive constants.
O

Some remarks on Theorem 1 are in order. First, from
(12) and (13), one can easily derive an upper bound on the
estimation error ||lz; — 2y, |2 by simple Lipschitz arguments.
Further, it can be seen that (12) and (13) still hold, without
any modification, even when the additional constraints (6)
and (7) are included in the state estimation algorithm. More-
over, noting that the eigenvalues of the matrix A(p, d) are 0
and

a(p,8) 2 cip+cap/(p+cs0)

we can state the following corollary to Theorem 1.

Corollary 1: Under the same assumptions of Theorem 1,
if the design parameter p is selected such that

a(p,d) <1, 15)

then the dynamics of system (14) is asymptotically stable,
and the upper bounding sequences {w:} and {&} con-
verge exponentially to the asymptotic values woo(p,d) and
&oo(p, 9), respectively, obtained as

i)

= 4p5) ™ (B0:0) | 70 |+ C0e) .6)

v



O

Since a(0,0) = 0, it is immediate to see that condition
(15) can be easily satisfied by imposing that the positive
weight p does not exceed a certain stability threshold ppax.
For instance, it can be seen that the smaller is k; (i.e., the
more contractive is the system) and the larger is § (i.e., the
more observable is the system) the wider is the range of
values of p that satisfy condition (15).

When system (1) is noise-free (ie., W = {0} and
V = {0}) and the accuracy ¢ is set to zero, the asymptotic
upper bounds wy,(p,d) and £ (p,d) turn out to be equal
to zero. Thus, in this case, the MHE algorithm yields an
exponential observer, provided that the stability condition
(15) is satisfied. In the other cases, the asymptotic upper
bounds grow linearly with the amplitude of the noises (i.e.,
rw and r,) as well as the with the accuracy e.

In some cases, the finite sensitivity requirement expressed
by equation (11) may not hold even if the system itself is ob-
servable. Of course, the results of Theorem 1 and Corollary
1 could still be applied also in these situations by setting
0 = 0. However, the resulting stability condition would
become quite restrictive and, possibly, unfeasible for any
choice of the design parameter p. Nevertheless, by following
a different approach, it is all the same possible to derive
more meaningful upper bounds and stability conditions. In
this connection, the basic idea consists in excluding a certain
interval [0,m) (with m a positive real) from the calculus
of the infimum in condition (11). Then one can define the
quantity

@ (lx1 — 22]?)

5(m) 4
|21 — 22|

T1,22€X,||z1 —22]|2>M

a7

which is always greater than O for any m > 0 provided that
system (1) is observable according to Definition 1. Thanks
to such an arrangement, the following result can be stated.

Theorem 2: Suppose that assumptions A1-A3 are satisfied
and that system (1) is observable in N + 1 steps. Further, let
the estimates &; |, and Wiy t=N,N+1,..., be
computed recursively via Algorithm 1. Then, for any m > 0,
the following upper bounds hold

lze—n — 25_npl? < €7 (18)
2
UA’iEfN,tfl\t < wt(in])v 19)

where the sequences {£™} and {w{™} are generated by
the nonlinear system

[wm ]
—=(m)
§im1

& =

m)

+ B(p,5™) { e ]

v

(

Ap,5™) [ w?
&

t
+ C(p, 5(’"))8,

max {m, &7} . (20)

Notice that, in the limit m — 0, the novel bounding
sequences of Theorem 2 tend to those of Theorem 1 (in fact,
5 = §). As to the asymptotic behavior of such bounding
sequences, the following result holds.

Theorem 3: Let the same assumptions of Theorem 2 hold
and let the design parameter p be such that

a(p,8™) < 1. 1)

Then, system (20) admits a globally exponentially stable
equilibrium point.

In particular, given the functions wuo(-,-) and Euo(:, )
defined in (16), one of the following two possibilities occurs:

i. If m < &0 (p, 60™),
. (m) — (m)
tlgrolo &t Eoo (p, 4 ) >
: (m) _ (m)
tliglo wp = Weo(p, 0.

ii. If m > &0 (p, 60™),

lim &™) =m,

t—o00
1
lim wt("” =
t—o0 1—cp
X (crhkfm4+ (cap+cs5)rw + 6Ty +Cr0€) -

O

Such a stability result overcomes the limitations of Corol-
lary 1. In fact, for an observable system the scalar 6(™) is
always strictly positive (even if the finite sensitivity condition
(11) does not hold), and consequently the stability condition
(21) is always feasible. In other words, for any given m > 0
there always exist a threshold pfnyﬁzc > 0 such that condition
(21) holds for any choice of the design parameter p in the
interval [O,pfﬁz().

We note that Theorem 3 actually yields a family of
asymptotic upper bounds, one for each choice of m. In this
connection, since by construction 6™ increases with m, it
can be verified that &, (p, 8"™)) decreases with m when the
value of the design parameter p is fixed. Thus, provided that
the behavior of (™) as a function of m is known (either
analytically or by numerical tabulation), the best upper bound
in such a family can be obtained by choosing m as the unique
solution of

m = Eu(p,8"™).

Notice that this strategy can be applied also when § > 0 in
order to obtain less conservative upper bounds (this can be
useful when the sensitivity 1/0 of the observability map is
finite but very large, i.e., the parameter ¢ is close to zero).

IV. ONE-STEP-AHEAD MOVING-HORIZON ESTIMATION

Even allowing for a certain error ¢, the minimization in-
volved in Algorithm 1 cannot be completed instantaneously.
This would induce a delay in the estimation process that
can be problematic in some applications. For example, when
MHE is used in connection with a state feedback controller.



One approach for such a drawback consists in using param-
eterized functions (to be optimized off line) to approximate
the estimation function obtained applying Algorithm 1. Such
an approach was considered in [14] and, more recently, in
[17]. Here a different approach is adopted.

First, in order to derive an approximate MHE algorithm
providing an estimate of the continuous state almost in real
time, let us suppose that the MH cost can be minimized
with accuracy € = 0 in less than one sampling interval.
This simplifying assumption is adopted only for the sake
of clarity; however, the strategy proposed hereafter ensures
stability of the estimation error dynamics for a generic
accuracy ¢. Further, the case when the delay is greater than
one sampling interval can be dealt with in a similar way by
means of straightforward modifications.

Of course, this amounts to assuming that, at each time ¢,
the most recent available estimates are the optimal estimates
7 No1t—1ft—1 that solve the optimization problem

min
B N-1,-1)t—1 €EXNFT
(22)
Then, one can exploit the following fact.
Proposition 1: Let the estimates jg—N—l,t—Ht—l be a

solution of the optimization problem (22), and consider the
one-step ahead optimal prediction

j"g\t71 = f(i;j,l‘tfl,ut,l) .

Then, the estimates &7 , _, t|t—1 are also a solution of the
optimization problem

: . - +(N+1)
min JW+D) (x_ 1ty Te-N_1,1 )
b e e t—N—1,t|ts Tt—N—1,44
(23)
where
=(N+1) A _
I, = col (W—N—-1,4—1,Yt—N—1,t—1,Tt) »
_ A ~0
Yyt = h(xt|t—1)'
O

Given Proposition 1, one can exploit well-known results on
the sensitivity of NLP problems with respect to variations in
the problem data and update the currently available estimates
7 N—1t—1ft—1 On the basis of the difference between the
predicted measurement ¥, and the true one y;.

To this end, suppose that the estimates &y _ N—1,t|t—1 COI-
respond to a strict isolated minimizer of (23) satisfying the
so-called strong second-order sufficient conditions (SSOC)
[25]. As is well known, when the estimates 2, N—1,tt—1 dO
not lie at the boundary of the set XV*2, such conditions
take the form

oJWN+ ) —N4D)
a5 <$t7N71,t|t71a$th71,It

) —0, (24)

0%t N1t
82J(N+1)

. _ —(N+1)
s N2 (xg—N—l,ﬂt—hxt—N—let ) >0.
(axthfl,t\t)

(25)

JI) <it7N71,t71\t717 Ti—N-1, It(]_vl)> .

For a detailed SSOC analysis in the context of MHE (also
discussing the case wherein the optimal estimates lie at
the boundary of X N+2) ' the interested reader is referred to
Chapters 3 and 6 in [26].

The satisfaction of SSOC also has implications for the
sensitivity of the solution to perturbations on the problem
data around the reference solution Z7_ N—1tft—1" To explore
this, we use the following well-known result, adapted to our
context.

Theorem 4: (NLP Sensitivity) [27], [28]. Suppose that
the SSOC (24) and (25) hold at ifg—N—1,t|t—1 for the cost

) _ —(N+1
J(NJrl)(xt—N—l,tltaxt—N—hIg )
hold:

o There exists a unique, continuous, and differentiable
vector function a°(-) such that
= a®(U) = T{_N_1 41> ~
— for any y; in a neighborhood of ¥y, a®(y;) is a strict
isolated minimizer satisfying SSOC.

). Then the following

o The optimal cost is locally Lipschitz in a neighborhood
Of @t.
O

Given Theorem 4, one can construct a linear update
formula of the form

i N1 = TNt ge—1 T Ke(ye — Gt) (26)

by means of a first-order Taylor expansion of a°(-) around
;. For instance, by exploiting the implicit function theorem,
the gain K turns out to be

K

92 JIN+D) . _ —(N+1)
"\ O n—1aj1)? (xthfl’t‘tfhxtiNtht )

82J(N+1)

(32 P 1)
0%y N_1,4—10yy \ TN THHD N '

Of course, such a first-order Taylor expansion pro-
vides a good approximation for the minimizer of
JNFD (2, Ny i1, Te— N1, It(NH)) only in a neighbor-
hood of y;. Conversely, for large values of y, — %, the
linear update formula (26) may lead even to a worse state
estimate than the original one. In particular, if an active-set
change occurs. However, while it is not possible to directly
compare the two estimates i‘f_N_Lt‘t and ‘%g—N—l,ﬂt—l
being the true states x¢—n_1,+ unknown, it is still possible
to make an indirect comparison by means of cost J(V+1) ).
For instance, one can argue that T} N—1,tt represents an

improvement with respect to Z7_ 5 _ tle—1 only if

J(N+1)( It(N+1))

“ _
Li_N—1t)t) Tt—N—-1,

< J(N+1)(xo

_ (N+1)
t—N—l,t\t—l’xt—N—l’It )-

27)

The foregoing discussion leads to the following one-step-
ahead MHE algorithm.



Algorithm 2 (One-step ahead MHE). Given an a priori
prediction Zy, at any time ¢t = N,N + 1,..., do the
folllowing:

1) If t = N, then go to step 5;

else go to step 2.
2) If the SSOC (24) and (25) hold at jf—N—l,t\t—v then
compute the updated estimates &' N1t 3 in (26)
and go to step 3;
else set ingfl,tlt = :%ﬁfol’t‘tfl and go to step 4.
3) If inequality (27) holds, then set

j’t—N—u\t = i‘?—N—l,ﬂt;

else set j:r—N—Ltn =T N_1e-1-
4) Set

TN = fUtO_N|t—1 : (28)

5) Find a solution &7 ¢t 1O the NLP problem

min JI) (@—N,t\t,ft—NJt(N)) :

By N €XNTL

Remark 1: Here the estimates are understood

t—N—1,t|t
to belong to the set XV+2_If such is not the case, then one
can either p.roject i N_1ift onto X N+2 (provided that this
is computationally feasible) or consider that the test in step
. . A+ _ A

3 automatically failed and set Ty N1 = xffoLt‘tfl.

Remark 2: The main advantage of such an algorithm is
that the estimation recursion is unaffected by the linear up-
date formula. Further, thanks to the test concerning the cost
improvement, it can be seen that stability of the estimation
error Ty — ij‘t is ensured under the same assumptions of the
e-optimal MHE algorithm of Section II.

Remark 3: Notice that in step 4, the prediction is obtained

. ~ . AJ'_

from the estimates :c?_N_Lt‘t_l instead or from Ty N1
Of course, since 5::_ N1 Ar€ believed to be better esti-
mates than &7 No1,tft—1 it would be natural to replace (28)
with

BN =3y (29)

Even for such a modified algorithm, stability could still be
ensured, but the details are not presented here because of to
space constraints.

V. NUMERICAL CASE STUDY

In this section, we illustrate the effect of numerical errors
on the performance of the MH estimators described in
this paper. We consider a simulated MHE scenario on the
nonlinear continuous stirred tank reactor studied by [29]:

1 1
d;;(r) _ 2( )(;') -1 n kox(l)(r)exp |:x(_2)lZZ_)] + w(l)(T)
w® a0 - ot
dr 0 — koz(T)exp L:(z)(r)}
+au(r)(@?(r) —28)) + w?(r).
The system involves two states z = [2(1), (2],
corresponding to the concentration and temperature,

respectively; one control wu corresponding to the
cooling water flowrate; and two process noise sequences
w = [w®, w®]. The continuous-time model is transformed
into a discrete-time form through an implicit Euler
discretization scheme. The temperature is used as the
measured output (y; = ;ng)) to infer the concentration
:c,(fl). The model parameters are xﬁf,} = 0.38, 1;2) = 0.395,
E, =5, a = 195 x 10% and ky; = 300. We use batch
data generated from a simulated closed-loop feedback
control scenario with Gaussian process noise sequences
with standard deviations 0,1 = 0.01, 0,z = 0.05. The
resulting temperatures are then corrupted with different levels
of Gaussian noise with standard deviation o, = 0.0125 to
simulate measurement noise. We use Zo = [0.15, 0.15]
as the a-priori prediction for the initial state zy and a
regularization penalty P = 30 I,. The estimators are
simulated over 250 time steps.

In the top graph of Figure 1 we compare the estimates
obtained by Algorithm 1 and by the same algorithm where
the second term in (3), weighting the ‘“estimated system
noises,” is omitted (denoted as “Algorithm 1 No Est”). In the
latter algorithm [13], only the state at the beginning of the
observation window is estimated and corresponds to setting
the estimated system noise to zero. An observation window
N = 3 is used. As can be observed, the use of the term
weighting the estimates of process disturbances improves the
performance. This improvement is particularly noticeable at
the beginning of the trajectory. In the bottom graph of the
same figure we compare the performance of Algorithm 1
with that of Algorithm 2. Note that the performance of both
algorithms is nearly identical despite the large levels of noise
and the short observation window.

In Figure 2 we illustrate the performance of Algorithm 2
for increasing observation horizons. Here, we compare the
mean sum of squared errors (SSE) with respect to Algorithm
1 of the state estimates :cgl)e generated with Algorithm
2 with and without considering the term weighting the
estimated process noise in the cost (3). The mean SSE
is defined as ﬁz?ﬁﬂ(mg”f — 2{Y°)2. We can see that
the performance of Algorithm 2 approaches that of the
optimal Algorithm 1 when process noise is estimated.
This is because of the fact that more accurate step-ahead
predictions can be obtained when noise sequences are
explicitly accounted. In turn, the sensitivity errors are
reduced. Note also that the effect of noise is appreciable at
short horizons but that this effect dies out quickly as the
horizon is increased. In this study, NV = 3 is sufficient to
obtain close to optimal performance. We also observe that,
as the horizon is increased, Algorithm 2 achieves close to
optimal performance.
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