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ABSTRACT

Improving I/O performance is an important issue for manyadat
intensive, large scale parallel applications. While gjeraaches
has been one of the ways of improving I/O latencies of pdrafie
plications, most of the prior work on storage caches focushen
management and partitioning of cache space. The compitdes
in taking advantage of, in particular, multi-level storagehes, has
been largely unexplored. The main contribution of this pape
shared storage cache aware loop iteration distributierafibn-to-
processor mapping) scheme for 1/O intensive applicatibasrma-
nipulate disk-resident data sets. The proposed schemenigilen
directed and can be tuned to target any multi-level storagphe
hierarchy. At the core of our scheme liesitarative strategythat
clusters loop iterations based on the underlying storaglkechier-
archy and how these different storage caches in the higrangh
shared by different processors. We tested this mappingrseius-
ing a set of eight 1/O intensive application programs andectéd
experimental data. The results collected so far are vemnising
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1. INTRODUCTION

As system sizes and capabilities approach petascale radge [
40], opportunities to solve or make significant strides iales
of scientific and engineering problems that were unimadenab
few years ago now exist. It is widely accepted that petassyde
tems (and beyond) will have architectures where nodes afte mu
ticore processors (few cores to hundreds of cores) corhetde
very high-speed interconnects. Just because potentiehfoper-
formance exists however, does not necessarily mean thessrsy
can be easily exploited, due to the complexities facing @calp
application programmer or user. One of the aspects thatés of
not as well developed or ignored in the context of utiliziagge
scale parallel systems that target parallel scientific angiheering
applications igarallel /0 and storage management.

Parallel scientific applications, such as INCITE proje2#4]in-
cluding the community climate system model (CCSM at NCAR
[12]), analyzing cosmic microwave background radiatioM&R
at LBNL [13]), and studying astrophysical thermonucleastiles

and show that our proposed scheme 1) is able to improve the 1/0 (FLASH at ANL [16]), have significant and growing I/O needs,

performance of original applications by 26.3% on averagd,this
leads to an average of 18.9% reduction in overall executitent
cies of these applications, and 2) performs significanttyelb¢han

a state-of-the-art (but storage cache hierarchy agnaiie) local-

ity optimization scheme. We also present an enhancemenirto o
baseline implementation that performs local schedulingeathe
loop iteration distribution is performed.

Categories and Subject Descriptors

H.4 [Information Systems Applicationg: Miscellaneous; D.2.8
[Software Engineering: Metrics—complexity measures, perfor-
mance measures
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demanding high performance I/0O. Caching I/O blocks in megmor
(calledstorage cachinpis one effective way of alleviating disk la-
tencies in such applications, and there can be multiplddesie
caching on a parallel system. Previous studies [4, 14, 3ha&
shown the benefits of storage caching — whether it be local to a
particular node, or a shared global cache across multiglesio

Most current storage systems used by high-end computinig pla
forms are typically organized as a cluster of client (corepubdes
connected to a cluster of I/O (server) nodes over a netwankh S
a system can have different types of storage caches. Fopéxam
each client can have a private cache or multiple clients banes
the same client-level cache implemented either in one ofltbats
entirely or in a distributed fashion over multiple clienésd., as in
the case of cooperative caching [14]). Similarly, eacheseran ac-
commodate a cache, which may be accessed by two or moresclient
More recent high-end systems accommodate even deepegestora
hierarchies. For example, IBM Blue Gene/P [35] is organiasa
cluster ofcompute nodethat execute application threadsorage
nodeghat are connected to disks, af@ nodeswhich transfer data
between compute nodes and storage nodes. In such an aatéfec
each layer (compute, /O, storage nodes) can accommodaenit
cache, resulting in a three-layer storage cache hierarClaarly,
efficient management of such multi-level storage cacheatibies
is a challenging problem, especially in the context of l/@irsive
scientific applications that perform frequent disk readg.(éor vi-
sualization) and writes (e.g., for checkpointing).

Many I/O intensive scientific applications are structursdase-
ries of nested loops operating on disk resident data seecufrn
of a loop nest in a parallel computing platform requires tteps:



loop parallelizationanditeration-to-processor mappingrhe for-
mer deals with deciding the set of loops (in the nest) to exeiru
parallel and applies (if necessary) several code transftoms to
enable more parallelism. The latter on the other hand decfde
each loop iteration, the processor on which to execute taed-i
tion. For data intensive applications that manipulatedargulti-
dimensional arrays, prior compiler research studied naoseloop
parallelization strategies (see [41, 2] and the referetiteein).
The mapping problem on the other hand is very interestingpén t
context of I/O intensive applications that execute on palratchi-
tectures with shared storage caches. This is because thénway
which loop iterations are assigned to processors (cliedésjocan
have tremendous impact on storage cache behavior, whichrin t
can influence overall program behavior dramatically.

The main contribution of this paper is a shared storage cache

aware loop iteration distribution (iteration-to-procaissnapping/
assignment) scheme for I/O intensive applications thatijpudate
disk-resident data sets. The proposed scheme is compiéate
and can be tuned to target any multi-level storage cacharier
chy. At the core of our scheme lies darative strategythat clus-
ters loop iterations based on the underlying storage caieharh
chy and how the client nodes share the different storageesach
present in the hierarchy. We tested this mapping schemg asin
set of eight I/O intensive application programs and coddaxper-
imental data. The results collected so far are very promisimnd
show that our proposed scheme 1) is able to improve the 1/© per
formance of original applications by 26.3% on average, &msl t
leads to an average of 18.9% reduction in overall execu@en |
tencies of these applications, and 2) performs signifigaetter
than a state-of-the-art (but storage cache hierarchy éighdsita
locality optimization scheme. To our knowledge, this is finst
work that performs fully-automated, storage cache hiésassvare
iteration-to-processor mapping.

The remainder of this paper is organized as follows. The next
section presents the background on data representatiofoapd
parallelization. Section 3 introduces the problem of iierato-
processor mapping in a multi-level storage cache hierar8sc-
tion 4 discusses the technical details of our proposed appr@and
Section 5 presents the results collected from our expetahewal-
uation. Section 6 discusses the related work, and finallgti@e7
concludes the paper by summarizing our main contributiors a
discussing the possible future extensions briefly.

2. BACKGROUND ON DATA REPRESEN-

TATION AND LOOP PARALLELIZATION

Let i, i2, - - -, in, denote the iterators of the loops in a loop
nest. We define aiteration formally asi = (i}, - - -i,)", where
Ly < i), < Uy holds. In this last expressiony, is a particular
value that loop iteratoif;, takes, and.,, andU,, are the lower and
upper bounds, respectively, for. An array reference within such
a loop nest can be represented in a linear algebraic forng u&jﬁ)
= Qi + ¢, whereQ is termed as the access matrix ais referred
to as the offset vector. For example, for array refereA¢a +
3,42 — 1], Q is two-by-two identity matrix and’is (3 —1)%.

In the context of this paper, parallelizing a loop means immits
iterations in parallel. While itis possible to parallel&aéop whose
iterations depend on each other, commercial optimizingpibm
ers normally parallelize a loop only if there is no data dejeete
across its iterations. This is because parallelizing a thap con-
tains dependences typically requires explicit synchiations across
its iterations (to guarantee correctness), which may bgycatsun-
time.

In a loop nest withn loops, any of these loops can be par-
allelized (the ones with dependences require synchrooizats
stated above). We note that, when one or more loops of a nestis
allelized, the iterations of that nest will be distributextass avail-
able processors for parallel execution. This distribuisaralled the
iteration-to-processor mappingy iteration-to-processor assignment
As will be demonstrated in this paper, as far as the undeylgtor-
age cache hierarchy is concerned, different mappinggfassint
can lead to dramatically different I/O performances. Oualgo
this work is to derive a mapping that maximizes the perfortean
of a multi-level storage cache hierarchy.

3. MULTI-LEVEL STORAGE CACHE HIER-
ARCHY AND MAPPING PROBLEM

In mapping a loop-based data-intensive application to alpar
lel computing platform, there are two complementary stépsp
parallelizationanditeration-to-processor assignmerin the paral-
lelization step, the user/compiler decides the set of ldemiions
that will be executed in parallel. We note that it is not neeeg
that all the iterations scheduled for parallel executiorb¢ofree
of cross-iteration dependences. In some cases, the usgileo
can decide to execute the iterations with cross-loop deperes in
parallel and enforce correctness of semantics throughotbgyn-
chronization. In this work, we do not make any new contrituiti
to the parallelization step. We assume that either (i) trgetdoop
nest has already been parallelized by hand or using a daziake
compiler, or (ii) the target code is sequential. In the latese, we
apply a default parallelization strategy which first plaedisdata
dependences into inner loop positions (to minimize synulzes
tion costs) and then parallelizes the outermost loop ttettdbes
not carry any data dependence.

The main contribution of this paper is a novel iteratiorptocessor
assignment scheme. The novel aspect of this scheme is lie cac
hierarchy awareness. In other words, in assigning the skeiopf
iterations (to be executed in parallel) to available preces our
scheme considers the storage cache hierarchy of the uimdealy
chitecture. As such, our approach can work with any looplpara
lelization strategy (that is, we do not care how the loopsHzeen
parallelized) and choice of parallelization strategy itualty or-
thogonal to the main focus of this paper. The input to our aggin
is the set of loop iterations to be executed in parallel andpoo-
posed scheme assigns those iterations to processors.

It is also important to observe that if a loop is explicitlyrah
lelized, iteration assignment/mapping may or may not hiready
been performed (depending on the parallelization sthlelty em-
ployed). If it is the former, our proposed scheme performs-a r
assignment (re-mapping).

The execution model we have is that the loop iterations tokbe e
ecuted in parallel are distributed across available chedes. That
is, each client node is assigned a set of iterations to exed¢tig-
ure 1 illustrates the sketch of an example storage hierandtty
three levels:compute nodes, 1/0 nodeand storage nodesThis
type of layered architectures have become very common entec
high-end parallel computing architectures such as the |IBMeB
Gene/P machine at the Argonne National Laboratory [36, 86] a
the Cray XT system at the Oak Ridge National Laboratory [25].
Such systems typically exhibit increased architecturahexity
with tens of thousands processors. While the computatipmakr
of such systems keeps increasing with every generatiosatine is
not true for their I/O subsystems. Therefore, as in the |/@véwd-
ing layer in Blue Gene/P [1], introducing another layer ie tfO
stack (in form of I/O nodes) is one way of maintaining scdlghin
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Figure 2: Two scenarios illustrating what happens when ourwo rules are and

float A[1..N1,1..N2,1..Ns];

fori; =2to Ny
foria =1toN»
foris = 1toN3-1
oo A[d1-1, 42, i3+1] - -

Figure 3: A sample code fragment.

are not followed. A and B denote two different data chunks. The client nodes

are numbered from 1 to 4.

Compute
odes

110 L2 L2 L2 L2
Nodes

Storage L3 L3

Nodes

Figure 1: Three-level storage cache hierarchy. Each rectagle
represents a storage cache and the arrows capture the strugte
of the hierarchy. L1, L2 and L3 refer to the storage caches at
the compute node layer, I/O node layer and the storage node
layer, respectively.

such systems. In Blue Gene/P, for example, compute nodgsare
titioned into subsets and each subset is mapped to an I/O fibee
ratio of /0 nodes to compute nodes can be varied from 1:834.1:
And, the I/0 nodes are connected to the file system servarghra
10GigE network. Therefore, depending on the configuragaich
1/0 node handles accesses from different compute nodeshand
same is true for each storage node. While not specificallysoc
ing on the systems like IBM Blue Gene/P or Cray XT, multi-leve
caching has also been studied in several prior studies f5118].
The main motivation is that the caches in modern storagesst
often form a multilevel hierarchy, and simple approaches#x-
imize cache hits on a particular layer in such a hierarchy mait
necessarily improve the overall system performance. Thexe
one needs to explore hierarchy aware cache managementesxhem
[49, 18].

In Figure 1, the rectangles represent storage caches. illus-
trative purposes, we assume eight compute nodes (alsoeefier
as “processors” and “client nodes” in this paper), eachritpa
private storage cache (denoted using L1 in the figure). Wthdur
assume that each of the four I/O nodes maintains a storage cac
(denoted using L2), shared by a pair of compute nodes, asaitedi
by the arrows. Finally, each of the two storage nodes maistai
cache (denoted using L3), shared by two I/O nodes. Constguen
each of the L1, L2 and L3 storage caches are shared by 1 @yivat
2 and 4 client nodes, respectively. We first make the follgndaf-
inition:

Two client nodes are said to have “affinity at storage
cacheL;” if both have access to it.

As far as iteration-to-processor mapping is concerned,dtar-

age cache hierarchy implies two rules to follow:

e If two iterations do not share any data element, they should
not be mapped to two client nodes that have affinity at some
storage cache.

o [ftwo iterations do share data on the other hand, it is bétter
map them to clients that have affinity at some storage cache.

We note that, if the first rule is not followed, this will tygitty
reduce the shared cache utilization, as the total amourdtefttat
compete for the same cache is typically increased in this. chs
contrast, if the rule is followed, pressure on caches canceednd
this in turn helps to improve overall application perforroan If
the second rule above is not followed, this increases dalacae
tion across different caches, reducing the effective catiug stor-
age cache capacity. Figure 2 illustrates what happens vhiegmad
rules discussed above are and are not followed. In (a), Bva-it
tions access different data chunks (blocks), that is, narghaln
this case, it is better that the clients that execute thesatibns do
not have an access to a common storage cache. The left phe of t
figure shows this case. The right part on the other hand riéltest
potential conflict (competition for the same space) wheséhter-
ations are assigned to two clients that share a cache. Im(tf)eo
other hand, two iterations do share a data chunk. Assighiesgt
iterations to clients that do not share a storage cache ncagase
data replication across the storage cache hierarchy (éstelejon
the left portion of the figure), thereby reducing effectieeloe ca-
pacity. In comparison, if these iterations are assignetiaalients
that share a storage cache, we may be able exploit data lelosk r
(that is, convert data reuse into data locality [cache hit}pss the
accesses coming from these clients.

4. TECHNICAL DETAILS OF OUR
PROPOSED SCHEME

4.1 Polyhedral Model

We use goolyhedral modél to represent loops, arrays and ref-
erences to arrays within loop bodies. For example, the lasgt n
shown in Figure 3 can be expressed within the polyhedral ivexle
follows:

g

{(ilv i2, 7:3)|

1<ia <Ny

2<i1 < N1 &&
&& 1 <i3 < N3 —1},

where& & denotes the “and” operator. In a similar fashion, we can
represent the array declaration in the same code fragment as

H {(k1, k2, k3)] 1<ki <N &&
1<k <N: && 1<ks< N3}
2In a polyhedral model, objects of interests are represemsdd-

1We use the term “storage cache” even for the caches that-are atteger valued points in various regions of different spagebsthe

tached to compute and I/0 nodes.

mappings are used to connect these spaces.
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Figure 4: A sample data space that contains two disk resident
arrays and its partitioning into data chunks.

Finally, the array reference shown in the code can be exguess

L G—H
{(i1,42,43) = (K1, k2, ks)|
(ki,k2,ks) e H &&

ki =i1—1 && ko =1io

(7;1,2'277:3) cg &&

&& k3 :’i3—|—1}.

While there are many publicly-available tools and libraribat
can be used to manipulate polyhedral sets and its choiceally re
orthogonal to the main focus of our approach, in this work &e u
the Omega Library [42]. In the rest of this paper, we use syrabo
to denote a loop iteration. Recall that, in a nest witloops (also
calledn-deep nest), an iteration is a vector withentries, where
the first entry represents the value of the iterator of themoubst
loop and the last entry captures the value of the iteratdreirtner-
most loop. Also, as stated earlier, we use the terms “cliedety
“compute node” and “processor” interchangeably.

4.2 Data Sharing across Loop lIterations and
Tags

Two iterationss; ando- of a loop nest share data if there are two
referencesR; and R in the loop body (hot necessarily distinct
from each other) such th@&:(c1) = R2(o2). We can extend this
definition of data sharing to data block(chunR levelas follows.
Let us divide an entire data spddeto r equal-sizecthunks and
label them as followszy, 72, - - -, m-. We then assigntagto each
iteration as follows. We assign arbit tagA; = AoA1 -+ Ar—1 1O
iterationo; where,\;, = 1 if o; accesses data chunlk; otherwise,
A issetto O (wher® < k < r —1). As an example, a tag such as
0011 indicates that the corresponding iteration accessesshmla
data chunks but does not access the first two data chunks4).

The important point is that the tag associated with an it@mat
describes itglata access pattern at a chunk leygiough it does
not indicate which particular elements in a chunk are aethss
We then define aiteration chunkas the set of iterations with the
same tag.This means that all the iterations in an iteration chunk
have the same “data chunk access pattern.” We use sypibt
denote the iteration chunk with tag A. The significance of the
iteration chunk concept in our work is two-fold. First, aéiiations
that belong to the same iteration chunk are executed sueekyss
when that chunk is scheduled, thereby exploiting data re8se-
ond, the tags of iteration chunks provide some sort of meafsur
“similarity”. In particular, if the tags of the two differeriteration

%What we mean “data space” in this context is the set of data el-
ements of all disk-resident arrays combined. The arraysbean
ordered arbitrarily and each can be divided in equal-sitethks.

We require that no chunk is shared across arrays. In othedsyor
each array is partitioned separately. But, in numberingnkbuwe

just increment the chunk label by one as we move from the last
chunk of the array to the first chunk of array + 1, as illustrated

in Figure 4.

chunks do not have any common bit between them (that is, zero
Hamming Distance), this means that these two iteration khdo
not share any data. Consequently, they should not be adsigne
two client nodes that have access to a common storage céette (t
is, have affinity at some storage cache). Conversely, ifage of
two iteration chunks are similar (e.g., large number of “itishe
same bit positions), we can exploit data locality if theyassigned
to two client nodes that have access to a common storage.cache
The algorithm given in the next subsection exploits thiseots-
tion. Before going into the discussion of our algorithm tgbuwe
want to mention that iteration chunks can be obtained froma da
chunks using the polyhedral model as follows.

Let us focus, without loss of generality, oft, whereA = Ao A; - - -
AiciAidig1 - Ar—2Ar—1 = 11---100--- 00, that is, the first;
bits are 1 and the rest are 0. Then, assuming that ther® aeé

erences in the loop bodyR(, - - - , Rr_1), We can express” as
follows:
A = {IVg,0<q¢< (i—1)[30< s < R—1s. t.R(I) € m,]

and —-3¢,i<q¢ < (r—-1[F0<s < R-1s.tR() € 7]}

The first line of this expression captures the iterations$ #ta
cessall data chunksr, where0 < ¢ < (¢ — 1), while the second
line indicates thahoneof these iterations access any data chunk
my Wherei < ¢’ < (r — 1). In our approach, the iteration dis-
tribution across the client nodes (processors) is carrigdab an
iteration chunk granularity. That is, each client node sEg®ed a
number of iteration chunks. Therefore, once we determiaesét
of iteration chunks assigned to a client node, we need torgene
code that enumerates the iterations in those chunks. Wethmtte
for a giveny”, the Omega Library can be used for generating code
for it. Specifically, thecodegen(.) utility provided by the Omega
Library helps us to generate the code (typically in form oébaf
nested loops) that enumerates the iterations’inland we repeat
this for all iteration chunks based on the scheduling detexchfor
the client node).

4.3 Loop Distribution Algorithm

We now discuss the details of our proposed loop distribugien
gorithm. Figure 5 shows the different steps of this algonithin-
puts to this algorithm include the set of iterations to beritiated
across the client nodes and the storage cache topology. tthe o
put of the algorithm is the iteration chunks/clusters todieesluled
on each client node such that the performance of the undgrlyi
storage cache hierarchy is maximized. There are three regBs s
involved in our algorithm, namelyinitialization, clustering and
load balancing We explain each of these steps in detail below. We
note that our approach operates at a loop nest granularityther
words, we handle each loop nest (which may have any number of
loops in it) in isolation, though in principle it can be extien to
optimize neighboring nests together.

Initialization: ~ The first step starts out by grouping the loop
iterations into iteration chunks. This grouping is donedghsn
the similarity of their tags. Recall that the different dataunks
accessed by an iteration are captured by the tag of thatidera
The second part of the initialization step involves buigdagraph
whose nodes are the iteration chunks and the edge weigheéetw
any two nodes indicate the degree of data sharing betwese the
iteration chunks. More specifically, the weight of an edgeveen
any two nodes of the graph is the number of common “1"s between
the tags of the two nodes (iteration chunks).

Clustering:  The goal in this step is to cluster the iteration



Input :

1/0 System Descriptiond = {T, k}
T is the storage cache hierarchy tree with the storage
node as the root node aids the number of compute nodes

Loop lteration SetZ = {09, 01,...0m}
T is the set of all iterations in the loop nest

Data chunk SetD = {mo, 71, ... mr—1}
D is the set of all equal sized data element chunks
accessed by the loop nest

BThres = Maximum tolerable imbalance in iteration counts

Output :
Iteration Chunk Set¢ = {co,c1,...ck}
¢; = {0oj,01,...0m} kisthe number of compute nodes
Algorithm
Initialization :
Initialize tags:

Assignatag\; = AoA1 ... A._1 toiterationo;
where, A\, = 1 if o; accesses data chunig
iteration chuniy® = {0k, such thatr), has tagA}
Size of the iteration chunky®, S(v*) = ||
Build Graph:
Build a graphg = {V, £},
V= {yM, oyt gty
& = {(v"i,y")such thato(v"¢, y%3) =
number of “1” bits inA; A Aj}
Hierarchical Iteration Distribution:
H Level =root of the storage cache hierarchy trée,
NumClusters = degree of nodes at levelH Level ”
Cluster SetC = {cs},cs = {{c}Vc e V}
While H Level # leaf level:
New Cluster SetNC = {}
For Each clustets; € C:
C=C—cs;
Totaliterations = total number of iterations ins;
Stage 1(Clustering):
While(|cs;| > NumClusters) :
For two clusterg®?, ¢®4 € cs;,
P = {yha yt, . yhe
ap = BitwiseSum(Aq, Ay, ... Ac)
S(co?) = |yta| + [yRe 4.4yt
[*S(cP) is the total no. of iterations in®*»*/
Mergec®?, ¢4 in to a new clustee“™e® such
that, o, ® ag(dotproduct) is mazximized
coetnew = c%p ¢
If (Jesi| < NumClusters) :
[*Case when the current number of clusters is lesg
than the required number of clusters at this level*/
While(|cs;| # NumClusters) :
Selectc™? € cs;, such thatS(c“P) is max
Breakc™¢ into two clusters
Stage 2(Load balancing):
After clustering,cs; = {c™1 ...c*NumClusters}
/*Use greedy approach to balance cluster sizes*/
ULim = wﬂiyﬁgggfeﬁs + BThres
LLim = Tgfalierations — BThres
While 3 c*P € cs;, suchthatS(c*P) > ULim:
Selectc™? € cs; such that,
S(c*1) < LowLimit
Evict someye from c¢“P to ¢ such that,
LLim < S(c*P) < ULim
LLim < S(c“?) < ULim
and,A, ® oy is maximum
If no such node exists, sphit*« such that
S(c™P) andS(c“?) are within
limits and evict as described above
For Eachc®P € cs;:
NC = NC+ {{y*a}vyta € cor}
Cc=NC
HLevel = HLevel + 1,
UpdateNumClusters to the degree of nodes atf'Level”
After h = logs k hierarchical levels¢ = {co, c1,...ck}
where,k is the number of compute nodes

Return C

Figure 5: Cache hierarchy-conscious loop iteration distribution

algorithm.

chunks in accordance with the underlying target storageechier-
archy. This way, clustering is customized to a given targmiage

cache hierarchy, and as a result, our approach can work wjth a
storage cache hierarchy. The main inputs to this step of lthe a
gorithm are thestorage cache hierarchy tre@nd the graph built
in the previous (initialization) step. The storage cacherdrichy
tree captures the storage cache hierarchy from the stoigsn
through 1/0 nodes, to the client nodes, in a tree form. Iféher
only one storage node, it (its cache) represents the rotiedf¢e.

If on the other hand there are multiple storage nodes, weeceea
dummy node as the root node, signifying a hypothetical astl|
unified storage. In such a scenario, the dummy node will haee t
multiple storage nodes as its children. After that, the lyrapilt

in the initialization step is considered and the nodes af gnaph
are hierarchically clustered based on the storage cachnarttiy
tree* Clustering is done beginning with the root of the hierarchy
tree and further, level by level, until the leaf level (théent node
level). In this clustering step, we consider that product(e) of the
tags of two clusters, which quantifies the degree of datalckbar-
ing between the two clusters, as the qualitative measuadfiofty
(similarity). The “tag” of a cluster is the bit-wise sum of the tags
of all the nodes in the cluster. At each level, the number usdtelrs
formed is equal to the number of child nodes in the storaghecac
hierarchy tree.

In case the number of clusters is less than the number ofrehild
nodes at the current level, the clusters are split contiyiuatil the
number of clusters is increased to be equal to the numberildf ch
nodes. We want to make it clear that the child nodes here refer
to the nodes of the storage cache hierarchy tree (not thesrafde
the iteration chunk graph). Therefore, at the end of thisteling
step, we have the required number of iteration chunk clsdtar
the current level of the storage cache hierarchy.

Load Balancing: In this step, we try to balance the sizes of
the iteration chunk clusters formed in the previous clustestep
using a greedy strategy. We note that the size of an iteratiank
is equal to the total number of iterations assigned to tleaaiion
chunk, and the size of a cluster is sum of the sizes of thetibera
chunks that belong to that cluster. We compute the lower apému
limits on the size of each cluster using a tunable paramelézcc
the “balance threshold”, which is the maximum tolerable amb
ance across the iteration counts of any two client nodes.rdaro
to balance the sizes, the iteration chunks are evicted gssiyely
from the largest-sized cluster to the smallest-sized etusteach
step. Eviction is performed only if the donor cluster sizesloot
drop below the lower limit and the recipient cluster size sloet
go above the upper limit after eviction. Importantly, sivee use
a greedy approach, eviction is done such that the dot praafuct
the tags of the evicted iteration chunk and the recipiersteluis
maximized. An iteration chunk is split according to the Inaka
threshold requirements prior to the eviction process if ingitde
iteration chunk is found. This eviction step is repeated| uhé
iteration chunk sizes comply with the balance threshold.

In order to consider the data chunk sharing at each leveleof th
1/0 cache hierarchy, the clustering and load balancingsstépur
algorithm are repeated at each level of the storage cachar ¢ty
tree. The final output of this loop distribution algorithmaiset of
iteration chunk clusters. The number of iteration chunlsigts in
this set is equal to the number of client nodes in the targétitec-
ture. Therefore, our algorithm determines the iterationngis to
be assigned to each client node based on data sharing.

4.4 Example

“We note that the graph we build captures similarity betwéen i
ation chunks, whereas the tree we build represent the wfiratgrl
storage cache hierarchy.



We now illustrate how our loop iteration distribution algbm
works using a simple code fragment. The code fragment shown i
Figure 6 accesses a disk-resident art&), (vhich is assumed to be
divided into 12 data chunks, each of size d. We note thatnduri
each iteration of the loop, 4 data references are accesadthis|
example, we consider the target storage cache hierarchgteldp
in Figure 7. This hierarchy has three layers, with four dleodes,
two 1/0 nodes, and a single storage node.

int A[m];
fori =0tom —4d — 1
{

intx =:%4d;

Ali] = ALa] + Ali+4d] + A[i+2d];

Figure 6: Example code fragment.

The initialization step of the hierarchical loop distrilmut al-
gorithm divides the set of all loop iterations (iteratiohs= 0 to
i = m — 4d — 1 in Figure 6) into iteration chunks based on their
tags. As described earlier, a tag is the signature of theatmtaks
accessed by an iteration/iteration-chunk. The differéstation
chunks and their corresponding tags are shown in Figure @ Fi
ure 8 also shows the initial graph. This is the graph builtrdur
the initialization process with the iteration chunks asitgles. We
note that, for the sample code fragment considered hesegtaph
is actually a complete graph with an edge between everyndisti
pair of nodes. Since the edges with a weight of 1 do not cartib
anything significant to our clustering algorithm, we do nbbw
those edges explicitly to make the graph legible.

After the initialization steppur hierarchical loop iteration dis-
tribution algorithm performs iteration chunk clusteringeach level
of the storage cache hierarchy, starting from the root (atgrcache)
level.In this case, clustering is performed both at the 1/0 nodellev
and the client node level (as there is only one cache in the sto
age node level of the target system). Firstly, the 1/0 nogellis
considered and the iteration chunks are clustered into usiers,
one for each of the I/O nodes present. After this, the secevel |
of clustering at the client node level is performed. To steth,
the cluster assigned to I/O nodé is considered. The iteration
chunks contained in this cluster are further clusteredtintg one
for each client node under 1/0O nod®,. This process is repeated
for the cluster assigned to 1/0 nodé€;. Therefore, at the end of
two levels of clustering, we are left with four clusters, doeeach
of the four client nodes present in the system. We note tlftat, a
each of the clustering steps, the clusters are balanceuythe cor-
responding load balancing step. In this example, sincet¢nation
chunks are balanced in terms of number of iterations thejagon
there is no need to split the iteration groups during the lwaenc-
ing step. Figure 9 summarizes this hierarchical clusteaictiyity
and shows the formed clusters.

5. EXPERIMENTS
5.1 Setup

We used the Phoenix compiler infrastructure from Microft3]

Compute  "ong | [eNt | [eN2 | [eNg ]

Node Layer

lfe}

Node Layer 1O, 10,
Storage \/

Node Layer | SN |

Figure 7: Target storage cache hierarchy.
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yA2 |i=dto 2d-1 | 11010100000
@ @ ¥A3 |i=2d to 3d-1 10101010000
y/A4 |i=3d to 4d-1| 1001010100(
@ 2 @ ¥A5 |i=4d to 5d-1 10001010100
y/A8 |i =5d to 6d-1 10000101014
3 y/A7 |i=6d to 7d-1| 10000010101
@ @ y/8 |i=7d to 8d-1 10000001014

Figure 8: Initial graph description with tags. Each vertex de-
notes an iteration chunk with a particular tag, and the weigh
on each edge denotes the number of “1” bits im\; A A;, where
"N\’ refers to “bitwise and”.

a real platform to test the effectiveness of our proposedpingp
scheme. Phoenix is a framework for developing compilersels w
as tools for code testing, program analysis and optiminatm be
used as the back-end for future compiler technologies froim M
crosoft. It defines an intermediate representation (IRpfiplica-
tion programs, using control flow graph, abstract syntagstrand
an exception handling model. We observed that includingagur
proach at compile time increased the original compilatiores by
46%-87%, depending on the application program being caupil
We performed our experiments using a platform configurecteh
compute, 1/0 and storage nodes and to run MPI-1O [23] on top of
the PVFS parallel file system [7]. MPI-IO is the parallel I/6ne-
ponent of MPI-2 and contains a collection of functions desdjto
allow easy access to files in a patterned fashion. PVFS isadiglar
file system that stripes file data across multiple disks ifedéht
nodes in a cluster. It accommodates multiple user intesfadgch
include the MPI-IO interface, traditional Linux interfacand the
native PVFS library interface. In all our experiments (gtcfor
one application), we used the MPI-IO interface. In our sgiti
MPI-10 runs on the client nodes along with the PVFS clienbstu
and the PVFS server components run on the storage nodesO'he |
nodes on the other hand execute only the forwarding daereen, r
laying the calls from the client nodes to the storage nodesnite
that this structure and execution model is very similar te em-
ployed by IBM Blue Gene/P. We also implemented storage cache

to implement (automate) our proposed scheme as well as the al at compute, I/O and storage nodes. For this purpose, a portio

ternate data locality optimization scheme we evaluated. ugés

of the main memory in the node is reserved to keep copies of the



First Level Assignment
YAL yA3 yAS AT O,
10,

,YAZ, YA4, YA6, YAS

Second Level Assignment

AL yA3 CN,
YA, yA7 CN,
yA2 A CN,
YA, yA8 CN,

Figure 9: After clustering steps at the client node level andhe
1/0 level.

Table 1: System parameters and their default values for our
target architecture.

| Parameter [ Value |
Number of Client Nodes 64
Number of /O Nodes 32
Number of Storage Nodes 16
Data Striping Uses all 16 storage nodes
Stripe Size 64KB
Storage Capacity/Disk 40 GB
RPM 10,000
Data Chunk Size 64 KB
Cache Capacity/Node (client,l/O,storade) (2GB,2GB,2GB)

frequently-used data chunks. The unit of granularity fonaging
these caches is a data chunk, whose value is the same asphbe str
size (at the storage node level). These storage caches negeth
using the LRU policy. W note that, while the results we présien
pend on the specific caching policy employed, our approaeff it
can work with any storage caching policy, that is, how theagje
caches in the system are managed is orthogonal to the praiflem
how loop chunks are distributed across client nodes to magim
data sharing.

Table 1 gives the important parameters and their defaultegal
for the target I/O subsystem we consider in our experimesvial-
uation. This architecture is similar to that shown in Figliexcept
that the number of compute nodes, I/0 nodes and storage aogles
64, 32 and 16, respectivelyLater, in our sensitivity experiments,
we change the values of some of the parameters listed in Table
and evaluate the impact of doing s@/e note that in this table the
cache capacities are given as per-node values. Theretoren-f
stance, the total cache capacity in the storage nodes (ativeul
L3 size) is 32GB. Later, we also present the results withedffit
cache capacities.

Table 2 gives the set of I/O intensive application prograsedu
in this study. We used 8 applications that exhibit a varidtgaia
access patterns. We note that apsi and wupwise are thegbarall
out-of-core versions of well-known SPEC applications & same
name [45]. The total sizes of the disk resident data setspukaied
by these applications vary between 189.6GB (in sar) and/GR.
(in wupwise). The last three columns of this table give theami
rates of these applications (the original version to be arpt
shortly) for different storage caches, under the paramdisted
in Table 1. We see from these columns that different apjtioat

Table 2: Application programs.

Name Brief Description Miss Rates (%)
L1 | L2 | L3
hf Hartree-Fock Method 21.3 | 40.4 | 47.9
sar Synthetic Aperture Radar Kernel | 16.0 | 23.3 | 44.4
contour Contour Displaying 15.3 | 39.3 | 67.1
astro Analysis of Astronomical Data 284 | 544 | 76.4
e_elem Finite Element Electromagneti¢ 8.3 | 33.6 | 49.9
Modeling
apsi Pollutant Distribution Modeling 17.7 | 25.4 | 36.0
madbench2| Cosmic Microwave Background Ra- 20.6 | 34.7 | 56.5
diation Calculation
wupwise | Physics/Quantum Chromo} 20.8 | 36.3 | 52.8
dynamics

have different distributions of miss rates. A general tremdwant

to emphasize though is that, as we go deeper in the storape cac
hierarchy, we observe an increase in miss rates, primauiéytd
destructive interferences on shared storage caches amemata
streams coming from different client nodes. For exampleun
Hartree-Fock application, the cumulative miss rates inll2Land

L3 layers are 21.3%, 40.4%, and 47.9%, respectively. Thiedsig
miss rate is observed at the L3 layer because it is the most hea
ily shared one (each L3 cache is shared by 64/16=4 clients)ode
Our goal is to convert this destructive sharing of the comston
age cache space into constructive sharing by careful loligion of
loop iterations across the client nodes in the system.

For each application program in our experimental suite, &re p
formed experiments with three different versions. The tifshese
is theoriginal version in which the application is used as it is with-
out any specific storage cache optimizatioin this version, the
set of iterations to be executed in parallel is first ordeesdcb-
graphically (which is the default order implied by the seufisd
execution) and then divided int& clusters, wherd( is the num-
ber of client nodes. Each cluster is then assigned to a clieaé.
The second version is obtained by applying to the code welak
data locality enhancing transformations. These transditions in-
clude loop permutation (changing the order in which loopaitiens
are executed) and iteration space tiling (also known askbige
which implements a blocked version of the code to improve-tem
poral reuse in outer loop positions). To approximate thalitiee
size (blocking factor), we experimented with differen¢ izes and
selected the one that performs the best. After these lpaabiti-
mizations, the iterations are divided irkalusters and each cluster
is assigned to a client node (as in the original version)his gec-
tion, we refer to this version dstra-processoras it is an extension
of state-of-the-art data locality strategy, developedioélly in the
context of single processor machines, to multiple proassddore
specifically, this version tries to optimize storage cachkdvior
for each client in isolatiomvithoutconsidering data sharing among
clients or affinities they may have at different storage each the
1/0 subsystem. The third version used for each applicatiognam
in our experimental suite is our proposed scheme explaimeig-i
tail in Section 4. We refer to this schemelater-processoin this
section. We want to emphasize that the total set of looptitera
executed in parallel is the same in all three versions we rexpe
mented with; the only difference among the different versis in
the set of iterations assigned to each processor.

In the rest of this section, we present three types of restilie
first of these is the miss rates for the different types ofeger
caches in the target architecture. The second one is theal/O |
tency, that is, the total time spent by the application irfqrening
disk 1/0. We note that this time also includes the cycles spen

SHowever, the application is parallelized if it is sequehtia
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Figure 10: Normalized miss rates for the L1, L2, and L3 caches

accessing storage caches. The third type of result we pgresen
the overall application execution time. Our aim in givingsthast
type of statistics is to measure the impact of optimizingeasie
cache performance in deep hierarchies on overall appitgter-
formance. Unless otherwise stated, the results preseated,for
the intra-processor and inter-processor schemes, are gsmeor-
malized valueswvith respect to theriginal versionexplained above.
Also, the I/O latency and execution latency results presenteaiibel
include all the runtime overheads incurred by our approach.

5.2 Results with the Default Values of the Con-
figuration Parameters

We now present the results collected using the system diearac
ized by the default values given in Table 1. In these expearime
the load balance threshold mentioned in Section 4.3 is SH%6.
Our first set of results, given in Figure 10, shows the norzeali
miss rates for L1, L2 and L3 caches (recall that the absoluss m
rates for the original version are given earlier in Table ) this
plot, for each application, the miss rate of the originalsi@n is
set to 1. One can make two main observations from these sesult
First, the intra-processor scheme reduces the L1 miss batedo
not have much impact on L2 or L3 miss rates. This is not surnmis
since (as mentioned earlier) this scheme is an extensioimglies
processor centric data locality optimization and does alog into
account data sharing across processors or the underlyargdsh
cache components in the system. In contrast, our proposed in
processor scheme reduces miss rates of the caches in allaiiess
(L1, L2 and L3). Later in Section 5.4, we discuss an enhaneed v
sion of this inter-processor scheme, which follows the athm
in Figure 5 with a restructuring (scheduling) step thatHartim-
proves storage cache behavior. Overall, we see from Figutieat
the average cache miss reduction brought by the intra-gsoce
scheme is 16.2%, 2.1% and 0.5% for L1, L2 and L3, respectively
The corresponding improvements with our inter-processbese
are 15.3%, 31.0% and 24.6%, in the same order.

While these improvements in cache hit/miss statisticsrapoi-
tant, one would be more interested in quantifying the impéotur
approach on application wide 1/O latencies. This is bec#uséa-
tencies incurred by some of the storage cache misses caddenhi
during parallel execution, and consequently, savings ssmates
do not always translate exactly to savings in I/O latenciés left
side of Figure 11 gives the normalized I/O latency valuesfith
the intra-processor and inter-processor schemes. It cabdszved
that the intra-processor and inter-processor schemeg avierage

Normalized Value

intra-processor inter-processor

intra-processor inter-processor

1/0 Latency ‘ Total Latency ‘

m hf msar m contour W astro m e_elem = apsi © madbench2 = wupwise

Figure 11: Normalized I/O latency and total execution time \al-
ues for both the intra-processor and inter-processor scheps.
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Figure 12: Normalized I/O and total execution latencies wih
different topologies. On the x-axis, (w,X,y) represent a atfigu-
ration with w compute nodes, x I/0 nodes, and y storage nodes.

improvements of 6.8% and 26.3%, respectively. This resdeitrty
underlines the importance of careful distribution of lotgrations
across the client nodes to maximize 1/0 performance. Th rig
side of Figure 11 on the other hand presents the normalized ov
all execution times of our applications. We see that theager
improvements brought by the intra-processor and intecgssor
schemes are 3.5% and 18.9%, respectively, meaning thabvmpr
ing the performance of storage cache hierarchy by carestriloli-
tion of loop iterations (iteration chunks) across the dlismdes can
have significant impact on parallel execution time of an @pgibn.

5.3 Results from the Sensitivity Experiments

In this subsection, we study three parameters in detailhd) t
number of client, /0 and storage nodes; 2) storage cach&ceap
ities; and 3) data chunk size. As before, all improvements ar
with respect to theriginal version. Figure 12 plots the normalized
1/0 and total execution latencies of our inter-processbese un-
der different topologies. In this bar-chart, (64,32,16¢re to our
default configuration used so far. In general, for a confitoina
(w,x,y), each 1/0O node serves w/x client nodes and each gsora
nodes serves x/y I/O nodes (and consequently w/y clients)ode
It can be observed from the results in Figure 12 that our ambro
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Figure 13: Results with different cache capacities. On the x
axis, (W,X,Y) indicate that per node client, I/O and storage
node caches are of capacities W, X and Y, respectively.

brings more benefits when either w/x or x/y is increased. This
because an increase in any of these ratios implies that a give-
age (or 1/0O) cache will be shared by more client nodes, argl thi
causes the original version to suffer more. Since our resuk
normalized with respect to the original version, we witnassm-
provement. The results seem particularly encouraging wien
consider the configuration (128,32,16), as they show thaapu
proach generates better results (with respect to the atigaineme)
as we increase the number of client nodes while keeping ohagst
and 1/0 node counts fixed.

Our next set of experiments study the sensitivity of our litesa
the cache capacity. In these experiments, we use our defauit
figuration (64,32,16). Recall from Table 1 that the defaaltte
capacity used in our experiments so far per client node, en
and storage node was 2GB. Figure 13 plots the results foneerr i
processor scheme with different cache capacities. A (W, XY
the x-axis of this bar-chart indicates that the storage eaepaci-
ties per client node, 1/0 node and storage node are W, X aretY, r
spectively. Our main observation is that, as we increasecaole
capacity (in client, I/O or storage node), the savings olerdrigi-
nal version get reduced. This is mainly because the origiEaion
takes more advantage of extra cache capacity. This is more pr
nounced with the increases in cache capacities of /0 amdgdo
nodes, as these caches are shared by client nodes and aséicre
them brings relief to client nodes. We also see that reducinge
capacities by half (that is, configuration (1GB,1GB,1GB)péts
the effectiveness of our approach. These results in FigBraré
actually encouraging in the sense that the increases irsdasizes
of 1/0 intensive applications outmatches the increaseddrage
cache capacities. Therefore, we can expect our approaeheeein
more effective in the future.

We next study the sensitivity of our savings to the data chunk
size. Recall that the default chunk size used in our experisneo
far was 64KB. One can observe from Figure 14 that, as expected
decreasing chunk size improves the improvements brougbtiby
approach. This is because a smaller data chunk size typlealiis
to smaller iteration chunks, which in turn results in a finearg-
lar clustering by our algorithm (Figure 5). While this retsmloti-
vates for small data chunk sizes, we should mention that adlem
chunk size also increases overall compilation time. Fompie,
we observed that, as we move from 64KB to 16KB, the overall
compilation time increased by more than 75%. An importasidr
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Figure 14: Results with different data chunk sizes.

from Figure 14 is that the chunk size can play an importar irol
determining the magnitude of our savings, and therefosejatue
should be selected carefully. Determining the optimum dhatank
size for a given (application, storage cache topology) igdir our
future research agenda.

5.4 Discussion

In this section, we discuss three issues related to our pempo
mapping strategylocal scheduling, handling data dependencies,
andhandling multiple loop nests at the same time.

We first present an enhancement to our baseline implememtati
given in Figure 5. Recall that our approach discussed sodar p
titions the set of iterations to be executed in parallel iteoation
chunks and assigns a number of chunks to each client nodéheith
goal of improving the performance of the underlying storegehe
hierarchy. However, this strategy does not say anythingitathe
order in which the iteration chunks assigned to a client neiile
be executed (in the inter-processor scheme used so far wetege
them randomly). However, we note that this order can alscenaak
difference in performance. Once the iteration chunks asigyasd
(mapped) to client nodes, for each client node, we can redhee
iteration chunks assigned to it to maximize data reuse. e no
that, after this reordering, the iteration chunks will béextuled
to execute in the resulting order. Therefore, one can ustethes
“re-ordering” and “scheduling” interchangeably.

In reordering the iteration chunks, our main metric is thenk
level data reuseThis reuse concept however ha® dimensionfn
this scheduling step. First, for each client, we want to et iter-
ation chunk to be scheduled to reuse as much data as postible w
the currently-scheduled iteration chunk (vertical dimens And,
second, we want the iteration chunks scheduled for the skinats
different clients to reuse as much data as possible amony(thar-
izontal dimension), so that we can take advantage of shaetes.
Figure 15 gives the sketch of our scheduling strategy. Titerate,
this scheduling algorithm is applied after our iteratiostdbution
algorithm finishes.

We start by noting that Hamming Distance is a measure that can
be used to schedule the iteration chunks such that the daték ch
reuse is improved. More specifically, by scheduling theaiien
chunks of a client node such that the tags of the contigumcsigd-
uled iteration chunks have the least possible Hamming Bista
data chunk reuse can be further improved. Our proposed gkhed
ing algorithm is given in Figure 15. The algorithm starts byt
considering each level in the storage cache hierarchyiohdiy.



Input :
Iteration clusterC, = {y™a,~%, ... 42 WWo <z <k
k is the total number of client nodes
I* C,, is the cluster of iteration groups assigned to client nodé
« = 1/O level cache reuse factor
3 = Client node cache reuse factor
Output :
Scheduled Iteration Chunk S&(C . ={y"?
Algorithm :
For Each I/O cache leved T’
n = Number of client nodes sharing the 1/O level ca&tiE
j = First client node under 1/O level cacl$&l’
SC; ={},forallj <i<j+n
s; =0,forallj<i<j+n
/* s; is the total number of iterations i6iC'; */
While 3C}, such thatC, # 0
For Eachi fromjtoj + n
If (C; == 0) Continue;
If (i == j andSC; == ()
SC; = SC; +~"a,s; = s; + S(v*a), such that,
A, € C;,and,A, has the least number of “1” bits
ElseIf ¢ > j andSC; == )
5C; = SC; + M, 50 = 55 + S(v*)
suchthater X (A, ® Ay) is maximum
where,'yAI = Last element added t6C; _ 1
ElseIf ¢ == j andSC; # 0)
While s; < sj4n
SC; = SC; ++"a, s; = s; + S(v2e)
suchthat8 x (Ag @ Ay) is maximum
where,'yAy = Last element added t6§C';
Else
While s; < s;—1
SC; = SC; + ™4, s; = s; + S(v*a), such that
a X (Ag @ Az) + B X (Aq @ Ay) is maximum
where,'yAI = Last element added t6C; _ 1
and,y*v = Last element added §C;
ReturnSC,V0 < x < k

Figure 15: Cache hierarchy-conscious iteration schedulig al-
gorithm.

Later, an iteration chunk schedule is computed for eachtaiede
considering the I/O nodes. The iteration chunk that acsetse
least number of data chunks is selected and scheduled fdéirghe
client node. For the other client nodes, iteration chunkcilias
the minimum Hamming Distance with the last scheduled graup o
the previous client node is scheduled. We note here thatlita ¢
nodes are considered progressively from the first to thedast-
der. We start the second round of scheduling after the fitgido
of scheduling is finished for all the client nodes in order. tiUn
all the iteration chunks are scheduled, these schedulimgdare
repeated. For all other rounds of scheduling after the finshd,
while scheduling for a given client node, we select the ttera
chunk that maximizes both the dot produe} ith the last sched-
uled iteration chunk on this client node as well as the dotipco
with the last scheduled iteration chunk on the previousitl®de.
This way, the data chunk reuse is improved at the client nexdsl |
as well as the 1/O level. Two tunable parametergnds, are used
to weigh the dot products. Therefore, to schedule an iratiunk
for a client node, we consider its left and upper neighbaodi¢ated
by dotted circles in Figure 16). For instance, we piék (circled)
to be scheduled next for client node 1 in Figure 16. This isbee
selectingy™" maximizes the value x (A  A.)+8x (Aq ® Ac).
In our example code fragment discussed earlier in Sectib(sée
Figure 6), after the clustering and assignment steps, thedsiting
algorithm decides the scheduling order. This final schefhrlall
the client nodes is shown in Figure 17.

One of the major concerns in such a scheduling scheme is the
balance of the iteration counts. If the iteration countsraseap-
proximately balanced, the cache improvements may take @lnétre-
fore, in order to balance the iteration counts, while sclindwon

any given client node, we go on scheduling iteration chuskerg
the number of iterations assigned to this client node is lefpua
or just exceeds the number of iterations assigned to thequev
core. The balance is maintained in a circular fashion. Tbese
at the beginning of a round, iteration count of the first dlieode
is matched with the iteration count of the last client nodehie
previous round.

Figure 18 gives the improvements in L1 miss rates, /O laé=nc
and overall execution latencies when this scheduling @hguaris
applied after the proposed loop distribution scheme (tliltiadal
improvements brought by the scheduling algorithm in L2 aBd L
miss rates were limited — less than 3% each). In these expetin
the values of thex and 8 parameters discussed above are both set
to 0.5 (that is, equal weights). We observe from the first wwiy
which gives normalized L1 miss rates, that this schedulinat-s
egy generates about 27.8% reduction (on average) in L1 atiss r
(compared to the original version), and as a result, the orger
ments in I/O latency and total execution time jump to 30.7% an
21.9%, respectively.

Although not presented here in detail due to space concemns,
also performed experiments with different values for ¢thand 3
parameters. We observed that giving them equal values aener
the best results we were able to collect. Specifically,ig too big,
the potential locality in the shared caches are missed, fandd
too big, L1 locality starts to suffer. Again, studying thegacts of
these parameters in detail is in our future research agenda.

We next discuss how our scheme is extended to handle loops
with data dependences. In other words, when the user/cempil
decides to execute a set of iterations that have cross-lepprd
dences between them. In the cache hierarchy aware loop itera
tion assignment scheme described so far, we restrictectloass
to fully-parallel loops, that is, loops in which there are loop-
carried dependencies across iterations. However, in cakes
distributing the loop iterations with dependencies coulddhigh
benefits, our scheme can be extended by distributing theitlecp
ations with dependencies across available processorsnand ey
correctness through inter-processor synchronization.

There are at least two ways of extending our approach to andl
loops with dependencies. First, we can ensure that theecingt
step clusters all iteration chunks with loop carried degeeies to-
gether in a single cluster. This can be achieved by assogiat
infinite edge weight between iteration chunks that have midge-
cies between them. This ensures correctness without titefoee
inter-core synchronization. However, conservativelystduing all
dependent iteration chunks together may reduce the beogfits-
allelism in iteration chunk execution, and therefore, ipigroach
may not be very effective when we have large number of depen-
dencies. Alternatively, the clustering step can treat lcapied de-
pendencies between iteration chunks as normal data blackgh
Therefore, in the presence of dependencies across loapidtes,
the data sharing resulting from these dependencies is atsmbfor
by the edge weights used to quantify the sharing of data lestwe
the iteration chunks containing the respective iteratigmevided
they are different). Therefore, we can use the same cacharhie
chy aware loop iteration distribution algorithm descrilzmbve to
improve data sharing. However, to ensure correctness,eperd
dencies can be detected during the local reorganizatioedsting
step (explained above in this section) and corresponditeg-aore
synchronization directives can be inserted to respectépemtlen-
cies. Our current implementation employs this secondrstere.

Finally, it is easy to extend our approach to handle multipdg
nests at the same time. Since our approach uses polyhegieatal
(which works with sets and operations on sets), it does ndt ma
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Figure 16: Scheduling order of itera- Figure 17: Final schedule after all  Figure 18: Improvements in L1 miss rates.
tion chunks. levels of clustering.

ter where (which loops) individual iterations are comingrfr. If cache space so as to reduce the negative interference f5dR]|
we want to handle, say, two nests together, we simply fGreet Wong and Wilkes explore the exclusive cache policies agies
(described earlier) to contain iterations of both the nesis the prevalent inclusive ones. Bigelow et al. consider the cetepbath
rest of our approach does not need any modification. Howeser,  followed by data, from client’s cache, through network, ¢over
observed during our experiments that, most of existing taiae cache. Further they propose specific cache managemeniepolic
(more than 80%) are intra-nest rather than inter-nest. efbss, such that each job gets the performance it requires [3]. @ur a

an extension of our approach to handling multiple neststhaye proach also targeted multi-level storage cache hierasdhieis di-
brought only an additional 3% improvement in cache hits in ou rected by the compiler. Therefore, our approach can comgaém

application codes. these approaches by shaping the data access patterns pplihe a
cation layer.
6. RELATED WORK There have also been efforts targeting performance isolatnd

QoS aspects of shared storage caches [22, 34, 17, 46, 3%xFor
ample, Goyal et al. note that due to sharing of resources ghermo
storage systems, applications with widely different Qo§unes-
ments interact in such shared resources. They further peopo
scheme to guarantee QoS in such systems [22]. Ko et al.edblat
performance in order to provide service differentiationshrared
storage cache system [34]. Forney et al. propose storageeaw
algorithms that partition the cache with one partition pevide
[17]. Thiebut et al. propose to partition fully associatilisk cache
into disjoint chunks, sizes of which are decided by the psede-
cality [46]. Mattson also proposes a partitioned cache forave
response time [39]. These approaches mainly use cachéquarti
ing in order to reduce cache conflicts in the shared storageeca
Our approach, however, tried to reduce cache conflicts bypmgp
computations to appropriate processors. In addition, apping
strategy improves cache locality.

Prefetching and its effects on shared storage caches hswe al
been extensively studied. To prevent prefetched pages ffimm
ing evicted before being used, Li and Shen propose a new mem-
ory management scheme that handles prefetched pageuiifer
from the normally fetched ones [37]. Ding et al. argue thgidal
file-level prefetching cannot fully realize the benefits affetching
and therefore propose to perform prefetching directly etekiel of
disk layout [15]. Gill and Modha propose a self-tuning, loveo
head and locally adaptive cache management policy thatngiyna
cally and adaptively partitions the cache space amongsesgigl
and random streams [20]. Kimbrel et al. study the effecteotsl
combined prefetching and caching strategies for systertimsnail-

There have been prior research efforts aimed at optimizifig d
ferent aspects of storage cache performance such as oWérall
response time and QoS. We discuss these research effohsin t
section.

Caching is one of most frequently used ways of improving 1/0
performance, and there has been significant past work im¢batd
[21, 32, 52, 9, 26]. Gniady et al. propose a pattern basedbuff
caching, in which they use program-counter based predittich-
nigue to correlate the I/O requests with program context [Rim
et al. show that commonly used LRU chunk replacement scheme
does not exploit reference regularities such as sequentéloop
references and consequently propose a unified buffer maneage
scheme which exploits such regularities [32]. Jiang etrappse a
client-directed, coordinated file chunk placement andasghent
protocol which takes into account the locality of file chuksion-
uniform strength [28]. They also proposed a protocol foeetf/e
coordinated buffer cache management in a multilevel ca@rar
chy which reduces chunk redundancy and improves locality. [2
Chen et al. propose a eviction-based placement policy foeto
level storage caches instead of the traditional accessdhalace-
ment policy [9]. Jiang et al. present and evaluate an impgloes-
sion of CLOCK replacement policy, which keeps track of atedi
number of replaced pages [26]. Zhou et al. show that LRU re-
placement algorithm is not suitable for the second leveheamnd
propose a new multi-queue cache replacement algorithndi@ssl
the second level buffer cache [52]. While these approadieses
certain degree of performance improvement, they are mémnly

cused on a single layer of cache hierarchy whereas our agiproa tiple disks [33]. Gill and Bathen study sequential prefeighand

aims for multi layers. explore adaptive asynchronous algorithms [19]. Li et adppse a

To handle multi-level cache hierarchy efficiently, severathe : ; : . -
sequential prefetching and caching technique to improgeehd-
management schemes have been proposed [50, 49, 18]. Yadga.Elhead cache hit rate and the overall system response tifheJ38
et al. propose two storage cache management schemes tb targ

multi-level cache hierarchy. The first local scheme operatethe Qé\’.ork |sdd|fferent fr(r)]m t_hese prlo:jstuches,l_as _vvehexploreﬁmm:lel 4
local client and tries to save the most valuable chunks iheas- Irected strategy that improves data locality in the ¢ xnulti-

. i level storage cache hierarchies. There have been a largbenum
ing the access profile. On the other hand, global scheme lses t

same access profile information of the clients to managehtiwed of compiler-based works on blocking/tiling for multi-ldveaches



(e.g., [5, 29, 48)), but they are mainly intended for cachedients
and servers. Recently Kandemir et al. [30] propose a compile
based approach to optimize cache behavior in the I/O senfgr o
To the best of our knowledge, this is the first work that eslestm-
piler’s support in optimizing the storage cache behaviomfiolti-
level hierarchies. Our proposed scheme is fully automateddrary
flexible in that it can work with any storage cache hierarciweg

as input.

7. CONCLUDING REMARKS AND FUTURE

WORK

The main contribution of this paper is a compiler directduesoe
that distributes loop iterations automatically acrossclient nodes
of a parallel system that employs multi-level storage cddbear-
chy. The main goal of this distribution is to maximize thefper
mance of the underlying cache hierarchy. We tested thisnsehe
using a set of eight I/O intensive applications and found ithis
able to improve the 1/0 performance of original applicasidsy
26.3% on average, and this leads to an average of 18.9% i@auct
in overall execution latencies of these applications. Oque&-
ments also showed that the proposed scheme performs sagutlijic
better than a state-of-the-art data locality optimizasoheme, and
performs consistently well under different values of oujonax-
perimental parameters. We also presented an enhancemant to
baseline implementation that performs local schedulingeathe
loop iteration distribution is performed. We observed theten
using this enhancement, the improvements in I/O latencytend
tal execution time jumped to 30.7% and 21.9%, respectiv@iyr
future work involves integrating our storage cache conscioop
iteration distribution strategy with different loop-ldvgaralleliza-
tion techniques. Work is also underway in extending the psep
approach to handle loops that contain irregular data agegssrns.
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