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SUMMARY

Achieving high performance for distributed I/O on a wide-area network continues

to be an elusive holy grail. Despite enhancements in network hardware as well as

software stacks, achieving high-performance remains a challenge. In this paper, our

worldwide team took a completely new and non-traditional approach to distributed

I/O, called ParaMEDIC: Parallel Metadata Environment for Distributed I/O and

Computing, by utilizing application-specific transformation of data to orders of magnitude

smaller metadata before performing the actual I/O. Specifically, this paper details our

experiences in deploying a large-scale system to facilitate the discovery of missing genes

and constructing a genome similarity tree by encapsulating the mpiBLAST sequence-

search algorithm into ParaMEDIC. The overall project involved nine computational sites

spread across the U.S. and generated more than a petabyte of data that was “teleported”

to a large-scale facility in Tokyo for storage.
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1. Introduction

With the rapid growth in the scale and complexity of scientific applications over the past

few decades, the requirements for compute, memory, and storage resources are now greater

than ever before. With the onset of petascale and exascale computing, issues related to

managing such grand-scale resources, particularly related to data I/O, need to be carefully

studied. For example, applications including genomic sequence search and the emergent field

of metagenomics, large-scale data mining, data visual analytics, and communication profiling

on ultrascale parallel computing platforms generate massive amounts of data that needs to be

managed for later processing or archival.

Adding to the complexity of this problem is the issue of resource locality. While system sizes

have certainly grown over the past few years, most researchers do not have local access to

systems of the scale required by their applications. Therefore, researchers access such large

systems remotely to perform the required computations and move the generated data to

their local systems after the computation is complete. Similarly, many applications tend to

require multiple resources simultaneously for efficient execution. For example, applications

that perform large computations and generate massive amounts of output data are becoming

increasingly common. While several large-scale supercomputers provide either the required

compute power or the storage resources, very few provide both. Thus, data generated at one

site often has to be moved to a different site for storage and/or analysis.

In order to alleviate issues related to moving such massive data across sites, considerable

monetary and intellectual investment has been put into high-speed distributed network

connectivity [35, 5, 2]. However, the utility of these investments is limited in the light of

three primary observations: (1) such infrastructure is scarce and does not provide end-to-end

connectivity to a very high percentage of the scientific community, (2) the amount of data

generated by many applications is so large that even at 100% network efficiency, the I/O time

for these applications can significantly dominate their overall execution time, and (3) based on

recent trends and published results, existing distributed I/O mechanisms have not been able

to achieve a very high network utilization for “real data” on high-speed distributed networks,

particularly for single-stream data transfers [3, 38].

To resolve such issues on a global scale, we proposed a new, non-traditional approach for

distributed I/O known as ParaMEDIC (Parallel Metadata Environment for Distributed I/O

and Computing) [11, 12, 13]. ParaMEDIC uses application-specific semantic information to

process the data generated by treating it as a collection of high-level abstract objects, rather
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GLOBAL-SCALE DISTRIBUTED I/O WITH PARAMEDIC 3

than as a generic byte-stream. It uses such information to transform the data into orders

of magnitude smaller metadata before transporting it over the distributed environment and

regenerating it at the target site. All data transformation, movement, and regeneration are

done while the application is executing, giving the illusion of an ultrafast teleportation device

for large-scale data over distributed environments.

At a high level, ParaMEDIC is similar to standard compression algorithms. However, the

term “compression” typically has the connotation that the data is processed as a generic byte-

stream. Since ParaMEDIC uses a more abstract application-specific representation of the data

to achieve a much larger reduction in the data size, we use the terminology of “metadata

transformation” in this case.

Because ParaMEDIC utilizes application semantics to generate metadata, it loses some

portability compared to traditional byte-stream-based distributed I/O. For example, an

instance of ParaMEDIC’s metadata transformation in the context of the mpiBLAST sequence

search application is described in Section 3.2. By giving up some portability, however,

ParaMEDIC can potentially attain tremendous savings in the amount of actual distributed

I/O performed, consequently resulting in substantial performance gains. Further, through the

use of a generic framework with an application plug-in model, different applications can use

the overall framework in an easy and flexible manner.

In this paper, we demonstrate how we used ParaMEDIC to tackle two large-scale

computational biology problems—discovering missing genes and adding structure to

genetic sequence databases—on a worldwide supercomputer [14]. The overall worldwide

supercomputer comprised nine different supercomputers distributed at seven sites across

the U.S. and one large-scale storage facility located in Japan. The overall experiment

consisted of sequence searching the entire microbial genome database against itself, generating

approximately a petabyte of data that was transported to Tokyo for storage. We present

several insights gained from this large-scale run, which will be valuable to other researchers

performing such large, global-scale distributed computation and I/O.

2. Large-Scale Computational Biology: A Peek at Compute and Storage

Requirements
In this section we discuss different aspects of computational biology with a focus on the

compute and storage requirements of large-scale applications in this domain.
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Figure 1: High-level Algorithm of mpiBLAST

2.1. Sequence Searching

With the advent of rapid DNA sequencing, the amount of genetic sequence data available to

researchers has increased exponentially [9]. The GenBank database, a comprehensive database

that contains genetic sequence data for more than 260,000 named organisms, has exhibited

exponential growth since its inception over 25 years ago [15]. This information is available

for researchers to search new sequences against and infer homologous relationships between

sequences or organisms. This helps a wide range of projects, from assembling the Tree of

Life [20] to pathogen detection [22] and metagenomics [23].

Unfortunately, the exponential growth of sequence databases necessitates faster search

algorithms to sustain reasonable search times. The Basic Local Alignment Search Tool

(BLAST), the de facto standard for sequence searching, uses heuristics to prune the search

space and decrease search time with an accepted loss in accuracy [7, 8]. mpiBLAST parallelizes

BLAST using several techniques including database fragmentation, query segmentation [18],

parallel input-output [29], and advanced scheduling [40]. As shown in Figure 1, mpiBLAST

uses a master-worker model and performs a scatter-search-gather-output execution flow. During

the scatter, the master splits the database and query into multiple pieces and distributes them

among worker nodes. Each worker then searches the query segment against the database

fragment that it was assigned. The results are gathered by the master, formatted, and output

to the user. Depending on the size of the query and that of the database, such output generated

can be large. For example, as shown in Table I, an all-to-all search of the nucleotide database

can generate as much as 30 TB of data. Thus, for environments with limited I/O capabilities,

such as distributed systems, the output step can cause significant overheads.
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GLOBAL-SCALE DISTRIBUTED I/O WITH PARAMEDIC 5

2.2. Discovering Missing Genes

Table I: Estimated Output of an All-to-All NT

Search

Query Size Number of Estimated Output

(KB) Queries (GB)

0-5 3,305,170 1,139

5-50 87,506 593

50-150 25,960 23,555

150-200 26,524 3,995

>200 9,840 Not run

Total 3,455,000 >29,282

Genome annotation is the process of

associating information with a genomic

sequence. Part of this process includes

determining (by computational analysis)

the location and structure of protein-

encoding and RNA-encoding genes, also

known as making gene calls. It is

important to be as accurate and as

sensitive as possible in making gene calls:

avoiding false positives and missing real

genes. Gene prediction in prokaryotes

(bacteria and archaea) typically involves

evaluating the coding potential of genomic segments that are delimited by conserved nucleotide

motifs. The most widely used gene-finding programs [19, 30] build a sequence model based on

statistical properties of genes known to be (very likely) real genes in a given genome. This model

is then used to evaluate the likelihood that an individual segment codes for a gene; using this

method, some genes with anomalous composition are almost always missed. Another popular

method for locating genes is to compare genomic segments with a database of gene sequences

found in similar organisms. If the sequence is conserved, the segment being evaluated is likely

to be a coding gene (this is the “similarity method”). Genes that do not fit a given genomic

pattern and do not have similar sequences in current annotation databases may be systemically

missed.

One way to detect missed genes is to use the similarity method and compare raw genomes

against each other, as opposed to comparing a raw genome to a database of known genes [41].

If gene a in genome A and gene b in genome B have been missed and a is similar to b, then this

method will find both. However, this involves performing an all-to-all comparison of the entire

database against itself (in our case study, the entire microbial genome database against itself).

This task is heavily compute and data intensive, requiring thousands of compute processors

and generating on the order of a petabyte of output data that needs to be stored for processing.

2.3. Adding Structure to Genetic Sequence Databases

One of the major issues with sequence search is the structure of the sequence database itself.

Currently, these databases are unstructured and stored as a flat file, and each new sequence that

is discovered is simply appended to the end of the file. Without more intelligent structuring,
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a query sequence has to be compared to every sequence in the database, forcing the best case

to take just as long as the worst case. By organizing and providing structure to the database,

searches can be performed more efficiently by discarding irrelevant portions entirely.

One way to structure the sequence database is to create a sequence similarity tree where

“similar” sequences are closer together in the tree than dissimilar sequences. The connections

in the tree are created by determining how “similar” the sequences are to each other through

sequence searches. To create every connection, however, the entire database has to be searched

against itself, resulting in an output size of N2 values (where N is the number of sequences in

the database).

3. Overview of ParaMEDIC-enhanced mpiBLAST

In our previous work [12, 13], we provided a detailed description of ParaMEDIC. Here we

present a brief summary of that work.

3.1. The ParaMEDIC Framework

ParaMEDIC provides a framework for decoupling computation and I/O in applications relying

on large quantities of both. Specifically, it does not hinder application computation. As the

output data is generated, however, the framework differs from traditional distributed I/O in

that it uses application-semantic information to process the data generated by treating it as

a collection of high-level application-specific objects rather than as a generic byte-stream. It

uses such information to transform the data into orders of magnitude smaller metadata before

transporting it over the distributed environment and regenerating the original data at the

target site.

As shown in Figure 2, ParaMEDIC provides several capabilities, including support for data

encryption and integrity as well as data transfer in distributed environments (either directly

via TCP/IP communication or through global file-systems). However, the primary semantics-

based metadata creation is done by the application plug-ins. Most application plug-ins are

specific to each application and thus rely on knowledge of application semantics. These plug-ins

provide two functionalities: (1) processing output data generated by the application to create

metadata and (2) converting metadata back to the final output. Together with application-

specific plug-ins, ParaMEDIC also provides application-independent components such as data

compression, data integrity, and data encryption. These can be used in conjunction with the

application-specific plug-ins or independently.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7

Prepared using cpeauth.cls



GLOBAL-SCALE DISTRIBUTED I/O WITH PARAMEDIC 7

Profiling Visualization

ParaMEDIC API

(PMAPI)

Applications

mpiBLAST
Communication Remote

Data
Encryption

Data
Integrity

ParaMEDIC Data Tools

Communication

Profiling Plugin

Communication Services Application Plugins

mpiBLAST

PluginCompression

Basic
Network

GlobalDirect
File−system

Figure 2: ParaMEDIC Architecture

Trading Computation with I/O: The amount of computation required in ParaMEDIC

is higher than what is required by the original application. After the output is generated

by the application processes, it has to be further processed to generate the metadata, sent

to the storage site, and processed yet again to regenerate the final output. However, the

I/O cost achieved can potentially be significantly reduced by using this framework. In other

words, ParaMEDIC trades (a small amount of) additional computation for (potentially large)

reduction in I/O cost. With respect to the additional computational cost incurred, ParaMEDIC

is quite generic with respect to the metadata processing required by the different processes.

For many applications, it is possible to tune the amount of post-processing performed on the

output data, with the trend being, the more the post-processing computation, the better the

reduction in the metadata size. That is, an application plug-in can perform more processing

of the output data to reduce the I/O cost.

3.2. Integration with mpiBLAST

In a cluster environment, most of the mpiBLAST execution time is spent on the search itself,

since the BLAST string-matching algorithm is computationally intensive. In comparison, the

cost of formatting and writing the results is minimal, especially when many advanced clusters

are configured with high-performance parallel file-systems. In a distributed environment,

however, the output typically needs to be written over a wide-area network to a remote

file-system. Hence, the cost of writing the results can easily dominate the execution profile

of mpiBLAST and become a severe performance bottleneck. By replacing the traditional
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Figure 3: ParaMEDIC and mpiBLAST Integration

distributed I/O framework with ParaMEDIC (as shown at the top of Figure 3), we can provide

large reduction in the amount of data communication performed. For example, as we will see

in Section 5, a mpiBLAST-specific instance of ParaMEDIC reduces the volume of data written

across a wide-area network by more than two orders of magnitude.

Figure 3 depicts how mpiBLAST is integrated with ParaMEDIC. First, on the compute

site (the left cloud in Figure 3), once the output is generated by mpiBLAST, the mpiBLAST

application plug-in for ParaMEDIC processes this output to generate orders of magnitude

lesser metadata. Specifically, the output of mpiBLAST consists of alignment information and

scores corresponding to the top matches it found for each sequence in the entire database.

Thus, while the search time largely depends on the size of the database, once the search

is complete, the output only depends on how closely the input query sequence matches the

top matching sequences in the database. Based on this observation, the metadata basically

contains information identifying the top matching sequences in the database, and not the other

alignment or score information.

ParaMEDIC transfers this metadata to the storage site. At the storage site, a temporary

(and much smaller) database that contains only the top matching sequences is created by

extracting the corresponding sequence data from a local database replica. ParaMEDIC then
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GLOBAL-SCALE DISTRIBUTED I/O WITH PARAMEDIC 9

reruns mpiBLAST at the storage site by taking as input the same query sequence and the

temporary database to generate and write the complete output (including the alignments and

scores) to the storage system. The overhead in rerunning mpiBLAST at the storage site is

small, since the temporary database that is searched is substantially smaller, with only about

250 sequences in it, compared to the several millions of sequences in large DNA databases.

4. ParaMEDIC on a Worldwide Supercomputer

To accommodate the compute and storage requirements of the computational biology

applications discussed in Section 2, we utilize a worldwide supercomputer that, in aggregate,

provides the required compute power and storage resources. The worldwide supercomputer

comprises nine high-performance computing systems at seven different sites across the U.S.

and a large-scale storage facility in Japan, to create a single high-performance distributed

computing system. The specifics of each individual system are in Table II. In the next

subsections, we address the issues with working on such a large-scale distributed system that

are not immediately apparent on smaller-scale systems.

4.1. Dealing with Dynamic Availability of Compute Clients and Other Faults

Several systems in our worldwide supercomputer operate in batch-mode. Users submit jobs to

system queues and are scheduled to execute on the available resources. That is, compute

resources are not available in a dedicated manner but become available when our job is

scheduled for execution and become unavailable when our job terminates.

To handle this issue, we segment the overall work to be performed into small tasks that can be

performed independently (i.e., sequentially, concurrently, or out-of-order). The management of

tasks is done by a centralized server running on a dedicated resource. As each job is executed, it

contacts this server for the next task, computes the task, transforms the output to metadata,

and transmits the metadata to the storage site. This approach has two benefits. First, the

clients are completely stateless. That is, if a client job terminates before it has finished its

computation or metadata transmission to the storage site, the servers handle this failure by

reassigning the task to a different compute client. The second advantage is if the metadata

corresponding to a task that is either not received completely or is corrupted, the server just

discards the data and reassigns the task to another compute node. Thus, I/O failures are never

catastrophic.
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4.2. Architectural Heterogeneity

One of the key impediments to large-scale distributed systems is system heterogeneity. Many

distributed systems, such as the one used in this paper, cannot obtain a homogeneous

environment in either hardware or software, and efficient use of the system requires overcoming

this obstacle. The worldwide supercomputer used in this paper contains six different processor

architectures (IBM PowerPC 970FX, IBM PowerPC 440, AMD Opteron, SiCortex MIPS64,

Intel Xeon, and Intel Itanium2), five different network interconnects (Gigabit Ethernet, 10-

Gigabit Ethernet, InfiniBand, IBM proprietary 3D toroidal network, and SiCortex Kautz

graph), and eight variations of the Linux operating system.

In order to deal with this issue, all data being transferred over the network has to be

converted to an architecture-independent format. Since the total amount of data that is

generated and must be moved to the storage site is enormous, this can have a significant

impact on traditional distributed I/O. However, with ParaMEDIC, only metadata generated

by processing the actual output is transferred across the wire. Since this metadata is orders

of magnitude smaller as compared to the actual output, such byte manipulation to deal with

heterogeneity has minimal impact on overall performance.

4.3. Utilizing the Parallelism in Compute Nodes

In traditional file I/O, there are two levels of parallelism. First, multiple I/O servers are

aggregated into a parallel file-system to take advantage of the aggregate storage bandwidth

of these servers. Second, multiple compute clients, that process different tasks, write data to

such file-systems in parallel as well. Most parallel file-systems are optimized for such access to

give the best performance.

With ParaMEDIC, there are three I/O components: (1) compute clients that perform I/O,

(2) post-processing servers that process the metadata to regenerate the original output, and

(3) I/O servers that host the file-system. Similar to the traditional I/O model, the first and

third components are already parallelized. That is, multiple streams of data being written in

parallel by different compute clients and the I/O servers parallelize each stream of data that

is being written to them. However, in order to achieve the best performance, it is important

that the second component, post-processing servers, be parallelized as well.

Parallelizing the post-processing servers adds its own overhead and complexity mainly with

respect to synchronization between the different parallel processes. To avoid this, we use an

embarrassingly parallel approach for these servers. Each incoming stream of data is allocated

to a separate process till a maximum number of processes is reached, after which the incoming

data requests are queued till a process becomes available again. Thus, different processes do not
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12 P. BALAJI ET AL.

have to share any information and can proceed independently. The advantage of this approach

is its simplicity and lack of synchronization required between different parallel post-processing

servers. The disadvantage, however, is that the number of data streams generated from the

post-processing servers is equal to the number of incoming data streams. That is, if only two

tasks are active at one time, only two streams of data are written to the actual storage system.

Thus, the performance might not be optimal. However, in most cases, we expect the number

of incoming streams to be sufficiently large to not face such performance issues.

4.4. Handling Large Communication Latencies with Disconnected I/O

As seen in Table II, the computational sites are between 9,000 and 11,000 kilometers away from

the storage site. At these distance, communication latencies are in tens of milliseconds. Such

large latencies can severely limit the effectiveness of a synchronous remote file-systems that

can be used for distributed I/O, since each synchronization operation has to make round-trip

hops on the network. To overcome the bottleneck incurred by such high-latency, our worldwide

supercomputer utilizes a lazy asynchronous I/O approach. By caching the output data locally

before performing the actual output, clients can perform their computations while disconnected

from the remote file-system. After a substantial amount of data is generated a bulk transfer of

the metadata occurs, thereby maximally utilizing the bandwidth available between the sites

and mitigating the effect of high-latency.

An issue with this approach of disconnected computation is fault tolerance. Once a task

is assigned to a compute client, the server is completely disconnected from this client.

After the computation is complete, the client reconnects and sends the generated metadata.

Although, this two-phase synchronization model is more error prone and requires additional

state information in the server, it makes the compute clients truly stateless even when the

actual computation is going on.

5. Experiments, Measurements and Analysis

In this paper, we use ParaMEDIC to search the entire microbial genome database against

itself. Several supercomputing centers within the U.S. perform the computation, while the data

generated is stored at a large storage resource in Tokyo. This section compares the performance

of ParaMEDIC with vanilla mpiBLAST with respect to the amount of data communicated

and the I/O time taken, as well as the storage bandwidth utilization.
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5.1. Data I/O Overheads

Figure 4(left) illustrates the amount of data transmitted between the compute and the storage

sites for different number of post-processing threads, and Figure 4(right) shows the factor of

reduction in the amount of data. Each post-processing thread processes one segment of data

that has the output for 10,000 query sequences. Most segments have approximately similar

output sizes, so the amount of data communicated over the distributed network increases

linearly with the number of segments, and hence the number of post-processing threads.

ParaMEDIC, on the other hand, processes the generated data and converts it into metadata

before performing the actual transfer. Thus, the actual data that is transferred over the network

is much smaller. For example, with 288 threads, mpiBLAST communicates about 100 GB of

data, while ParaMEDIC only communicates about 108 MB—a 900-fold reduction.
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Figure 4: Data I/O Overheads: (left) Total Amount of Data Communicated and (right) Factor of

Improvement

We also illustrate the I/O time in Figure 5. As shown, ParaMEDIC outperforms mpiBLAST

by more than two orders of magnitude. This result is attributed to multiple aspects. First, given

the shared network connection between the two sites, the achievable network performance

is usually much lower than within the cluster. Thus, with mpiBLAST transferring the

entire output over this network, its performance would be heavily impacted by the network

performance. Second, the distance between the two sites causes the communication latency

to be high. Thus, file-system control messages tend to take a long time to be exchanged,

resulting in further loss in performance. Third, for mpiBLAST, since the wide-area network

is a bottleneck, the number of simultaneously transmitted data streams does not matter;
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Figure 5: I/O Time Measurements: (left) Total I/O Time and (right) Factor of Improvement

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 16 32 64 128 288

T
h

ro
u
g
h

p
u
t 

(M
b
p
s
)

Number of Post-processing Threads

Storage Utilization with Lustre

mpiBLAST

ParaMEDIC

MPI-IO-Test

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 288

P
e
rc

e
n
ta

g
e

Number of Post-processing Threads

ParaMEDIC Compute-I/O breakup (Lustre)

I/O Percent

Compute Percent

Figure 6: Storage Bandwidth Utilization Using Lustre: (left) Storage Utilization Improvement and (right)

Computation and I/O Time

communication is serialized in the network. However, with ParaMEDIC, since the wide-area

network is no longer a bottleneck, it can more effectively utilize the parallelism in the data

streams to better take advantage of the storage bandwidth available at the storage site, as

described in more detail in Section 5.2.

5.2. Storage Bandwidth Utilization

Figure 6(left) illustrates the storage bandwidth utilization achieved by mpiBLAST,

ParaMEDIC, and the MPI-IO-Test benchmark, which is used as an indication of the peak
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performance capability of the I/O subsystem. We notice that the storage utilization of

mpiBLAST is very poor compared to ParaMEDIC. The reason is that, for mpiBLAST, the

I/O is limited by the wide-area network bandwidth. Thus, though more than 10,000 processors

are performing the compute part of the task, the network connecting the compute servers in

the U.S. and the storage system in Tokyo becomes the bottleneck.

On the other hand, ParaMEDIC uses more than 90% of the storage system capability

(shown by MPI-IO-test). When the number of processing threads is low (x-axis in the figure),

ParaMEDIC uses about half the storage capability. However, as the number of processing

threads increases, the I/O utilization of ParaMEDIC increases as well.

Figure 6(right) illustrates the percentage breakup of the time spent in ParaMEDIC’s post-

processing phase. A significant portion of the time spent is in the I/O part. This shows that

in spite of using a fast parallel file system such as Lustre, ParaMEDIC is still bottlenecked

by the I/O subsystem. In fact, our analysis has shown that in this case the bottleneck lies in

the 1-gigabit Ethernet network subsystem connecting the storage nodes. Thus, we expect that

even for systems with faster I/O subsystems, ParaMEDIC will further scale up and continue

to use a significant portion of the I/O bandwidth provided.

In Figure 7(left), we remove the file-system network bottleneck and directly perform I/O on

the local nodes. Storage utilization achieved in this case is significantly higher than going over

the network. Even in this case, ParaMEDIC completely uses the storage capability with more

than 90% efficiency. Figure 7(right) shows the percentage breakup of the time spent. Similar
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to the case with the Lustre file-system, a significant portion of the time is still spent on I/O.

Thus, again, ParaMEDIC can be expected to scale and fully use even faster storage resources.

6. Discussion

Although this paper deals only with enhancing the mpiBLAST application through

ParaMEDIC, the idea is relevant for many other applications as well. For example, applications

that have natively been built for distributed environments such as SETI@home [37] and

other BOINC applications [1] can easily use similar ideas and can benefit aspects in which

such techniques are possible. In the field of communication profiling with MPE [4], we have

also done some preliminary work that uses metadata transformation of profiled data through

ParaMEDIC. Specifically, based on the observation that most scientific applications have a

very uniform and periodic communication pattern, we perform a Fourier transform on the

data to identify this periodicity and use this as an abstract block. The metadata comprises

one complete abstract block and just the differences for all other blocks. Our preliminary

numbers in this field have demonstrated between two and five-fold reduction in the I/O time

using ParaMEDIC. Work on other application fields including earthquake modeling and remote

visualization is ongoing as well, with promising preliminary results.

7. Related Work

Efficient I/O access for scientific applications in distributed environments has been an ongoing

subject of research for various parallel and distributed file-systems [24, 34, 16, 36]. There has

also been work on explicit data transfer protocols such as GridFTP [6]. Other efforts include

providing remote data access through MPI-IO [31]. RIO [21] introduced a proof-of-concept

implementation that allows applications to access remote files though ROMIO [39]. RFS [27]

enhanced the remote write performance with active buffering, by optimizing overlap between

applications computation and I/O. Studies have also been done in translating MPI-IO calls

into operations of lower level data protocols such as Logistic Network [28]. However, all these

approaches deal with data as a byte-stream. Conversely, our approach focuses on aggressively

reducing the amount of I/O data to be communicated by taking advantage of application

semantics and dealing with data as high-level abstract units, rather than a stream of bytes.

Semantic-based data transformation is not new. Several semantic compression algorithms

have been investigated in compressing relational databases [25, 10, 26]. Leveraging the table

semantics, these algorithms first build descriptive models of the database using data mining

techniques such as clustering and then strip out data that can be regenerated. In the
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multimedia field, context-based coding techniques (similar to semantics-based approaches)

have been widely used in various video compression standards [32, 33, 17]. With aid of context

modeling, these techniques efficiently identify redundant information in the media. Although

sharing the same goal of reducing data to store or transfer with ParaMEDIC, these data

compression studies do not address the remote I/O issue.

Thus, ParaMEDIC utilizes ideas from different fields to provide a novel approach for

distributed I/O.

8. Conclusion

Rapid growth of computational power is enabling computational biology to tackle increasingly

large problems such as discovering missing genes and providing structure to genetic sequence

databases. As the problems grow larger, however, so does the data consumed and produced

by the applications. For many applications, the required compute power and storage resources

cannot be found at a single location, precipitating the transfer of large amounts of data

across the wide-area network. ParaMEDIC mitigates this issue by pursuing a non-traditional

approach to distributed I/O. By trading computation for I/O, ParaMEDIC utilizes application

semantics information to transform the output to orders of magnitude smaller metadata. In this

paper, we presented our experiences in solving large-scale computational biology problems by

utilizing nine different high-performance compute sites within the U.S. to generate a petabyte

of data that then was transferred to a large-scale storage facility in Tokyo using ParaMEDIC’s

distributed I/O capability. We demonstrated that ParaMEDIC can achieve a performance

improvement of several orders of magnitude compared to traditional I/O. In future, we plan

to evaluate semantic-based compression for other applications.
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