
Distributed Object Storage Rebuild Analysis
via Simulation with GOBS

Justin M. Wozniak, Seung Woo Son, and Robert Ross
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL, USA

{wozniak,sson,rross}@mcs.anl.gov

Abstract—Community acceptance of the object storage device
model as represented by standards and use in existing HPC
filesystems has enabled the development of more complex data
storage systems. Object replicas may be placed in a variety
of ways to obtain various properties, such as scalable lookup
times, concurrent access to multiple objects, and efficientre-
organization. The construction of a fully functional object-based
parallel filesystem is an enormous effort, so evaluation of potential
techniques and algorithms is typically performed by analysis or
simulation. In this work, we present an extensible simulator
designed to evaluate multiple object placement models under
fault-induced rebuilds. We use results obtained by the simulator
to weigh the benefits of simple object replica placement models.

I. I NTRODUCTION

Object-based storage systems form the basis of many par-
allel and distributed filesystems in use and under development
today. A growing variety of schemes has been proposed to
place and locate objects on large storage systems of up to
1,000 object servers. Beyond the challenges inherent in the
storage of ever-growing quantities of data, storage systems de-
signed for use by massively parallel filesystems pose particular
challenges for object storage placement algorithms.

Object placement algorithms approach the problem of stor-
age management as framed by multiple requirements. The
design evaluation of an object placement scheme typically
includes the following:

• Lookup complexity: Obtaining the server responsible for
a given object identifier must be very fast.

• Flexibility: Near-optimal behavior under addition and
removal of subclusters is a typical performance goal.

• Redundancy: Rebuilds after the loss of a disk or server
node should be computationally simple and near-optimal
in terms of bandwidth consumed.

High-performance storage systems in the 2015-2018
timescale are expected to contain over 1,000 servers and tens
of thousands of disks, serving an exabyte of data or more [1].
Because of the increasing capacity of low-cost drives, repairing
redundancy schemes will consume a significant amount of
bandwidth on a daily basis. In this work, we use simulation
to investigate the behavior of storage systems at this scale.
Additionally, we examine the amount of time and bandwidth
used by the rebuild process, and demonstrate the impact of

concurrency during rebuilds. We also consider the potential
for data loss under varying system characteristics.

In practice, an exascale filesystem will nearly always be
in a state of rebuild because of a partial failure such as the
loss of a component hard disk. Consider an example 960 PB
storage system consisting of 32,000 disk drives, each at 30
TB. Using a responsible estimate of 10% disk mortality per
year [2], the system would unexpectedly retire an average of
8.76 disks per day, containing 263 TB of redundant data.
Restoring the nominal level of redundancy would require a
perpetual network commitment of 3.125 GB/s. Here, we use
coarse-grained simulation to investigate the impact of this
quantity of rebuild work on the overall filesystem.

Traditional rebuild methods wait for the administrator to
insert a replacement disk, then restore the nominal redundancy
level by moving data to the new disk. This technique is limited
by response of the human activity and the write bandwidth
of the single new disk. This delay in returning to the steady
state expands thewindow of vulnerability[3] in which data
loss may occur as a result of subsequent faults. The window
can be shortened by improving rebuild times through the
application of an aggressive fault response in which disk space
is dynamically allocated for replacement object replicas and
objects are concurrently transferredto multiple new locations.
This aggressive approach may be used in many existing
object placement schemes but consumes additional transfer
bandwidth when moving replicas in the absence of disk and
when transferring objects to the new disk when it is inserted.

This approach, when considered in the context of multiple
faults over a long time period, results in complex behav-
ior that may be investigated by coarse-grained simulation.
For this purpose we developed the General OBject Space
(GOBS) simulator. As described below, this simulator allows
the rapid evaluation of various combinations of algorithmsand
techniques used by parallel filesystems, including file/object
generation, redundancy schemes, object placement, rebuild
mechanisms, and workload impact. GOBS uses an interface-
driven approach that allows the researcher to mix and match
components and run scenarios in an event-driven model.

The remainder of this document is organized as follows.
In the next section, we note existing object replica placement
schemes and filesystem simulators. In Section III, we describe
the aspects of the simulated system we intend to model and



measure and describe how this is carried out with the simu-
lator. In Section IV, we investigate basic behavior of replica
placement schemes and measure the data loss characteristics.
In Section V we summarize our findings and in Section VI
describe future work.

II. RELATED WORK

Recent years have seen a significant number of new algo-
rithms and systems for object based storage. In this section,
we review some of them and their simulations.

Hashing has been widely used for data placement as it
eliminates the cost of maintaining global maps for locating
data items, including replicas. Distributed hash tables (DHTs)
provide an interesting background for object placement al-
gorithms. While most of the schemes considered here are
literally DHTs, the term typically implies systems designed
for Internet-based storage systems, with correspondinglylarge
scale and low reliability of individual components. Notable
file systems built on DHTs including PAST [4] and FARSITE
[5].

Another commonly used replica placement scheme ischain
data placement [4], [6], [7], which first chooses a primary
node through any data placement scheme and then places
replicas on a server adjacent to the primary, that is, an object
O with identifierx is placed on thek servers with identifiers
closest tox; k is commonly 2 or 3. The chain placement
scheme is used not only in peer-to-peer systems, such as PAST
and CFS, but also distributed file and storage systems, such
as Petal [8], chained declustering [6] and Boxwood [9]. To
balance the workload in case of failure, chained declustering
first determines the active segments of the primary and replicas
of each data block and sends data accesses to these partitions
in such a way that both normal and failure-mode operations
are fully balanced [6]. In Boxwood [9], the storage replication
is implemented through replicated logical devices.

While chaining places replicas in a correlated manner, it
can suffer from load imbalance and poor failure recovery
time. Recently proposed distributed storage systems, suchas
Ceph [10] instead use a pseudo-random replica placement
algorithm. Ceph places objects using the underlying Reliable,
Autonomic Distributed Object Store (RADOS) [11], which
replicates objects using the Replication Under Scalable Hash-
ing (RUSH) [12] algorithm. Kinesis [13] achieves balanced
utilization of storage and network resources using three design
features: partition of servers intok disjoint segments; freedom
of choice to allocate a server to store and retrieve data based on
current system availability; and independent, pseudo-random
spread of replicas in the system. This technique provides
local lookups, and its replicas are pseudo-randomly distributed
through the address space so that the read load during a rebuild
is well distributed.

Presentations of new data placement algorithms often
include simulation results based on custom-built software.
PIOSIM [14] simulated the interaction of MPI-IO strategies
with parallel filesystems. Object-based parallel filesystems
have also been simulated. For example, the user interaction

Fig. 1. Simulated object storage cluster.

Fig. 2. Abstract overview of GOBS simulator components.

with the Parallel Virtual Filesystem (PVFS) has been simulated
in RAID 1+0 [15]. More recently, server-side communication
was modeled from a performance perspective [16].

III. O BJECT PLACEMENT SIMULATION

The GOBS simulator allows for the investigation of storage
performance and reliability characteristics, as described in
the Introduction. In particular, it models the behavior of the
storage network at a high level and is generally concerned
with the emergent characteristics of object placement and
movement for large numbers of large objects in a cluster of
on the order of 1,000 storage nodes.

The simulated system is represented in Figure 1. At the
top are client operations such as the insertion and locationof
objects, as well as simulated read/write operations, sincethe
object of our investigation is ultimately on user experience
with the simulated system. Next, the global management
infrastructure is represented, included the object placement
mechanism, rebuild management, and metadata such as filesys-
tem abstractions. The GOBS simulator does not model control
operations or metadata management explicitly. At the base,the
collection of storage nodes is modeled.

The core variable modified in our studies is the replica
location algorithm. This mechanism maps an object identifier
to a set of storage nodes on which it is to be replicated. The
simulator provides an interface-oriented design that enables



Fig. 3. Rebuild load maximum when replica is pulled from primary node.

rapid prototyping of new placement algorithms. GOBS thus
provides a framework for many object/node addressing models
that is general enough to prototype many algorithms.

Other simulator components are represented in Figure 2.
At the top level are the desired outputs, including functional
statistics, logs, and graphical plot output. The central mech-
anisms of the simulator include the Workload Driver, which
models user operations, the Rebuild Engine, which models
fault-triggered operations, and the fault model based on mean-
time-to-failure estimates (MTTF) as modeled by an exponen-
tial distribution. At the bottom are the extensible components,
including the file/object generation mechanism, and the replica
placement schemes. Use cases may be generated using simple
techniques or by interpolating complex distributions suchas
those given by published studies [17].

IV. SIMULATOR RESULTS

In this section, we demonstrate the utility of the simulator
as applied to the replica chaining method. First, we use the
simulator to perform rebuilds after a storage fault and identify
the concurrency available under algorithmic variations. Next,
we run the simulator over a long timescale and produce overall
rebuild traffic patterns and the typical traffic pattern local to a
rebuild, again under algorithmic variations. Then, we showthat
the simulator can estimate user data object loss rates, given a
per-disk MTTF estimate and a placement algorithm.

A. System Model

The system modeled in this study is designed as follows.
The basic storage element is the storage server node, which
has an address in the object address space. Each node contains
multiple local RAID arrays of 30 TB disks. The unit of
failure is a whole RAID array; individual disk failures and
the performance impact of the resulting local RAID rebuild is
not modeled. RAID arrays fail in accordance with the basic

Fig. 4. Rebuild load maximum when replica is pulled from random node.

Fig. 5. Rebuild load maximum when replica is pulled from lastnode in
replica chain.

reliability formula [18]. Disks read and write data at 400
MB/s, the device transfer rate is the disk rate multiplied by
the performance boost offered by RAID. The whole system
stores approximately 1 EB (exabyte) of user data objects.

The placement algorithm considered here is a chain place-
ment algorithm. TheNEAREST algorithm placesR replicas
of objectx on the nodessr such that|x − sr| is minimized.
The XOR algorithm placesR replicas such thatx xor sr is
minimized [5]. Upon the loss of a RAID array, each node
applies the placement algorithm to determine which objects
that it holds must be copied to restore the nominal redundancy
level. Replicas are then copied in continuous time; a given
RAID array is involved in only one copy at a time. The single
closest server tox is theprimary node forx, the other replicas



Fig. 6. Rebuild load maximum when replica is pulled from primary node.

aresecondaries.

B. Rebuild Hot Spots

Figures 3, 4, and 5 diagram the bottleneck in rebuild
concurrency under both algorithms at redundancy levelsR = 3

andR = 4. In these cases, the simple∼1 EB filesystem is
deployed onto the storage network, and the loss of a single
RAID array is simulated. For each node count on thex-
axis, the fraction of the rebuild workload (reads and writes)
performed by the maximally loaded server node is reported,
averaged over 10 runs. The rebuild response is initiated
immediately upon the (instantaneous) global detection of the
fault; the system does not wait for the insertion of a new disk.
In Figure 3, the replica is always copied from the primary
node, simulating a case in which the system prefers to control
the consistency of the contents of each object at the primary.
The case in which a replica may be copied from any secondary
node is considered in Figure 4, and the case in which the last
replica in the chain must be the replica source is covered in
Figure 5. Note that in these cases the local storage layout and
object count does not affect the result.

Although each case shows considerable variation because
of the varying circumstances of the rebuild, available rebuild
concurrency in the chaining algorithm is limited by the number
of replicas. The objects involved are tightly clustered in the
address space, constraining the rebuild process to a small
number of nodes.

C. Rebuild Distributions

Figures 6, 7, and 8 diagram the same basic fault conditions
as the previous series of figures but show the load performed
by each node involved in the rebuild. Only the system with
600 server nodes is considered. The nodes are ordered by load
level; the load fraction for node 0 is the average workload
fraction performed by the most heavily loaded node, node 1

Fig. 7. Rebuild load maximum when replica is pulled from random node.

Fig. 8. Rebuild load maximum when replica is pulled from lastnode in
replica chain.

is the next heavily loaded node, etc., until no more work is
distributed to server nodes.

As shown, the use of additional replicas increases the ability
of the system to distribute work to more nodes. The slope
of the workload curves indicates that some work may be
distributed but that the central nodes (node 0, etc.) will act as a
bottleneck and cause a “long tail” effect. Thus, the redundancy
level will be restored piecemeal over time. The impact of
this differentiated concurrency is considered in the following
experiments.

D. Rebuild Traffic

We now investigate the impact of the non-trivial rebuild
completion behavior on long timescale simulations in the
presence of potentially overlapping storage faults. As shown in



Figure 9, the system of interest to this investigation is regularly
in a state of replica repair. This figure diagrams a 1 EB storage
system serving data from nodes with 4 RAID arrays, each
configured as RAID-5 (4+1). The individual disk MTTF was
10 years. The mean time to disk reinsertion was 1 day.

In Figure 10, we show average available rebuild concurrency
in the hours following the fault for this system. The two
configurations include a SAN-like system (“san”) with 8 RAID
arrays per node configured as RAID-6 (8+2) with 2 replicas
per object (R = 2) and a cluster-like system (“target”) with 4
RAID arrays per node configured as RAID-5 (4+1). We ran
the system in “active” response mode (distributed sparing),
in which the system immediately started making copies in
response to a fault, and “latent” response mode, in which
the system waited for the faulty disk to be replaced before
scheduling replica copies.

As shown, the active mode makes many additional copies
compared to the latent mode. This includes copies that are
made in direct response to the fault in addition to copies to
the new empty disk, as well as intermediate copies that may
be made as a result of subsequent faults. The active mode is
shown to be capable of quickly making use of high object
transfer concurrency to reduce the window of vulnerabilityat
the cost of greater network and disk load.

Additionally, there is a notable correspondence between
the workload distribution and the ability of the system to
sustain concurrent data transfers over time. In the chaining
scheme used here, the nodes that are peripherally involved
in the rebuild run out of work to do, so the concurrency
level decreases over time. In a system with many consecutive,
overlapping disk failures, this behavior could have a significant
effect on data loss.

E. Potential for Data Loss

In this final case, we look at the ability of the simulator
to estimate the number of user data objects lost per year
given an algorithm and a per-disk MTTF. In this test, we

inserted the user objects and applied the methods from the
previous subsection, varying the per-disk MTTF over a range
of unrealistically low MTTF values. The quantity of data loss
was measured on a per-object basis for the one year runs.

As shown in Figure 11, data loss is unlikely unless the per-
disk MTTF is set to an extremely low value of less than one
year. Somewhat surprisingly, the “active” method loses more
objects than the “latent” method. It is difficult to generalize
about such rare cases even with the traces from the simulator
but it may be the case that the extra work caused by the
“active” method has the potential to overload the servers at
certain critical times.

V. SUMMARY

As object placement routines become more complex and
storage systems add ever more component devices, the need
to analyze the behavior of the overall system becomes more
pronounced. To address this need, we have presented the
design of a coarse-grained simulator to quickly evaluate the
ability of an algorithm and its variations on a simulated large
scale filesystem. w demonstrate the simulator’s ability to ex-
tract meaningful results including limits to concurrency during
rebuilds (§IV-B), work distribution during rebuilds (§IV-C),
rebuild-centered traffic patterns (§IV-D), and the data loss
rate (§IV-E).

The simulator was used to demonstrate multiple aspects
of rebuild behavior for the chaining technique. During a
rebuild, the workload distribution was graphically related to
the available concurrency over time. In the case of replica
chaining, preliminary simulation results here covering the
rebuild strategy aggressiveness trade-off show that objects can
be rapidly replaced reducing the window of vulnerability for
data loss at the cost of much more network traffic, (although
this did not help in the extreme case). Additionally, we
demonstrate that a large network of relatively light-weight
object servers that maintain high redundancy levels through
distributed object placement in addition to local RAID can

Fig. 9. Long timescale rebuild traffic report.



Fig. 10. Average rebuild concurrency over time.

Fig. 11. Data loss rate for varying (extremely low) per-diskMTTFs.

produce negligible object loss rates if disk faults occur at
reasonable (MTTF> 1 yr.) rates.

VI. FUTURE WORK

This work does not cover all the features of the simulator,
and the software and its results are preliminary. Additional
features not presented in this report include user interaction
with the storage system and evaluation of object placement in
the context of parallel filesystems. The simulator can replay
traces of user workloads as they interact with storage rebuild
workloads, but this has not yet been applied to real-world
cases.

The utility of the simulator and its results stand to be
improved in multiple ways. First, the network model could
be improved by making use of a congestion model, preferably
above the packet level. Second, it could be integrated with
a more complex local storage model that provides useful,
coarse-grained performance approximations for disks, RAID
devices, and the local object storage service. Third, additional

reference implementations of other well-known placement
algorithms should be produced so that the community can
run the various algorithms with modifications on simulated
systems. The software will be released under an open source
license.

VII. A CKNOWLEDGMENTS

This research is supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Dept.
of Energy under Contracts DE-AC02-06CH11357. Work is
also supported by DOE with agreement number DE-FC02-
06ER25777.

REFERENCES

[1] Peter Kogge et. al., “Exascale computing study: Technology challenges
in achieving exascale systems,” DARPA Information Processing Tech-
niques Office, 2008.

[2] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso, “Fail-
ure trends in a large disk drive population,” inProc. USENIX Conference
on File and Storage Technologies, 2007.

[3] Mary Baker, Mehul Shah, David S. H. Rosenthal, Mema Roussopoulos,
Petros Maniatis, T. J. Giuli, and Prashanth Bungale, “A fresh look at
the reliability of long term digital storage,” inEuroSys, 2006.

[4] Antony Rowstron and Peter Druschel, “Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage utility,”
SIGOPS Operating System Review, vol. 35, no. 5, 2001.

[5] Petar Maymounkov and David Mazieres, “Kademlia: A peer-to-peer
information system based on the XOR metric,” inProc. Workshop on
Peer-to-peer Systems, 2002.

[6] Hui-I Hsiao and David J. DeWitt, “Chained declustering:A new
availability strategy for multiprocessor database machines,” in Proc.
International Conference on Data Engineering, 1990.

[7] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica, “Wide-area cooperative storage with CFS,” inProc. Symposium
on Operating Systems Principles, 2001.

[8] Edward K. Lee and Chandramohan A. Thekkath, “Petal: Distributed vir-
tual disks,” inProc. Architectural Support for Programming Languages
and Operating Systems, 1996.

[9] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A.
Thekkath, and Lidong Zhou, “Boxwood: Abstractions as the foundation
for storage infrastructure,” inProc. Operating Systems Design and
Implementation, 2004.

[10] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn, “Ceph: A scalable, high-performance distributed file
system,” inProc. Operating Systems Design and Implementation, 2006.

[11] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn,
“RADOS: A scalable, reliable storage service for petabyte-scale storage
clusters,” inProc. Petascale Data Storage Workshop, 2007.

[12] R. J. Honicky and Ethan L. Miller, “A fast algorithm for online
placement and reorganization of replicated data,” inProc. International
Parallel and Distributed Processing Symposium, 2004.

[13] John MacCormick, Nicholas Murphy, Venugopalan Ramasubramanian,
Udi Wieder, Junfeng Yang, and Lidong Zhou, “Kinesis: A new approach
to replica placement in distributed storage systems,”ACM Transactions
on Storage, vol. 4, no. 4, 2009.

[14] Rajive Bagrodia, Stephen Docy, and Andy Kahn, “Parallel simulation
of parallel file systems and I/O programs,” inProc. Supercomputing,
1997.

[15] Michael Anthony Speth, “The parallel file system simulator analyzing
RAID-1+0 redundancy schemes,” M.S. thesis, Clemson University,
2005.

[16] Philip H. Carns, Bradley W. Settlemyer, and III Walter B. Ligon, “Using
server-to-server communication in parallel file systems tosimplify
consistency and improve performance,” inProc. Supercomputing, 2008.

[17] Shobhit Dayal, “Characterizing HEC storage systems atrest,” Tech.
Rep., Parallel Data Laboratory, Carnegie Mellon University, 2008.

[18] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz,
and David A. Patterson, “RAID: High performance, reliable secondary
storage,”ACM Computing Surveys, vol. 26, no. 2, 1994.


