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ABSTRACT
Improving I/O performance is an important issue for many data
intensive, large scale parallel applications. While storage caches
has been one of the ways of improving I/O latencies of parallel ap-
plications, most of the prior work on storage caches focus onthe
management and partitioning of cache space. The compiler’srole
in taking advantage of, in particular, multi-level storagecaches, has
been largely unexplored. The main contribution of this paper is a
shared storage cache aware loop iteration distribution (iteration-to-
processor mapping) scheme for I/O intensive applications that ma-
nipulate disk-resident data sets. The proposed scheme is compiler
directed and can be tuned to target any multi-level storage cache
hierarchy. At the core of our scheme lies aniterative strategythat
clusters loop iterations based on the underlying storage cache hier-
archy and how these different storage caches in the hierarchy are
shared by different processors. We tested this mapping scheme us-
ing a set of eight I/O intensive application programs and collected
experimental data. The results collected so far are very promising
and show that our proposed scheme 1) is able to improve the I/O
performance of original applications by 26.3% on average, and this
leads to an average of 18.9% reduction in overall execution laten-
cies of these applications, and 2) performs significantly better than
a state-of-the-art (but storage cache hierarchy agnostic)data local-
ity optimization scheme. We also present an enhancement to our
baseline implementation that performs local scheduling once the
loop iteration distribution is performed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures
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Theory
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1. INTRODUCTION
As system sizes and capabilities approach petascale range [31,

40], opportunities to solve or make significant strides in scales
of scientific and engineering problems that were unimaginable a
few years ago now exist. It is widely accepted that petascalesys-
tems (and beyond) will have architectures where nodes are mul-
ticore processors (few cores to hundreds of cores) connected via
very high-speed interconnects. Just because potential forraw per-
formance exists however, does not necessarily mean these systems
can be easily exploited, due to the complexities facing a typical
application programmer or user. One of the aspects that is often
not as well developed or ignored in the context of utilizing large
scale parallel systems that target parallel scientific and engineering
applications isparallel I/O and storage management.

Parallel scientific applications, such as INCITE projects [24] in-
cluding the community climate system model (CCSM at NCAR
[12]), analyzing cosmic microwave background radiation (CMBR
at LBNL [13]), and studying astrophysical thermonuclear flashes
(FLASH at ANL [16]), have significant and growing I/O needs,
demanding high performance I/O. Caching I/O blocks in memory
(calledstorage caching) is one effective way of alleviating disk la-
tencies in such applications, and there can be multiple levels of
caching on a parallel system. Previous studies [4, 14, 39, 49] have
shown the benefits of storage caching – whether it be local to a
particular node, or a shared global cache across multiple nodes.

Most current storage systems used by high-end computing plat-
forms are typically organized as a cluster of client (compute) nodes
connected to a cluster of I/O (server) nodes over a network. Such
a system can have different types of storage caches. For example,
each client can have a private cache or multiple clients can share
the same client-level cache implemented either in one of theclients
entirely or in a distributed fashion over multiple clients (e.g., as in
the case of cooperative caching [14]). Similarly, each server can ac-
commodate a cache, which may be accessed by two or more clients.
More recent high-end systems accommodate even deeper storage
hierarchies. For example, IBM Blue Gene/P [35] is organizedas a
cluster ofcompute nodesthat execute application threads,storage
nodesthat are connected to disks, andI/O nodeswhich transfer data
between compute nodes and storage nodes. In such an architecture,
each layer (compute, I/O, storage nodes) can accommodate its own
cache, resulting in a three-layer storage cache hierarchy.Clearly,
efficient management of such multi-level storage cache hierarchies
is a challenging problem, especially in the context of I/O intensive
scientific applications that perform frequent disk reads (e.g., for vi-
sualization) and writes (e.g., for checkpointing).

Many I/O intensive scientific applications are structured as a se-
ries of nested loops operating on disk resident data sets. Execution
of a loop nest in a parallel computing platform requires two steps:



loop parallelizationand iteration-to-processor mapping.The for-
mer deals with deciding the set of loops (in the nest) to execute in
parallel and applies (if necessary) several code transformations to
enable more parallelism. The latter on the other hand decides, for
each loop iteration, the processor on which to execute that itera-
tion. For data intensive applications that manipulate large, multi-
dimensional arrays, prior compiler research studied numerous loop
parallelization strategies (see [41, 2] and the referencestherein).
The mapping problem on the other hand is very interesting in the
context of I/O intensive applications that execute on parallel archi-
tectures with shared storage caches. This is because the wayin
which loop iterations are assigned to processors (client nodes) can
have tremendous impact on storage cache behavior, which in turn
can influence overall program behavior dramatically.

The main contribution of this paper is a shared storage cache
aware loop iteration distribution (iteration-to-processor mapping/
assignment) scheme for I/O intensive applications that manipulate
disk-resident data sets. The proposed scheme is compiler directed
and can be tuned to target any multi-level storage cache hierar-
chy. At the core of our scheme lies aniterative strategy, that clus-
ters loop iterations based on the underlying storage cache hierar-
chy and how the client nodes share the different storage caches
present in the hierarchy. We tested this mapping scheme using a
set of eight I/O intensive application programs and collected exper-
imental data. The results collected so far are very promising and
show that our proposed scheme 1) is able to improve the I/O per-
formance of original applications by 26.3% on average, and this
leads to an average of 18.9% reduction in overall execution la-
tencies of these applications, and 2) performs significantly better
than a state-of-the-art (but storage cache hierarchy agnostic) data
locality optimization scheme. To our knowledge, this is thefirst
work that performs fully-automated, storage cache hierarchy aware
iteration-to-processor mapping.

The remainder of this paper is organized as follows. The next
section presents the background on data representation andloop
parallelization. Section 3 introduces the problem of iteration-to-
processor mapping in a multi-level storage cache hierarchy. Sec-
tion 4 discusses the technical details of our proposed approach, and
Section 5 presents the results collected from our experimental eval-
uation. Section 6 discusses the related work, and finally, Section 7
concludes the paper by summarizing our main contributions and
discussing the possible future extensions briefly.

2. BACKGROUND ON DATA REPRESEN-
TATION AND LOOP PARALLELIZATION

Let i1, i2, · · · , in denote the iterators of then loops in a loop
nest. We define aniteration formally as~i = (i′1i

′

2 · · · i
′

n)
T , where

Lk ≤ i′k ≤ Uk holds. In this last expression,i′k is a particular
value that loop iteratorik takes, andLk andUk are the lower and
upper bounds, respectively, forik. An array reference within such
a loop nest can be represented in a linear algebraic form usingR(~i)

= Q~i+ ~q, whereQ is termed as the access matrix and~q is referred
to as the offset vector. For example, for array referenceA[i1 +
3, i2 − 1], Q is two-by-two identity matrix and~q is (3 − 1)T .

In the context of this paper, parallelizing a loop means running its
iterations in parallel. While it is possible to parallelizea loop whose
iterations depend on each other, commercial optimizing compil-
ers normally parallelize a loop only if there is no data dependence
across its iterations. This is because parallelizing a loopthat con-
tains dependences typically requires explicit synchronizations across
its iterations (to guarantee correctness), which may be costly at run-
time.

In a loop nest withn loops, any of thesen loops can be par-
allelized (the ones with dependences require synchronization as
stated above). We note that, when one or more loops of a nest ispar-
allelized, the iterations of that nest will be distributed across avail-
able processors for parallel execution. This distributionis called the
iteration-to-processor mappingor iteration-to-processor assignment.
As will be demonstrated in this paper, as far as the underlying stor-
age cache hierarchy is concerned, different mappings/assignment
can lead to dramatically different I/O performances. Our goal in
this work is to derive a mapping that maximizes the performance
of a multi-level storage cache hierarchy.

3. MULTI-LEVEL STORAGE CACHE HIER-
ARCHY AND MAPPING PROBLEM

In mapping a loop-based data-intensive application to a paral-
lel computing platform, there are two complementary steps:loop
parallelizationanditeration-to-processor assignment. In the paral-
lelization step, the user/compiler decides the set of loop iterations
that will be executed in parallel. We note that it is not necessary
that all the iterations scheduled for parallel execution tobe free
of cross-iteration dependences. In some cases, the user/compiler
can decide to execute the iterations with cross-loop dependences in
parallel and enforce correctness of semantics through explicit syn-
chronization. In this work, we do not make any new contribution
to the parallelization step. We assume that either (i) the target loop
nest has already been parallelized by hand or using a parallelizing
compiler, or (ii) the target code is sequential. In the latter case, we
apply a default parallelization strategy which first placesall data
dependences into inner loop positions (to minimize synchroniza-
tion costs) and then parallelizes the outermost loop that that does
not carry any data dependence.

The main contribution of this paper is a novel iteration-to-processor
assignment scheme. The novel aspect of this scheme is its cache
hierarchy awareness. In other words, in assigning the set ofloop
iterations (to be executed in parallel) to available processors, our
scheme considers the storage cache hierarchy of the underlying ar-
chitecture. As such, our approach can work with any loop paral-
lelization strategy (that is, we do not care how the loops have been
parallelized) and choice of parallelization strategy is actually or-
thogonal to the main focus of this paper. The input to our approach
is the set of loop iterations to be executed in parallel and our pro-
posed scheme assigns those iterations to processors.

It is also important to observe that if a loop is explicitly paral-
lelized, iteration assignment/mapping may or may not have already
been performed (depending on the parallelization style/library em-
ployed). If it is the former, our proposed scheme performs a re-
assignment (re-mapping).

The execution model we have is that the loop iterations to be ex-
ecuted in parallel are distributed across available clientnodes. That
is, each client node is assigned a set of iterations to execute. Fig-
ure 1 illustrates the sketch of an example storage hierarchywith
three levels:compute nodes, I/O nodes,andstorage nodes.This
type of layered architectures have become very common in recent
high-end parallel computing architectures such as the IBM Blue
Gene/P machine at the Argonne National Laboratory [36, 35] and
the Cray XT system at the Oak Ridge National Laboratory [25].
Such systems typically exhibit increased architectural complexity
with tens of thousands processors. While the computationalpower
of such systems keeps increasing with every generation, thesame is
not true for their I/O subsystems. Therefore, as in the I/O forward-
ing layer in Blue Gene/P [1], introducing another layer in the I/O
stack (in form of I/O nodes) is one way of maintaining scalability in
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Figure 2: Two scenarios illustrating what happens when our two rules are and
are not followed. A and B denote two different data chunks. The client nodes
are numbered from 1 to 4.

float A[1..N1,1..N2,1..N3];
. . .

for i1 = 2 toN1

for i2 = 1 toN2

for i3 = 1 toN3-1
· · · A[ i1-1, i2, i3+1] · · ·

Figure 3: A sample code fragment.
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Figure 1: Three-level storage cache hierarchy. Each rectangle
represents a storage cache and the arrows capture the structure
of the hierarchy. L1, L2 and L3 refer to the storage caches at
the compute node layer, I/O node layer and the storage node
layer, respectively.

such systems. In Blue Gene/P, for example, compute nodes arepar-
titioned into subsets and each subset is mapped to an I/O node. The
ratio of I/O nodes to compute nodes can be varied from 1:8 to 1:64.
And, the I/O nodes are connected to the file system server through a
10GigE network. Therefore, depending on the configuration,each
I/O node handles accesses from different compute nodes, andthe
same is true for each storage node. While not specifically focus-
ing on the systems like IBM Blue Gene/P or Cray XT, multi-level
caching has also been studied in several prior studies [51, 49, 18].
The main motivation is that the caches in modern storage systems
often form a multilevel hierarchy, and simple approaches tomax-
imize cache hits on a particular layer in such a hierarchy will not
necessarily improve the overall system performance. Therefore,
one needs to explore hierarchy aware cache management schemes
[49, 18].

In Figure 1, the rectangles represent storage caches.1 For illus-
trative purposes, we assume eight compute nodes (also referred to
as “processors” and “client nodes” in this paper), each having a
private storage cache (denoted using L1 in the figure). We further
assume that each of the four I/O nodes maintains a storage cache
(denoted using L2), shared by a pair of compute nodes, as indicated
by the arrows. Finally, each of the two storage nodes maintains a
cache (denoted using L3), shared by two I/O nodes. Consequently,
each of the L1, L2 and L3 storage caches are shared by 1 (private),
2 and 4 client nodes, respectively. We first make the following def-
inition:

Two client nodes are said to have “affinity at storage
cacheLi” if both have access to it.

As far as iteration-to-processor mapping is concerned, this stor-
1We use the term “storage cache” even for the caches that are at-
tached to compute and I/O nodes.

age cache hierarchy implies two rules to follow:

• If two iterations do not share any data element, they should
not be mapped to two client nodes that have affinity at some
storage cache.

• If two iterations do share data on the other hand, it is betterto
map them to clients that have affinity at some storage cache.

We note that, if the first rule is not followed, this will typically
reduce the shared cache utilization, as the total amount of data that
compete for the same cache is typically increased in this case. In
contrast, if the rule is followed, pressure on caches can reduce and
this in turn helps to improve overall application performance. If
the second rule above is not followed, this increases data replica-
tion across different caches, reducing the effective cumulative stor-
age cache capacity. Figure 2 illustrates what happens when the two
rules discussed above are and are not followed. In (a), two itera-
tions access different data chunks (blocks), that is, no sharing. In
this case, it is better that the clients that execute these iterations do
not have an access to a common storage cache. The left part of the
figure shows this case. The right part on the other hand illustrates
potential conflict (competition for the same space) when these iter-
ations are assigned to two clients that share a cache. In (b) on the
other hand, two iterations do share a data chunk. Assigning these
iterations to clients that do not share a storage cache may increase
data replication across the storage cache hierarchy (as depicted on
the left portion of the figure), thereby reducing effective cache ca-
pacity. In comparison, if these iterations are assigned to the clients
that share a storage cache, we may be able exploit data block reuse
(that is, convert data reuse into data locality [cache hit])across the
accesses coming from these clients.

4. TECHNICAL DETAILS OF OUR
PROPOSED SCHEME

4.1 Polyhedral Model
We use apolyhedral model2 to represent loops, arrays and ref-

erences to arrays within loop bodies. For example, the loop nest
shown in Figure 3 can be expressed within the polyhedral model as
follows:

G = {(i1, i2, i3)| 2 ≤ i1 ≤ N1 &&

1 ≤ i2 ≤ N2 && 1 ≤ i3 ≤ N3 − 1},

where&& denotes the “and” operator. In a similar fashion, we can
represent the array declaration in the same code fragment as:

H = {(k1, k2, k3)| 1 ≤ k1 ≤ N1 &&

1 ≤ k2 ≤ N2 && 1 ≤ k3 ≤ N3}.
2In a polyhedral model, objects of interests are representedas in-
teger valued points in various regions of different spaces and the
mappings are used to connect these spaces.
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Figure 4: A sample data space that contains two disk resident
arrays and its partitioning into data chunks.

Finally, the array reference shown in the code can be expressed as:

L : G −→ H

= {(i1, i2, i3) → (k1, k2, k3)| (i1, i2, i3) ∈ G &&

(k1, k2, k3) ∈ H &&

k1 = i1 − 1 && k2 = i2 && k3 = i3 + 1}.

While there are many publicly-available tools and libraries that
can be used to manipulate polyhedral sets and its choice is really
orthogonal to the main focus of our approach, in this work we use
the Omega Library [42]. In the rest of this paper, we use symbol σ
to denote a loop iteration. Recall that, in a nest withn loops (also
calledn-deep nest), an iteration is a vector withn entries, where
the first entry represents the value of the iterator of the outermost
loop and the last entry captures the value of the iterator of the inner-
most loop. Also, as stated earlier, we use the terms “client node”,
“compute node” and “processor” interchangeably.

4.2 Data Sharing across Loop Iterations and
Tags

Two iterationsσ1 andσ2 of a loop nest share data if there are two
referencesR1 andR2 in the loop body (not necessarily distinct
from each other) such thatR1(σ1) = R2(σ2). We can extend this
definition of data sharing to adata block(chunk) levelas follows.
Let us divide an entire data space3 into r equal-sizedchunks, and
label them as follows:π1, π2, · · · , πr. We then assign atag to each
iteration as follows. We assign anr-bit tagΛj = λ0λ1 · · ·λr−1 to
iterationσi where,λk = 1 if σi accesses data chunkπk; otherwise,
λk is set to 0 (where0 ≤ k ≤ r− 1). As an example, a tag such as
0011 indicates that the corresponding iteration accesses the last two
data chunks but does not access the first two data chunks (r = 4).

The important point is that the tag associated with an iteration
describes itsdata access pattern at a chunk level(though it does
not indicate which particular elements in a chunk are accessed).
We then define aniteration chunkas the set of iterations with the
same tag.This means that all the iterations in an iteration chunk
have the same “data chunk access pattern.” We use symbolγΛ to
denote the iteration chunkγ with tagΛ. The significance of the
iteration chunk concept in our work is two-fold. First, all iterations
that belong to the same iteration chunk are executed successively
when that chunk is scheduled, thereby exploiting data reuse. Sec-
ond, the tags of iteration chunks provide some sort of measure for
“similarity”. In particular, if the tags of the two different iteration

3What we mean “data space” in this context is the set of data el-
ements of all disk-resident arrays combined. The arrays canbe
ordered arbitrarily and each can be divided in equal-sized chunks.
We require that no chunk is shared across arrays. In other words,
each array is partitioned separately. But, in numbering chunks, we
just increment the chunk label by one as we move from the last
chunk of the arrayt to the first chunk of arrayt + 1, as illustrated
in Figure 4.

chunks do not have any common bit between them (that is, zero
Hamming Distance), this means that these two iteration chunks do
not share any data. Consequently, they should not be assigned to
two client nodes that have access to a common storage cache (that
is, have affinity at some storage cache). Conversely, if the tags of
two iteration chunks are similar (e.g., large number of “1”sin the
same bit positions), we can exploit data locality if they areassigned
to two client nodes that have access to a common storage cache.
The algorithm given in the next subsection exploits this observa-
tion. Before going into the discussion of our algorithm though, we
want to mention that iteration chunks can be obtained from data
chunks using the polyhedral model as follows.

Let us focus, without loss of generality, onγΛ, whereΛ =λ0λ1 · · ·
λi−1λiλi+1 · · ·λr−2λr−1 = 11 · · · 100 · · · 00, that is, the firsti
bits are 1 and the rest are 0. Then, assuming that there areR ref-
erences in the loop body (R0, · · · ,RR−1), we can expressγλ as
follows:

γ
Λ = {~I|∀q, 0 ≤ q ≤ (i − 1)[∃0 ≤ s ≤ R − 1 s. t.Rs(~I) ∈ πq ]

and ¬∃q′, i ≤ q
′ ≤ (r − 1)[∃0 ≤ s ≤ R − 1 s. t.Rs(~I) ∈ π

′

q ]}.

The first line of this expression captures the iterations that ac-
cessall data chunksπq where0 ≤ q ≤ (i − 1), while the second
line indicates thatnoneof these iterations access any data chunk
π′

q wherei ≤ q′ ≤ (r − 1). In our approach, the iteration dis-
tribution across the client nodes (processors) is carried out at an
iteration chunk granularity. That is, each client node is assigned a
number of iteration chunks. Therefore, once we determine the set
of iteration chunks assigned to a client node, we need to generate
code that enumerates the iterations in those chunks. We notethat,
for a givenγΛ, the Omega Library can be used for generating code
for it. Specifically, thecodegen(.) utility provided by the Omega
Library helps us to generate the code (typically in form of a set of
nested loops) that enumerates the iterations inγΛ (and we repeat
this for all iteration chunks based on the scheduling determined for
the client node).

4.3 Loop Distribution Algorithm
We now discuss the details of our proposed loop distributional-

gorithm. Figure 5 shows the different steps of this algorithm. In-
puts to this algorithm include the set of iterations to be distributed
across the client nodes and the storage cache topology. The out-
put of the algorithm is the iteration chunks/clusters to be scheduled
on each client node such that the performance of the underlying
storage cache hierarchy is maximized. There are three main steps
involved in our algorithm, namely,initialization, clustering, and
load balancing. We explain each of these steps in detail below. We
note that our approach operates at a loop nest granularity. In other
words, we handle each loop nest (which may have any number of
loops in it) in isolation, though in principle it can be extended to
optimize neighboring nests together.

Initialization: The first step starts out by grouping the loop
iterations into iteration chunks. This grouping is done based on
the similarity of their tags. Recall that the different datachunks
accessed by an iteration are captured by the tag of that iteration.
The second part of the initialization step involves building agraph
whose nodes are the iteration chunks and the edge weight between
any two nodes indicate the degree of data sharing between these
iteration chunks. More specifically, the weight of an edge between
any two nodes of the graph is the number of common “1”s between
the tags of the two nodes (iteration chunks).

Clustering: The goal in this step is to cluster the iteration



Input :
I/O System Description,A = {T, k}

T is the storage cache hierarchy tree with the storage
node as the root node andk is the number of compute nodes

Loop Iteration Set,I = {σ0, σ1, . . . σm}
I is the set of all iterations in the loop nest

Data chunk Set,D = {π0, π1, . . . πr−1}
D is the set of all equal sized data element chunks
accessed by the loop nest

BThres = Maximum tolerable imbalance in iteration counts
Output :

Iteration Chunk Set,C = {c0, c1, . . . ck}
ci = {σj , σl, . . . σm}, k is the number of compute nodes

Algorithm
Initialization :

Initialize tags:
Assign a tagΛj = λ0λ1 . . . λr−1 to iterationσi

where,λk = 1 if σi accesses data chunkπk

iteration chunkγΛ = {σk, such thatσk has tagΛ}
Size of the iteration chunk,γΛ, S(γΛ) = |γΛ|

Build Graph:
Build a graphG = {V, E},

V = {γΛ1 , γΛ2 , . . . γΛ2r }

E = {(γΛi , γ
Λj )such thatω(γΛi , γ

Λj ) =
number of “1” bits inΛi ∧ Λj}

Hierarchical Iteration Distribution:
HLevel = root of the storage cache hierarchy tree,T
NumClusters = degree of nodes at level “HLevel ”
Cluster Set,C = {cs}, cs = {{c}∀ c ∈ V}
While HLevel 6= leaf level:

New Cluster Set,NC = {}
For Each clustercsi ∈ C:

C = C − csi
Totaliterations = total number of iterations incsi
Stage 1(Clustering):

While(|csi| > NumClusters) :
For two clusterscαp , cαq ∈ csi ,

cαp = {γΛa , γΛb , . . . γΛc}
αp = BitwiseSum(Λa,Λb, . . .Λc)

S(cαp) = |γΛa | + |γΛb | + . . . + |γΛc |
/*S(cαp) is the total no. of iterations incαp */

Mergecαp , cαq in to a new clustercαnew such
that, αp • αq(dotproduct) is maximized
∴ cαnew = cαp ∪ cαq

If ( |csi| < NumClusters) :
/*Case when the current number of clusters is less
than the required number of clusters at this level*/

While(|csi| 6= NumClusters) :
Selectcαq ∈ csi, such thatS(cαp ) is max
Breakcαq into two clusters

Stage 2(Load balancing):
After clustering,csi = {cα1 . . . cαNumClusters}
/*Use greedy approach to balance cluster sizes*/
ULim = Totaliterations

NumClusters
+ BThres

LLim = Totaliterations
NumCusters

− BThres
While∃ cαp ∈ csi, such thatS(cαp) > ULim:

Selectcαq ∈ csi such that,
S(cαq ) < LowLimit

Evict someγΛa from cαp to cαq such that,
LLim < S(cαp) < ULim
LLim < S(cαq ) < ULim
and,Λa • αq is maximum

If no such node exists, splitγΛa such that
S(cαp) andS(cαq ) are within
limits and evict as described above

For Eachcαp ∈ csi:
NC = NC + {{γΛa}∀γΛa ∈ cαp}

C = NC
HLevel = HLevel + 1,

UpdateNumClusters to the degree of nodes at “HLevel”
After h = log2k hierarchical levels,C = {c0, c1, . . . ck}

where,k is the number of compute nodes
Return C

Figure 5: Cache hierarchy-conscious loop iteration distribution
algorithm.

chunks in accordance with the underlying target storage cache hier-
archy. This way, clustering is customized to a given target storage

cache hierarchy, and as a result, our approach can work with any
storage cache hierarchy. The main inputs to this step of the al-
gorithm are thestorage cache hierarchy treeand the graph built
in the previous (initialization) step. The storage cache hierarchy
tree captures the storage cache hierarchy from the storage nodes,
through I/O nodes, to the client nodes, in a tree form. If there is
only one storage node, it (its cache) represents the root of the tree.
If on the other hand there are multiple storage nodes, we create a
dummy node as the root node, signifying a hypothetical last level
unified storage. In such a scenario, the dummy node will have the
multiple storage nodes as its children. After that, the graph built
in the initialization step is considered and the nodes of this graph
are hierarchically clustered based on the storage cache hierarchy
tree.4 Clustering is done beginning with the root of the hierarchy
tree and further, level by level, until the leaf level (the client node
level). In this clustering step, we consider thedot product(•) of the
tags of two clusters, which quantifies the degree of data chunk shar-
ing between the two clusters, as the qualitative measure ofaffinity
(similarity). The “tag” of a cluster is the bit-wise sum of the tags
of all the nodes in the cluster. At each level, the number of clusters
formed is equal to the number of child nodes in the storage cache
hierarchy tree.

In case the number of clusters is less than the number of children
nodes at the current level, the clusters are split continually until the
number of clusters is increased to be equal to the number of child
nodes. We want to make it clear that the child nodes here refer
to the nodes of the storage cache hierarchy tree (not the nodes of
the iteration chunk graph). Therefore, at the end of this clustering
step, we have the required number of iteration chunk clusters for
the current level of the storage cache hierarchy.

Load Balancing: In this step, we try to balance the sizes of
the iteration chunk clusters formed in the previous clustering step
using a greedy strategy. We note that the size of an iterationchunk
is equal to the total number of iterations assigned to that iteration
chunk, and the size of a cluster is sum of the sizes of the iteration
chunks that belong to that cluster. We compute the lower and upper
limits on the size of each cluster using a tunable parameter called
the “balance threshold”, which is the maximum tolerable imbal-
ance across the iteration counts of any two client nodes. In order
to balance the sizes, the iteration chunks are evicted progressively
from the largest-sized cluster to the smallest-sized cluster in each
step. Eviction is performed only if the donor cluster size does not
drop below the lower limit and the recipient cluster size does not
go above the upper limit after eviction. Importantly, sincewe use
a greedy approach, eviction is done such that the dot productof
the tags of the evicted iteration chunk and the recipient cluster is
maximized. An iteration chunk is split according to the balance
threshold requirements prior to the eviction process if no eligible
iteration chunk is found. This eviction step is repeated until the
iteration chunk sizes comply with the balance threshold.

In order to consider the data chunk sharing at each level of the
I/O cache hierarchy, the clustering and load balancing steps of our
algorithm are repeated at each level of the storage cache hierarchy
tree. The final output of this loop distribution algorithm isa set of
iteration chunk clusters. The number of iteration chunk clusters in
this set is equal to the number of client nodes in the target architec-
ture. Therefore, our algorithm determines the iteration chunks to
be assigned to each client node based on data sharing.

4.4 Example
4We note that the graph we build captures similarity between iter-
ation chunks, whereas the tree we build represent the underlying
storage cache hierarchy.



We now illustrate how our loop iteration distribution algorithm
works using a simple code fragment. The code fragment shown in
Figure 6 accesses a disk-resident array (A), which is assumed to be
divided into 12 data chunks, each of size d. We note that, during
each iteration of the loop, 4 data references are accessed. In this
example, we consider the target storage cache hierarchy depicted
in Figure 7. This hierarchy has three layers, with four client nodes,
two I/O nodes, and a single storage node.

. . .
int A[m];
. . .
for i = 0 tom− 4d− 1
{

int x = i % d;
. . .
A[ i] = A[x] + A[ i+4d] + A[ i+2d];

}

Figure 6: Example code fragment.

The initialization step of the hierarchical loop distribution al-
gorithm divides the set of all loop iterations (iterationsi = 0 to
i = m − 4d − 1 in Figure 6) into iteration chunks based on their
tags. As described earlier, a tag is the signature of the datachunks
accessed by an iteration/iteration-chunk. The different iteration
chunks and their corresponding tags are shown in Figure 8. Fig-
ure 8 also shows the initial graph. This is the graph built during
the initialization process with the iteration chunks as itsnodes. We
note that, for the sample code fragment considered here, this graph
is actually a complete graph with an edge between every distinct
pair of nodes. Since the edges with a weight of 1 do not contribute
anything significant to our clustering algorithm, we do not show
those edges explicitly to make the graph legible.

After the initialization step,our hierarchical loop iteration dis-
tribution algorithm performs iteration chunk clustering at each level
of the storage cache hierarchy, starting from the root (storage cache)
level. In this case, clustering is performed both at the I/O node level
and the client node level (as there is only one cache in the stor-
age node level of the target system). Firstly, the I/O node level is
considered and the iteration chunks are clustered into two clusters,
one for each of the I/O nodes present. After this, the second level
of clustering at the client node level is performed. To startwith,
the cluster assigned to I/O nodeIO0 is considered. The iteration
chunks contained in this cluster are further clustered intotwo, one
for each client node under I/O nodeIO0. This process is repeated
for the cluster assigned to I/O nodeIO1. Therefore, at the end of
two levels of clustering, we are left with four clusters, onefor each
of the four client nodes present in the system. We note that, after
each of the clustering steps, the clusters are balanced during the cor-
responding load balancing step. In this example, since the iteration
chunks are balanced in terms of number of iterations they contain,
there is no need to split the iteration groups during the loadbalanc-
ing step. Figure 9 summarizes this hierarchical clusteringactivity
and shows the formed clusters.

5. EXPERIMENTS

5.1 Setup
We used the Phoenix compiler infrastructure from Microsoft[43]

to implement (automate) our proposed scheme as well as the al-
ternate data locality optimization scheme we evaluated. Weused

CN0 CN1 CN2 CN3

IO0 IO1

SN

Compute 
Node Layer

I/O 
Node Layer

Storage 
Node Layer

Figure 7: Target storage cache hierarchy.
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Figure 8: Initial graph description with tags. Each vertex de-
notes an iteration chunk with a particular tag, and the weight
on each edge denotes the number of “1” bits inΛi ∧ Λj , where
’∧’ refers to “bitwise and”.

a real platform to test the effectiveness of our proposed mapping
scheme. Phoenix is a framework for developing compilers as well
as tools for code testing, program analysis and optimization, to be
used as the back-end for future compiler technologies from Mi-
crosoft. It defines an intermediate representation (IR) forapplica-
tion programs, using control flow graph, abstract syntax trees, and
an exception handling model. We observed that including ourap-
proach at compile time increased the original compilation times by
46%-87%, depending on the application program being compiled.
We performed our experiments using a platform configured to have
compute, I/O and storage nodes and to run MPI-IO [23] on top of
the PVFS parallel file system [7]. MPI-IO is the parallel I/O com-
ponent of MPI-2 and contains a collection of functions designed to
allow easy access to files in a patterned fashion. PVFS is a parallel
file system that stripes file data across multiple disks in different
nodes in a cluster. It accommodates multiple user interfaces which
include the MPI-IO interface, traditional Linux interface, and the
native PVFS library interface. In all our experiments (except for
one application), we used the MPI-IO interface. In our setting,
MPI-IO runs on the client nodes along with the PVFS client stub
and the PVFS server components run on the storage nodes. The I/O
nodes on the other hand execute only the forwarding daemon, re-
laying the calls from the client nodes to the storage nodes. We note
that this structure and execution model is very similar to one em-
ployed by IBM Blue Gene/P. We also implemented storage caches
at compute, I/O and storage nodes. For this purpose, a portion
of the main memory in the node is reserved to keep copies of the
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Table 1: System parameters and their default values for our
target architecture.

Parameter Value
Number of Client Nodes 64
Number of I/O Nodes 32

Number of Storage Nodes 16
Data Striping Uses all 16 storage nodes
Stripe Size 64KB

Storage Capacity/Disk 40 GB
RPM 10,000

Data Chunk Size 64 KB
Cache Capacity/Node (client,I/O,storage) (2GB,2GB,2GB)

frequently-used data chunks. The unit of granularity for managing
these caches is a data chunk, whose value is the same as the stripe
size (at the storage node level). These storage caches are managed
using the LRU policy. W note that, while the results we present de-
pend on the specific caching policy employed, our approach itself
can work with any storage caching policy, that is, how the storage
caches in the system are managed is orthogonal to the problemof
how loop chunks are distributed across client nodes to maximize
data sharing.

Table 1 gives the important parameters and their default values
for the target I/O subsystem we consider in our experimentaleval-
uation. This architecture is similar to that shown in Figure1 except
that the number of compute nodes, I/O nodes and storage nodesare
64, 32 and 16, respectively.Later, in our sensitivity experiments,
we change the values of some of the parameters listed in Table1
and evaluate the impact of doing so.We note that in this table the
cache capacities are given as per-node values. Therefore, for in-
stance, the total cache capacity in the storage nodes (cumulative
L3 size) is 32GB. Later, we also present the results with different
cache capacities.

Table 2 gives the set of I/O intensive application programs used
in this study. We used 8 applications that exhibit a variety of data
access patterns. We note that apsi and wupwise are the parallel,
out-of-core versions of well-known SPEC applications of the same
name [45]. The total sizes of the disk resident data sets manipulated
by these applications vary between 189.6GB (in sar) and 422.7GB
(in wupwise). The last three columns of this table give the miss
rates of these applications (the original version to be explained
shortly) for different storage caches, under the parameters listed
in Table 1. We see from these columns that different applications

Table 2: Application programs.
Name Brief Description Miss Rates (%)

L1 L2 L3

hf Hartree-Fock Method 21.3 40.4 47.9
sar Synthetic Aperture Radar Kernel 16.0 23.3 44.4

contour Contour Displaying 15.3 39.3 67.1
astro Analysis of Astronomical Data 28.4 54.4 76.4

e_elem Finite Element Electromagnetic
Modeling

8.3 33.6 49.9

apsi Pollutant Distribution Modeling 17.7 25.4 36.0
madbench2 Cosmic Microwave Background Ra-

diation Calculation
20.6 34.7 56.5

wupwise Physics/Quantum Chromo-
dynamics

20.8 36.3 52.8

have different distributions of miss rates. A general trendwe want
to emphasize though is that, as we go deeper in the storage cache
hierarchy, we observe an increase in miss rates, primarily due to
destructive interferences on shared storage caches among the data
streams coming from different client nodes. For example, inour
Hartree-Fock application, the cumulative miss rates in L1,L2 and
L3 layers are 21.3%, 40.4%, and 47.9%, respectively. The highest
miss rate is observed at the L3 layer because it is the most heav-
ily shared one (each L3 cache is shared by 64/16=4 client nodes).
Our goal is to convert this destructive sharing of the commonstor-
age cache space into constructive sharing by careful distribution of
loop iterations across the client nodes in the system.

For each application program in our experimental suite, we per-
formed experiments with three different versions. The firstof these
is theoriginal version in which the application is used as it is with-
out any specific storage cache optimization.5 In this version, the
set of iterations to be executed in parallel is first ordered lexico-
graphically (which is the default order implied by the sequential
execution) and then divided intoK clusters, whereK is the num-
ber of client nodes. Each cluster is then assigned to a clientnode.
The second version is obtained by applying to the code well-known
data locality enhancing transformations. These transformations in-
clude loop permutation (changing the order in which loop iterations
are executed) and iteration space tiling (also known as blocking,
which implements a blocked version of the code to improve tem-
poral reuse in outer loop positions). To approximate the ideal tile
size (blocking factor), we experimented with different tile sizes and
selected the one that performs the best. After these locality opti-
mizations, the iterations are divided intok clusters and each cluster
is assigned to a client node (as in the original version). In this sec-
tion, we refer to this version asIntra-processor, as it is an extension
of state-of-the-art data locality strategy, developed originally in the
context of single processor machines, to multiple processors. More
specifically, this version tries to optimize storage cache behavior
for each client in isolationwithoutconsidering data sharing among
clients or affinities they may have at different storage caches in the
I/O subsystem. The third version used for each application program
in our experimental suite is our proposed scheme explained in de-
tail in Section 4. We refer to this scheme asInter-processorin this
section. We want to emphasize that the total set of loop iterations
executed in parallel is the same in all three versions we experi-
mented with; the only difference among the different versions is in
the set of iterations assigned to each processor.

In the rest of this section, we present three types of results. The
first of these is the miss rates for the different types of storage
caches in the target architecture. The second one is the I/O la-
tency, that is, the total time spent by the application in performing
disk I/O. We note that this time also includes the cycles spent in

5However, the application is parallelized if it is sequential.



�
���
���
���
���
���
���
��	
��

���
�

�
 �� ��

�
�
��
�
��
��
�
�
��
�
�
�
��

��  !" #$%&$'" ! &"$ ()(*(+ !, - +!./(%#�� 0',0- (

Figure 10: Normalized miss rates for the L1, L2, and L3 caches.

accessing storage caches. The third type of result we present is
the overall application execution time. Our aim in giving this last
type of statistics is to measure the impact of optimizing storage
cache performance in deep hierarchies on overall application per-
formance. Unless otherwise stated, the results presented below, for
the intra-processor and inter-processor schemes, are given asnor-
malized valueswith respect to theoriginal versionexplained above.
Also, the I/O latency and execution latency results presented below
include all the runtime overheads incurred by our approach.

5.2 Results with the Default Values of the Con-
figuration Parameters

We now present the results collected using the system character-
ized by the default values given in Table 1. In these experiments,
the load balance threshold mentioned in Section 4.3 is set to10%.
Our first set of results, given in Figure 10, shows the normalized
miss rates for L1, L2 and L3 caches (recall that the absolute miss
rates for the original version are given earlier in Table 2).In this
plot, for each application, the miss rate of the original version is
set to 1. One can make two main observations from these results.
First, the intra-processor scheme reduces the L1 miss ratesbut do
not have much impact on L2 or L3 miss rates. This is not surprising
since (as mentioned earlier) this scheme is an extension of single-
processor centric data locality optimization and does not take into
account data sharing across processors or the underlying shared
cache components in the system. In contrast, our proposed inter-
processor scheme reduces miss rates of the caches in all three layers
(L1, L2 and L3). Later in Section 5.4, we discuss an enhanced ver-
sion of this inter-processor scheme, which follows the algorithm
in Figure 5 with a restructuring (scheduling) step that further im-
proves storage cache behavior. Overall, we see from Figure 10 that
the average cache miss reduction brought by the intra-processor
scheme is 16.2%, 2.1% and 0.5% for L1, L2 and L3, respectively.
The corresponding improvements with our inter-processor scheme
are 15.3%, 31.0% and 24.6%, in the same order.

While these improvements in cache hit/miss statistics are impor-
tant, one would be more interested in quantifying the impactof our
approach on application wide I/O latencies. This is becausethe la-
tencies incurred by some of the storage cache misses can be hidden
during parallel execution, and consequently, savings in miss rates
do not always translate exactly to savings in I/O latencies.The left
side of Figure 11 gives the normalized I/O latency values forboth
the intra-processor and inter-processor schemes. It can beobserved
that the intra-processor and inter-processor schemes bring average
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Figure 11: Normalized I/O latency and total execution time val-
ues for both the intra-processor and inter-processor schemes.
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Figure 12: Normalized I/O and total execution latencies with
different topologies. On the x-axis, (w,x,y) represent a configu-
ration with w compute nodes, x I/O nodes, and y storage nodes.

improvements of 6.8% and 26.3%, respectively. This result clearly
underlines the importance of careful distribution of loop iterations
across the client nodes to maximize I/O performance. The right
side of Figure 11 on the other hand presents the normalized over-
all execution times of our applications. We see that the average
improvements brought by the intra-processor and inter-processor
schemes are 3.5% and 18.9%, respectively, meaning that improv-
ing the performance of storage cache hierarchy by careful distribu-
tion of loop iterations (iteration chunks) across the client nodes can
have significant impact on parallel execution time of an application.

5.3 Results from the Sensitivity Experiments
In this subsection, we study three parameters in detail: 1) the

number of client, I/O and storage nodes; 2) storage cache capac-
ities; and 3) data chunk size. As before, all improvements are
with respect to theoriginal version. Figure 12 plots the normalized
I/O and total execution latencies of our inter-processor scheme un-
der different topologies. In this bar-chart, (64,32,16) refers to our
default configuration used so far. In general, for a configuration
(w,x,y), each I/O node serves w/x client nodes and each storage
nodes serves x/y I/O nodes (and consequently w/y client nodes).
It can be observed from the results in Figure 12 that our approach
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Figure 13: Results with different cache capacities. On the x-
axis, (W,X,Y) indicate that per node client, I/O and storage
node caches are of capacities W, X and Y, respectively.

brings more benefits when either w/x or x/y is increased. Thisis
because an increase in any of these ratios implies that a given stor-
age (or I/O) cache will be shared by more client nodes, and this
causes the original version to suffer more. Since our results are
normalized with respect to the original version, we witnessan im-
provement. The results seem particularly encouraging whenwe
consider the configuration (128,32,16), as they show that our ap-
proach generates better results (with respect to the original scheme)
as we increase the number of client nodes while keeping the storage
and I/O node counts fixed.

Our next set of experiments study the sensitivity of our results to
the cache capacity. In these experiments, we use our defaultcon-
figuration (64,32,16). Recall from Table 1 that the default cache
capacity used in our experiments so far per client node, I/O node
and storage node was 2GB. Figure 13 plots the results for our inter-
processor scheme with different cache capacities. A (W,X,Y) on
the x-axis of this bar-chart indicates that the storage cache capaci-
ties per client node, I/O node and storage node are W, X and Y, re-
spectively. Our main observation is that, as we increase anycache
capacity (in client, I/O or storage node), the savings over the origi-
nal version get reduced. This is mainly because the originalversion
takes more advantage of extra cache capacity. This is more pro-
nounced with the increases in cache capacities of I/O and storage
nodes, as these caches are shared by client nodes and an increase in
them brings relief to client nodes. We also see that reducingcache
capacities by half (that is, configuration (1GB,1GB,1GB)) boosts
the effectiveness of our approach. These results in Figure 13 are
actually encouraging in the sense that the increases in dataset sizes
of I/O intensive applications outmatches the increases in storage
cache capacities. Therefore, we can expect our approach to be even
more effective in the future.

We next study the sensitivity of our savings to the data chunk
size. Recall that the default chunk size used in our experiments so
far was 64KB. One can observe from Figure 14 that, as expected,
decreasing chunk size improves the improvements brought byour
approach. This is because a smaller data chunk size typically leads
to smaller iteration chunks, which in turn results in a finer granu-
lar clustering by our algorithm (Figure 5). While this result moti-
vates for small data chunk sizes, we should mention that, a smaller
chunk size also increases overall compilation time. For example,
we observed that, as we move from 64KB to 16KB, the overall
compilation time increased by more than 75%. An important trend
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Figure 14: Results with different data chunk sizes.

from Figure 14 is that the chunk size can play an important role in
determining the magnitude of our savings, and therefore, its value
should be selected carefully. Determining the optimum datachunk
size for a given (application, storage cache topology) pairis in our
future research agenda.

5.4 Discussion
In this section, we discuss three issues related to our proposed

mapping strategy:local scheduling, handling data dependencies,
andhandling multiple loop nests at the same time.

We first present an enhancement to our baseline implementation
given in Figure 5. Recall that our approach discussed so far par-
titions the set of iterations to be executed in parallel intoiteration
chunks and assigns a number of chunks to each client node withthe
goal of improving the performance of the underlying storagecache
hierarchy. However, this strategy does not say anything about the
order in which the iteration chunks assigned to a client nodewill
be executed (in the inter-processor scheme used so far we executed
them randomly). However, we note that this order can also make a
difference in performance. Once the iteration chunks are assigned
(mapped) to client nodes, for each client node, we can reorder the
iteration chunks assigned to it to maximize data reuse. We note
that, after this reordering, the iteration chunks will be scheduled
to execute in the resulting order. Therefore, one can use theterms
“re-ordering” and “scheduling” interchangeably.

In reordering the iteration chunks, our main metric is thechunk
level data reuse.This reuse concept however hastwo dimensionsin
this scheduling step. First, for each client, we want to the next iter-
ation chunk to be scheduled to reuse as much data as possible with
the currently-scheduled iteration chunk (vertical dimension). And,
second, we want the iteration chunks scheduled for the same slot at
different clients to reuse as much data as possible among them (hor-
izontal dimension), so that we can take advantage of shared caches.
Figure 15 gives the sketch of our scheduling strategy. To re-iterate,
this scheduling algorithm is applied after our iteration distribution
algorithm finishes.

We start by noting that Hamming Distance is a measure that can
be used to schedule the iteration chunks such that the data chunk
reuse is improved. More specifically, by scheduling the iteration
chunks of a client node such that the tags of the contiguouslysched-
uled iteration chunks have the least possible Hamming Distance,
data chunk reuse can be further improved. Our proposed schedul-
ing algorithm is given in Figure 15. The algorithm starts outby
considering each level in the storage cache hierarchy individually.



Input :
Iteration cluster,Cx = {γΛa , γΛb , . . . γΛc}∀ 0 < x < k

k is the total number of client nodes
/* Cx is the cluster of iteration groups assigned to client nodex */

α = I/O level cache reuse factor
β = Client node cache reuse factor

Output :
Scheduled Iteration Chunk Set,SCx={γΛp

Algorithm :
For Each I/O cache levelST

n = Number of client nodes sharing the I/O level cacheST
j = First client node under I/O level cacheST
SCi = {}, for all j < i < j + n
si = 0, for all j < i < j + n
/*si is the total number of iterations inSCi*/
While ∃Ck, such thatCk 6= ∅

For Eachi from j to j + n
If (Ci == ∅) Continue;
If (i == j andSCi == ∅)

SCi = SCi + γΛa , si = si + S(γΛa), such that,
Λa ∈ Ci, and,Λa has the least number of “1” bits

Else If (i > j andSCi == ∅)
SCi = SCi + γΛa , si = si + S(γΛa)

such that,α × (Λa • Λx) is maximum
where,γΛx = Last element added toSCi−1

Else If (i == j andSCi 6= ∅)
While si < sj+n

SCi = SCi + γΛa , si = si + S(γΛa )
such that,β × (Λa • Λy) is maximum
where,γΛy = Last element added toSCi

Else
While si < si−1

SCi = SCi + γΛa , si = si + S(γΛa ), such that,
α × (Λa • Λx) + β × (Λa • Λy) is maximum
where,γΛx = Last element added toSCi−1

and,γΛy = Last element added toSCi

ReturnSCx∀ 0 < x < k

Figure 15: Cache hierarchy-conscious iteration scheduling al-
gorithm.

Later, an iteration chunk schedule is computed for each client node
considering the I/O nodes. The iteration chunk that accesses the
least number of data chunks is selected and scheduled for thefirst
client node. For the other client nodes, iteration chunk which has
the minimum Hamming Distance with the last scheduled group on
the previous client node is scheduled. We note here that the client
nodes are considered progressively from the first to the lastin or-
der. We start the second round of scheduling after the first round
of scheduling is finished for all the client nodes in order. Until
all the iteration chunks are scheduled, these scheduling rounds are
repeated. For all other rounds of scheduling after the first round,
while scheduling for a given client node, we select the iteration
chunk that maximizes both the dot product (•) with the last sched-
uled iteration chunk on this client node as well as the dot product
with the last scheduled iteration chunk on the previous client node.
This way, the data chunk reuse is improved at the client node level
as well as the I/O level. Two tunable parameters,α andβ, are used
to weigh the dot products. Therefore, to schedule an iteration chunk
for a client node, we consider its left and upper neighbors (indicated
by dotted circles in Figure 16). For instance, we pickγΛr (circled)
to be scheduled next for client node 1 in Figure 16. This is because
selectingγΛr maximizes the valueα×(Λc • Λr)+β×(Λq • Λc).
In our example code fragment discussed earlier in Section 4.4 (see
Figure 6), after the clustering and assignment steps, the scheduling
algorithm decides the scheduling order. This final schedulefor all
the client nodes is shown in Figure 17.

One of the major concerns in such a scheduling scheme is the
balance of the iteration counts. If the iteration counts arenot ap-
proximately balanced, the cache improvements may take a hit. There-
fore, in order to balance the iteration counts, while scheduling on

any given client node, we go on scheduling iteration chunks as long
the number of iterations assigned to this client node is equal to
or just exceeds the number of iterations assigned to the previous
core. The balance is maintained in a circular fashion. Therefore,
at the beginning of a round, iteration count of the first client node
is matched with the iteration count of the last client node inthe
previous round.

Figure 18 gives the improvements in L1 miss rates, I/O latencies
and overall execution latencies when this scheduling algorithm is
applied after the proposed loop distribution scheme (the additional
improvements brought by the scheduling algorithm in L2 and L3
miss rates were limited – less than 3% each). In these experiments,
the values of theα andβ parameters discussed above are both set
to 0.5 (that is, equal weights). We observe from the first column,
which gives normalized L1 miss rates, that this scheduling strat-
egy generates about 27.8% reduction (on average) in L1 miss rates
(compared to the original version), and as a result, the improve-
ments in I/O latency and total execution time jump to 30.7% and
21.9%, respectively.

Although not presented here in detail due to space concerns,we
also performed experiments with different values for theα andβ
parameters. We observed that giving them equal values generate
the best results we were able to collect. Specifically, ifβ is too big,
the potential locality in the shared caches are missed, and if α is
too big, L1 locality starts to suffer. Again, studying the impacts of
these parameters in detail is in our future research agenda.

We next discuss how our scheme is extended to handle loops
with data dependences. In other words, when the user/compiler
decides to execute a set of iterations that have cross-loop depen-
dences between them. In the cache hierarchy aware loop itera-
tion assignment scheme described so far, we restricted ourselves
to fully-parallel loops, that is, loops in which there are noloop-
carried dependencies across iterations. However, in caseswhere
distributing the loop iterations with dependencies could bring high
benefits, our scheme can be extended by distributing the loopiter-
ations with dependencies across available processors and ensuring
correctness through inter-processor synchronization.

There are at least two ways of extending our approach to handle
loops with dependencies. First, we can ensure that the clustering
step clusters all iteration chunks with loop carried dependencies to-
gether in a single cluster. This can be achieved by associating an
infinite edge weight between iteration chunks that have dependen-
cies between them. This ensures correctness without the need for
inter-core synchronization. However, conservatively clustering all
dependent iteration chunks together may reduce the benefitsof par-
allelism in iteration chunk execution, and therefore, thisapproach
may not be very effective when we have large number of depen-
dencies. Alternatively, the clustering step can treat loopcarried de-
pendencies between iteration chunks as normal data block sharing.
Therefore, in the presence of dependencies across loop iterations,
the data sharing resulting from these dependencies is accounted for
by the edge weights used to quantify the sharing of data between
the iteration chunks containing the respective iterations(provided
they are different). Therefore, we can use the same cache hierar-
chy aware loop iteration distribution algorithm describedabove to
improve data sharing. However, to ensure correctness, the depen-
dencies can be detected during the local reorganization/scheduling
step (explained above in this section) and corresponding inter-core
synchronization directives can be inserted to respect the dependen-
cies. Our current implementation employs this second alternative.

Finally, it is easy to extend our approach to handle multipleloop
nests at the same time. Since our approach uses polyhedral algebra
(which works with sets and operations on sets), it does not mat-
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Figure 16: Scheduling order of itera-
tion chunks.
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Figure 17: Final schedule after all
levels of clustering.
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Figure 18: Improvements in L1 miss rates.

ter where (which loops) individual iterations are coming from. If
we want to handle, say, two nests together, we simply formG set
(described earlier) to contain iterations of both the nestsand the
rest of our approach does not need any modification. However,we
observed during our experiments that, most of existing datareuse
(more than 80%) are intra-nest rather than inter-nest. Therefore,
an extension of our approach to handling multiple nests together
brought only an additional 3% improvement in cache hits in our
application codes.

6. RELATED WORK
There have been prior research efforts aimed at optimizing dif-

ferent aspects of storage cache performance such as overallI/O
response time and QoS. We discuss these research efforts in this
section.

Caching is one of most frequently used ways of improving I/O
performance, and there has been significant past work in thatregard
[21, 32, 52, 9, 26]. Gniady et al. propose a pattern based buffer
caching, in which they use program-counter based prediction tech-
nique to correlate the I/O requests with program context [21]. Kim
et al. show that commonly used LRU chunk replacement scheme
does not exploit reference regularities such as sequentialand loop
references and consequently propose a unified buffer management
scheme which exploits such regularities [32]. Jiang et al. propose a
client-directed, coordinated file chunk placement and replacement
protocol which takes into account the locality of file chunksof non-
uniform strength [28]. They also proposed a protocol for effective
coordinated buffer cache management in a multilevel cache hierar-
chy which reduces chunk redundancy and improves locality [27].
Chen et al. propose a eviction-based placement policy for lower
level storage caches instead of the traditional access-based place-
ment policy [9]. Jiang et al. present and evaluate an improved ver-
sion of CLOCK replacement policy, which keeps track of a limited
number of replaced pages [26]. Zhou et al. show that LRU re-
placement algorithm is not suitable for the second level cache and
propose a new multi-queue cache replacement algorithm to address
the second level buffer cache [52]. While these approaches showed
certain degree of performance improvement, they are mainlyfo-
cused on a single layer of cache hierarchy whereas our approach
aims for multi layers.

To handle multi-level cache hierarchy efficiently, severalcache
management schemes have been proposed [50, 49, 18]. Yadgar
et al. propose two storage cache management schemes to target
multi-level cache hierarchy. The first local scheme operates on the
local client and tries to save the most valuable chunks in cache us-
ing the access profile. On the other hand, global scheme uses the
same access profile information of the clients to manage the shared

cache space so as to reduce the negative interference [50]. In [49],
Wong and Wilkes explore the exclusive cache policies against the
prevalent inclusive ones. Bigelow et al. consider the complete path
followed by data, from client’s cache, through network, to server
cache. Further they propose specific cache management policies
such that each job gets the performance it requires [3]. Our ap-
proach also targeted multi-level storage cache hierarchies but is di-
rected by the compiler. Therefore, our approach can complement
these approaches by shaping the data access patterns at the appli-
cation layer.

There have also been efforts targeting performance isolation and
QoS aspects of shared storage caches [22, 34, 17, 46, 39]. Forex-
ample, Goyal et al. note that due to sharing of resources in modern
storage systems, applications with widely different QoS require-
ments interact in such shared resources. They further propose a
scheme to guarantee QoS in such systems [22]. Ko et al. isolate the
performance in order to provide service differentiation inshared
storage cache system [34]. Forney et al. propose storage-aware
algorithms that partition the cache with one partition per device
[17]. Thiebut et al. propose to partition fully associativedisk cache
into disjoint chunks, sizes of which are decided by the process lo-
cality [46]. Mattson also proposes a partitioned cache to improve
response time [39]. These approaches mainly use cache partition-
ing in order to reduce cache conflicts in the shared storage cache.
Our approach, however, tried to reduce cache conflicts by mapping
computations to appropriate processors. In addition, our mapping
strategy improves cache locality.

Prefetching and its effects on shared storage caches have also
been extensively studied. To prevent prefetched pages frombe-
ing evicted before being used, Li and Shen propose a new mem-
ory management scheme that handles prefetched pages differently
from the normally fetched ones [37]. Ding et al. argue that logical
file-level prefetching cannot fully realize the benefits of prefetching
and therefore propose to perform prefetching directly at the level of
disk layout [15]. Gill and Modha propose a self-tuning, low over-
head and locally adaptive cache management policy that dynami-
cally and adaptively partitions the cache space amongst sequential
and random streams [20]. Kimbrel et al. study the effects of several
combined prefetching and caching strategies for systems with mul-
tiple disks [33]. Gill and Bathen study sequential prefetching and
explore adaptive asynchronous algorithms [19]. Li et al. propose a
sequential prefetching and caching technique to improve the read-
ahead cache hit rate and the overall system response time [38]. Our
work is different from these prior studies, as we explore a compiler
directed strategy that improves data locality in the context of multi-
level storage cache hierarchies. There have been a large number
of compiler-based works on blocking/tiling for multi-level caches



(e.g., [5, 29, 48]), but they are mainly intended for caches in clients
and servers. Recently Kandemir et al. [30] propose a compiler-
based approach to optimize cache behavior in the I/O server only.
To the best of our knowledge, this is the first work that enlists com-
piler’s support in optimizing the storage cache behavior for multi-
level hierarchies. Our proposed scheme is fully automated and very
flexible in that it can work with any storage cache hierarchy given
as input.

7. CONCLUDING REMARKS AND FUTURE
WORK

The main contribution of this paper is a compiler directed scheme
that distributes loop iterations automatically across theclient nodes
of a parallel system that employs multi-level storage cachehierar-
chy. The main goal of this distribution is to maximize the perfor-
mance of the underlying cache hierarchy. We tested this scheme
using a set of eight I/O intensive applications and found that it is
able to improve the I/O performance of original applications by
26.3% on average, and this leads to an average of 18.9% reduction
in overall execution latencies of these applications. Our experi-
ments also showed that the proposed scheme performs significantly
better than a state-of-the-art data locality optimizationscheme, and
performs consistently well under different values of our major ex-
perimental parameters. We also presented an enhancement toour
baseline implementation that performs local scheduling once the
loop iteration distribution is performed. We observed that, when
using this enhancement, the improvements in I/O latency andto-
tal execution time jumped to 30.7% and 21.9%, respectively.Our
future work involves integrating our storage cache conscious loop
iteration distribution strategy with different loop-level paralleliza-
tion techniques. Work is also underway in extending the proposed
approach to handle loops that contain irregular data accesspatterns.
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