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Abstract—Community acceptance of the object storage device concurrency during rebuilds. We also consider the potentia

model as represented by standards and use in existing HPC for data loss under Varying system characteristics.

filesystems has enabled the development of more complex data In practice, an exascale filesystem will nearly always be

storage systems. Object replicas may be placed in a variety . . . .
of ways to obtain various properties, such as scalable looku " @ state of rebuild because of a partial failure such as the

times, concurrent access to multiple objects, and efficiente- loss of a component hard disk. Consider an example 960 PB
organization. The construction of a fully functional objed-based storage system consisting of 32,000 disk drives, each at 30
parallel filesystem is an enormous effort, so evaluation ofgtential  TB. Using a responsible estimate of 10% disk mortality per

techniques and algorithms is typically performed by analys or year [2], the system would unexpectedly retire an average of

simulation. In this work, we present an extensible simulato ; y
designed to evaluate multiple object placement models unde 8.76 disks per day, containing 263 TB of redundant data.

fault-induced rebuilds. We use results obtained by the simiator ~ Restoring the nominal level of redundancy would require a
to weigh the benefits of simple object replica placement mode  perpetual network commitment of 3.125 GB/s. Here, we use

coarse-grained simulation to investigate the impact o$ thi
guantity of rebuild work on the overall filesystem.
Traditional rebuild methods wait for the administrator to

Object-based storage systems form the basis of many HQP—ert a replacement disk, then restore the nominal rechayda
allel and distributed filesystems in use and under developméVel by moving data to the new disk. This technique is lichite
today. A growing variety of schemes has been proposed Y response of the human activity and the write bandwidth
place and locate objects on large storage systems of upP{dhe single new disk. This delay in returning to the steady
1,000 object servers. Beyond the challenges inherent in fH@t€ €xpands theindow of vulnerability[3] in which data
storage of ever-growing quantities of data, storage systien loss may occur as a re_sult of .subsequ.ent faults. The window
signed for use by massively parallel filesystems pose pdatic €@ be shortened by improving rebuild times through the
challenges for object storage placement algorithms. gpphcauoln of an aggressive fault response |n.wh|ch d!sacep

Object placement algorithms approach the problem of stdr- _dynam|cally allocated for replacement object replicad a

age management as framed by multiple requirements. T(P.}%]_ects are co_ncurrently transferréd multiple new Iocatlon_s. _
Nis aggressive approach may be used in many existing

design evaluation of an object placement scheme typicai'l-%, L
includes the following: object placement schemes but consumes additional transfer

i o ) bandwidth when moving replicas in the absence of disk and
« Lookup complexity: Obtaining the server responsible foryhen transferring objects to the new disk when it is inserted
a given object identifier must be very fast. This approach, when considered in the context of multiple
« Flexibility: Near—optlme_ll behaylor under addition and,its over a long time period, results in complex behav-
removal of subclusters is a typical performance goal. jor that may be investigated by coarse-grained simulation.
« Redundancy: Rebuilds aft_er the Io_ss of a disk or SerVeEor this purpose we developed the General OBject Space
node should be computationally simple and near-optimghogs) simulator. As described below, this simulator atiow
in terms of bandwidth consumed. the rapid evaluation of various combinations of algorittand
High-performance storage systems in the 2015-201&chniques used by parallel filesystems, including filedobj
timescale are expected to contain over 1,000 servers asd tganeration, redundancy schemes, object placement, debuil
of thousands of disks, serving an exabyte of data or more [bjechanisms, and workload impact. GOBS uses an interface-
Because of the increasing capacity of low-cost drives,irgyga  driven approach that allows the researcher to mix and match
redundancy schemes will consume a significant amount edmponents and run scenarios in an event-driven model.
bandwidth on a daily basis. In this work, we use simulation The remainder of this document is organized as follows.
to investigate the behavior of storage systems at this .scdlethe next section, we note existing object replica placggme
Additionally, we examine the amount of time and bandwidtechemes and filesystem simulators. In Section Ill, we descri
used by the rebuild process, and demonstrate the impacttted aspects of the simulated system we intend to model and

|. INTRODUCTION



measure and describe how this is carried out with the simu- Client
lator. In Section IV, we investigate basic behavior of repli File/object I Paraliel ,ead,writel
placement schemes and measure the data loss characeristic EeEnipiaton

In Section V we summarize our findings and in Section VI
describe future work.

Object Pool

Global Management
” RELATED WORK [ Replica ] [ Rebuild ] [ Fault ] [Filesystem]
. ‘g Location Manager Notification Abstraction
Recent years have seen a significant number of new algo-
rithms and systems for object based storage. In this section Node Node Node
we review some of them and their simulations. [Objeds]{ — ] {omems]{ — ] {omems]{ — ]

Hashing has been widely used for data placement as it
eliminates the cost of maintaining global maps for locating
data items, including replicas. Distributed hash tableldTB) Fig. 1. Simulated object storage cluster.
provide an interesting background for object placement al-
gorithms. While most of the schemes considered here are

literally DHTSs, the term typically implies systems designe [ S ] [ Logging ] [ Plotting ]
for Internet-based storage systems, with correspondiagie
scale and low reliability of individual components. Notabl Workload) [ Simulator Fault Rebuild
file systems built on DHTSs including PAST [4] and FARSITE [ Driver ] [ Core ] ['"jection] [ Engine ]
[5].

Another commonly used replica placement schen@han Pérame_ters Layc_’Ut
data placement [4], [6], [7], which first chooses a primary [ggggﬁfﬁ] [ poplca ]
node through any data placement scheme and then places :
replicas on a server adjacent to the primary, that is, ancbbje [Gvgg;kr';?gn] [ Node Address ] [Reg'g:;gdtngS]

O with identifier z is placed on the: servers with identifiers
closest tox; k is commonly 2 or 3. The chain placement
scheme is used not only in peer-to-peer systems, such as PAST
and CFS, but also distributed file and storage systems, such
as Petal [8], chained declustering [6] and Boxwood [9]. To
balance the workload in case of failure, chained declusgeri
first determines the active segments of the primary andaaspli With the Parallel Virtual Filesystem (PVFS) has been sirteda
of each data block and sends data accesses to these partifid/RAID 1+0 [15]. More recently, server-side communication
in such a way that both normal and failure-mode operatiolgs modeled from a performance perspective [16].

are fully balanced [6]. In Boxwood [9], the storage replioat
is implemented through replicated logical devices.

While chaining places replicas in a correlated manner, it The GOBS simulator allows for the investigation of storage
can suffer from load imbalance and poor failure recoveperformance and reliability characteristics, as desdribe
time. Recently proposed distributed storage systems, aschthe Introduction. In particular, it models the behavior bét
Ceph [10] instead use a pseudo-random replica placemsturage network at a high level and is generally concerned
algorithm. Ceph places objects using the underlying Ridjabwith the emergent characteristics of object placement and
Autonomic Distributed Object Store (RADOS) [11], whichmovement for large numbers of large objects in a cluster of
replicates objects using the Replication Under ScalablhHaon the order of 1,000 storage nodes.
ing (RUSH) [12] algorithm. Kinesis [13] achieves balanced The simulated system is represented in Figure 1. At the
utilization of storage and network resources using threigde top are client operations such as the insertion and location
features: partition of servers infodisjoint segments; freedomobjects, as well as simulated read/write operations, sihee
of choice to allocate a server to store and retrieve datadb@se object of our investigation is ultimately on user experi&nc
current system availability; and independent, pseuddaan with the simulated system. Next, the global management
spread of replicas in the system. This technique providedrastructure is represented, included the object plarem
local lookups, and its replicas are pseudo-randomly Bisteid mechanism, rebuild management, and metadata such as-filesys
through the address space so that the read load during ddrebi@m abstractions. The GOBS simulator does not model control
is well distributed. operations or metadata management explicitly. At the libse,

Presentations of new data placement algorithms oftenllection of storage nodes is modeled.
include simulation results based on custom-built software The core variable modified in our studies is the replica
PIOSIM [14] simulated the interaction of MPI-1IO strategie$ocation algorithm. This mechanism maps an object identifie
with parallel filesystems. Object-based parallel filesyste to a set of storage nodes on which it is to be replicated. The
have also been simulated. For example, the user interactgmulator provides an interface-oriented design that kesab

Fig. 2. Abstract overview of GOBS simulator components.
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Fig. 3. Rebuild load maximum when replica is pulled from mimnode. Fig. 4. Rebuild load maximum when replica is pulled from ramdnode.

rapid prototyping of new placement algorithms. GOBS thus s
provides a framework for many object/node addressing nsodel 5o ;;‘!fré
that is general enough to prototype many algorithms.
Other simulator components are represented in Figure 2. 22
At the top level are the desired outputs, including funcgion g 200 —————
statistics, logs, and graphical plot output. The centrathme § 17.5
anisms of the simulator include the Workload Driver, which @ 15.0
models user operations, the Rebuild Engine, which models “-,; 12.5
fault-triggered operations, and the fault model based oarme 2 10.0
time-to-failure estimates (MTTF) as modeled by an exponen- 75
tial distribution. At the bottom are the extensible compuise 5o
including the file/object generation mechanism, and théaap 25
placement schemes. Use cases may be generated using simple 00
techniques or by interpolating complex distributions sash ' 100 200 1000
those given by published studies [17]. node.count

|-I- NEAREST R=3 -- XOR R=3 -& NEAREST R=4 —#- XOR R=4|

IV. SIMULATOR RESULTS

In this section, we demonstrate the utility of the simulat(fég'"; Chgﬁf’u"d load maximum when replica is pulled from lastie in
as applied to the replica chaining method. First, we use the
simulator to perform rebuilds after a storage fault and iifign
the concurrency available under algorithmic variationsxfy\

we run the simulator over a long timescale and produce dvernadliability formula [18]. Disks read and write data at 400
rebuild traffic patterns and the typical traffic pattern lowaa MB/s, the device transfer rate is the disk rate multiplied by
rebuild, again under algorithmic variations. Then, we slioat the performance boost offered by RAID. The whole system
the simulator can estimate user data object loss rates) givestores approximately 1 EB (exabyte) of user data objects.
per-disk MTTF estimate and a placement algorithm. The placement algorithm considered here is a chain place-
ment algorithm. TheNEAREST algorithm placesR replicas

A. System Model of objectz on the nodes:, such thatlx — s,| is minimized.

The system modeled in this study is designed as followEhe XOR algorithm placesk replicas such that xor s, is

The basic storage element is the storage server node, whiginimized [5]. Upon the loss of a RAID array, each node
has an address in the object address space. Each node sontgiplies the placement algorithm to determine which objects
multiple local RAID arrays of 30 TB disks. The unit ofthat it holds must be copied to restore the nominal redundanc
failure is a whole RAID array; individual disk failures andlevel. Replicas are then copied in continuous time; a given
the performance impact of the resulting local RAID rebudd iRAID array is involved in only one copy at a time. The single
not modeled. RAID arrays fail in accordance with the basitdosest server ta is theprimary node forz, the other replicas
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Fig. 6. Rebuild load maximum when replica is pulled from mmnode. Fig. 7. Rebuild load maximum when replica is pulled from ramdnode.

32.5

are secondaries 30.0
27.5

B. Rebuild Hot Spots 25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5

Figures 3, 4, and 5 diagram the bottleneck in rebuild
concurrency under both algorithms at redundancy lekiets 3
and R = 4. In these cases, the simplel EB filesystem is
deployed onto the storage network, and the loss of a single
RAID array is simulated. For each node count on the
axis, the fraction of the rebuild workload (reads and wjites
performed by the maximally loaded server node is reported, 50
averaged over 10 runs. The rebuild response is initiated 25
immediately upon the (instantaneous) global detectiorhef t 0.0
fault; the system does not wait for the insertion of a new disk 3.4 5 6
In Figure 3, the replica is always copied from the primary nodes involved
node, simulating a case in which the system prefers to contro ::Eﬁig Ej zfigg :ig: Efi :fggg
the consistency of the contents of each object at the primary — —

The case in which a replica may be copied from any Second%@ 8. Rebuild load maximum when replica is pulled from lasde in
node is considered in Figure 4, and the case in which the lasgfica chain.

replica in the chain must be the replica source is covered in

Figure 5. Note that in these cases the local storage layalt an

object count does not affect the res_ult. o is the next heavily loaded node, etc., until no more work is

Although each case shows considerable variation becay§&ibuted to server nodes.
of the varying circumstances of the rebuild, available iebu

concurrency in the chaining algorithm is limited by the n&mb ¢ e system to distribute work to more nodes. The slope
of replicas. The objects involved are tightly clusteredfi® t ¢ he workload curves indicates that some work may be

address space, constraining the rebuild process t0 a smlliibyted but that the central nodes (node 0, etc.) wiibac
number of nodes. bottleneck and cause a “long tail” effect. Thus, the redmegta
C. Rebuild Distributions level will be restored piecemeal over time. The impact of

this differentiated concurrency is considered in the folltg
Figures 6, 7, and 8 diagram the same basic fault conditioggperiments.

as the previous series of figures but show the load performed ) )

by each node involved in the rebuild. Only the system with- Rebuild Traffic

600 server nodes is considered. The nodes are ordered by loadle now investigate the impact of the non-trivial rebuild
level; the load fraction for node O is the average workloatbmpletion behavior on long timescale simulations in the
fraction performed by the most heavily loaded node, nodeptesence of potentially overlapping storage faults. Asvshio

load fraction(%)

o
-
[N}
~

As shown, the use of additional replicas increases thetabili



Figure 9, the system of interest to this investigation isitedy inserted the user objects and applied the methods from the
in a state of replica repair. This figure diagrams a 1 EB s#ragrevious subsection, varying the per-disk MTTF over a range
system serving data from nodes with 4 RAID arrays, eadf unrealistically low MTTF values. The quantity of datados
configured as RAID-5 (4+1). The individual disk MTTF wasvas measured on a per-object basis for the one year runs.
10 years. The mean time to disk reinsertion was 1 day. As shown in Figure 11, data loss is unlikely unless the per-
In Figure 10, we show average available rebuild concurrendisk MTTF is set to an extremely low value of less than one
in the hours following the fault for this system. The twoyear. Somewhat surprisingly, the “active” method losesamor
configurations include a SAN-like system (“san”) with 8 RAIDobjects than the “latent” method. It is difficult to genezali
arrays per node configured as RAID-6 (8+2) with 2 replicagbout such rare cases even with the traces from the simulator
per object R = 2) and a cluster-like system (“target”) with 4but it may be the case that the extra work caused by the
RAID arrays per node configured as RAID-5 (4+1). We rafactive” method has the potential to overload the servers at
the system in “active” response mode (distributed sparingkertain critical times.
in which the system immediately started making copies in
response to a fault, and “latent” response mode, in which
the system waited for the faulty disk to be replaced before As object placement routines become more complex and
scheduling replica copies. storage systems add ever more component devices, the need
As shown, the active mode makes many additional copits analyze the behavior of the overall system becomes more
compared to the latent mode. This includes copies that g®nounced. To address this need, we have presented the
made in direct response to the fault in addition to copies tiesign of a coarse-grained simulator to quickly evaluage th
the new empty disk, as well as intermediate copies that mayility of an algorithm and its variations on a simulatedykar
be made as a result of subsequent faults. The active modedale filesystem. w demonstrate the simulator’s abilityxe e
shown to be capable of quickly making use of high objettact meaningful results including limits to concurrenayidg
transfer concurrency to reduce the window of vulnerabdity rebuilds §IV-B), work distribution during rebuilds §V-C),
the cost of greater network and disk load. rebuild-centered traffic patternglY-D), and the data loss
Additionally, there is a notable correspondence betweeste ¢IV-E).
the workload distribution and the ability of the system to The simulator was used to demonstrate multiple aspects
sustain concurrent data transfers over time. In the chginiof rebuild behavior for the chaining technique. During a
scheme used here, the nodes that are peripherally involveuild, the workload distribution was graphically rethte
in the rebuild run out of work to do, so the concurrencthe available concurrency over time. In the case of replica
level decreases over time. In a system with many consecutighaining, preliminary simulation results here covering th
overlapping disk failures, this behavior could have a digant rebuild strategy aggressiveness trade-off show that thEm

V. SUMMARY

effect on data loss. be rapidly replaced reducing the window of vulnerability fo
. data loss at the cost of much more network traffic, (although
E. Potential for Data Loss this did not help in the extreme case). Additionally, we

In this final case, we look at the ability of the simulatodemonstrate that a large network of relatively light-weigh
to estimate the number of user data objects lost per yedsject servers that maintain high redundancy levels throug
given an algorithm and a per-disk MTTF. In this test, welistributed object placement in addition to local RAID can

copies in flight
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Fig. 9. Long timescale rebuild traffic report.
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reference implementations of other well-known placement
algorithms should be produced so that the community can
run the various algorithms with modifications on simulated
systems. The software will be released under an open source
license.
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produce negligible object loss rates if disk faults occur &l
reasonable (MTTE> 1 yr.) rates.
VI. FUTURE WORK =

This work does not cover all the features of the simulato[ﬁ,s]
and the software and its results are preliminary. Additiona
features not presented in this report include user intieract
with the storage system and evaluation of object placennentd 4
the context of parallel filesystems. The simulator can repla
traces of user workloads as they interact with storage letbui
workloads, but this has not yet been applied to real-worlt!
cases.

The utility of the simulator and its results stand to bé6]
improved in multiple ways. First, the network model could
be improved by making use of a congestion model, preferalply,
above the packet level. Second, it could be integrated with
a more complex local storage model that provides usefl
coarse-grained performance approximations for disks,[RAI
devices, and the local object storage service. Third, ahdit
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