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Abstract

The hydrostatic equations for ice sheet flow offer improved fidelity compared to the shallow ice approximation
and shallow stream approximation (SSA) popular in today’s ice sheet models. Nevertheless, they present a
serious bottleneck because they require the solution of a 3D nonlinear system, as opposed to the 2D system
present in SSA. This 3D system is posed on high-aspect domains with strong anisotropy and variation in
coefficients, making it expensive to solve by using current methods. This paper presents a Newton-Krylov
multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of
magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the
cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to
various algebraic methods that are in use or have been proposed as viable approaches.
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1. Introduction

The dynamic response of ice streams and outlet glaciers is poorly represented using the shallowness
assumptions inherent in the present generation of ice sheet models. Accurate simulation of this response
is crucial for prediction of sea level rise; indeed, the inability of available models, based on the shallow ice
approximation (SIA) [1] and shallow stream approximation (SSA) [2, 3], to simulate these processes was cited
as a major deficiency in the Fourth Assesment Report of the Intergovernmental Panel on Climate Change [4].

The hydrostatic equations were introduced in [5] as a model of intermediate complexity between the full
non-Newtonian Stokes system and the integrated SIA and SSA models. A more precise analysis, including the
limiting cases of fast and slow sliding, was given in [6]. Well-posedness was proven in [7], and approximation
properties of finite-element methods were analyzed in [8, 9]. The hydrostatic equations were used for transient
simulation in [10] and in 3D models in [11], as well as subsequent work. Several models of this form were
compared in [12].

The use of hydrostatic equations in current models has been limited, however by the cost of solving the
3D nonlinear system for velocity. This cost comes from both slow convergence on the nonlinearities (rheology
and slip) and expensive linear solves using standard preconditioners such as incomplete factorization and
one-level domain decomposition. The poor linear solve performance is attributable to the strong anisotropy
and heterogeneity imposed by the rheology and geometry.

In the present work, we introduce a Newton-Krylov multigrid solver that demonstrates textbook multigrid
efficiency, characterized by convergence in a small multiple of the cost of a single, fine-level residual evaluation,
and typically involving an order of magnitude reduction in residual per multigrid (V or F) cycle. The scheme
converges quadratically on the nonlinearities, is rapidly globalized by using grid sequencing, is robust to
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parameters and geometry, coarsens rapidly in almost all cases, and exhibits excellent parallel scalability. Our
code is freely available as part of the Portable Extensible Toolkit for Scientific computing (PETSc) [13].

Section 2 presents the equations and discretization, Section 3 describes the solver, and Section 4
demonstrates performance and scalability with numerical examples. Section 5 summarizes our conclusions.

2. Equations and discretization

The hydrostatic equations are obtained from the non-Newtonian Stokes equations in the limit where
horizontal derivatives of vertical velocity are small. Neglecting these terms allows incompressibility to be
enforced implicitly by eliminating pressure and vertical velocity, leaving a system involving only horizontal
components of velocity. See [6] for a rigorous derivation and asymptotic analysis.

Consider an ice domain Ω ⊂ R3 lying between a Lipschitz continuous bed b ∈ C0(R2) and surface
s ∈ C0(R2), with thickness H = s− b bounded below by a positive constant.1 The velocity u = (u, v) ∈ V =
H1(Ω) satisfies conservation of momentum, which, omitting inertial and convective terms as is standard for
ice sheets, is given by
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is the second invariant. Ice sheet models typically take n = 3 as the power law exponent. Equation (1) is
subject to natural boundary conditions at the free surface and either no-slip u = 0 or power-law slip with
friction parameter

β2(γb) = β2
0(ε2b + γb)

m−1
2 ,

where γb = 1
2 (u2 + v2), εb is regularization, and m ∈ (0, 1] is the exponent that produces Navier slip for

m = 1, Weertman [14] sliding for m = 1/n, and Coulomb slip as m→ 0. In the present work, we define ε
and εb using a strain rate of 10−5 a−1 and a slip velocity of 1 m a−1, respectively.

To discretize this system with a finite-element method, we introduce the test functions φ ∈ V and
integrate by parts to produce the weak form: Find u ∈ V such that∫

Ω

∇φ:η1:

(
4ux + 2vy uy + vx uz
uy + vx 2ux + 4vy vz

)
+ φ · ρg∇s+

∫
Γbed

φ · β2(|u|2/2)u = 0 (3)

for all φ ∈ V , where Γbed is the slip portion of the bed.
For our numerical studies, equation (3) was discretized on a topologically structured hexahedral grid

using Q1 finite elements and standard 23-point Gauss quadrature. Length, time, and mass units were chosen
so that thickness, velocity, and driving stresses are O(1). See Section 3.2 for details on the enforcement of
Dirichlet boundary conditions.

The source code for our implementation is distributed as an example in PETSc [13] versions 3.1 and later.2

Several generalizations of the tests from ISMIP-HOM [12] are implemented, run with the option -help for a
complete list of options. Incidentally, our results for “5 km test C” in that paper (a slipperiness perturbation
on a flat bed) agree to three significant figures with the “Stokes” results therein. This is consistent with the
asympotic analysis of [6], which shows that slipperiness perturbations are not present in the leading-order
error terms for the hydrostatic equations (which are purely geometric); cf. [12, Table 4 and Figure 8], where
the ensemble range is nearly as large as the mean.

1This singular limit is important in the case of grounded margins, but the present work does not pursue it.
2Upon unpacking the source, which can be downloaded from mcs.anl.gov/petsc, see src/snes/examples/tutorials/ex48.c.
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3. Solver and implementation

We begin by writing the discretization of (3) as an algebraic system F (U) = 0 with Jacobian J(U). This
nonlinear system is solved with a Newton iteration that requires an approximate solution δU of

J(U)δU = −F (U). (4)

Newton methods are quadratically convergent in the terminal phase but may converge slowly or not at all in
early phases. Many applications of the present solver are in a time-stepping code where the initial iterates
start within the region of quadratic convergence; thus globalization would rarely be a concern. But since
a good initial iterate is not available in the present tests, we use grid sequencing (solving the problem on
a sequence of coarser grids) to produce an initial iterate on the fine grid. Globalization is also a critical
issue when solving steady-state problems. Grid sequencing requires a geometric hierarchy of meshes with
interpolation operators to move the solution to the next finer level. Managing this hierarchy is often seen as
a programming burden, but it exposes more robust algorithms than are available otherwise.

The Newton step (4) is solved by a Krylov method such as GMRES, for which the iteration count is
highly dependent on the quality of the preconditioner. Since J(U) is symmetric positive definite (SPD),
methods such as conjugate gradients could be used. This work always uses GMRES, hwoever, because it
allows the use of nonsymmetric preconditioners, and the iteration counts are always kept low so that storage
and restarts are not an issue. As an SPD system, it has a wide variety of preconditioners to choose from;
however, viscosity contrasts and strong anisotropy cause most preconditioners to perform poorly. The rest of
this section describes the methods used to produce a scalable algorithm in spite of these difficulties.

3.1. Anisotropy

The ratio of width to thickness for outlet glaciers (the regions of ice sheets with greatest physical interest)
ranges from O(1) to over 100. The nonlinear constitutive relation (2) produces three to four orders of
magnitude variation in viscosity (usually with fastest variation in the vertical) and the Newton linearization
of (3) produces additional anisotropy, effectively collapsing the conductivity tensor in the direction of the
velocity gradient.

For systems with a priori known anisotropy, semi-coarsening has been successful for attaining satisfactory
multigrid performance even with weak smoothers like SOR, but semi-coarsening is unattractive for two
reasons. First, semi-coarsening in the vertical direction would necessitate many levels because it reduces
the problem size only by a factor of 2 on each coarsening (instead of 8 for isotropic coarsening), and the
fully coarsened problem would still be far too large for a direct solver, necessitating further coarsening
in the horizontal direction. The presence of many levels leads to more synchronization in parallel, which
is detrimental to scalability and makes performance more sensitive to network latency. Second, viscosity
contrasts and anisotropy unaligned with the grid arise when the friction parameter β2 is not smooth, as is
the standard case when studying the migration of ice stream margins as the bed transitions from frozen
(no-slip or very high friction) to temperate and very slippery depending on subglacial hydrology.

To coarsen the system isotropically even on high-aspect domains, we order the unknowns so that columns
are contiguous with a natural block size of 2 (i.e., {ui,j,k, vi,j,k, ui,j,k+1, vi,j,k+1, . . . }, where k is the index
that is increasing in the vertical direction) and not decomposed in parallel. This decomposition is reasonable
since the number of vertical levels used in simulations is typically between 10 and 100; it also is convenient
since it is compatible with decompositions used by other climate model components.

With this ordering, zero-fill incomplete factorization effectively performs an exact solve of the column since
all the neglected fill (relative to an exact factorization) is caused by the coupling with adjacent columns. Pure
line smoothers were also tried as a smoother on the finest level, but robustness was significantly impacted,
and the memory benefits were deemed insufficient to pursue further.

In scenarios with little sliding (frozen or sticky bed) and elements that are wide compared to the ice
thickness, a lubrication approximation known as the “shallow ice approximation” is valid, allowing the velocity
field to be determined locally from the surface slope and a column integral. Since incomplete factorization
with column ordering provides nearly exact coupling in the vertical, it is an effective preconditioner in such
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scenarios with no coarse level. Indeed, with a typical ice thickness of 1 km resting on a frozen bed and
elements 5 km on a side, block Jacobi with zero-fill incomplete Cholesky converges to relative tolerance of
10−5 in about 10 Krylov iterations independent of the horizontal extent of the domain (number of elements
in the horizontal), independent of the number of elements in the vertical, and independent of the number of
subdomains (provided they do not get too small: there is some degredation when subdomain size approaches
a single column). However, none of these favorable performance characteristics remains when the elements
become small relative to the ice thickness or when the bed becomes slippery, since the usual O

(
(L/H)2

)
condition number for second-order elliptic problems preconditioned by one-level Schwarz methods with
subdomains of size H (see [15]) becomes apparent. Indeed, we have found low-fill incomplete factorization to
be nearly unusable as part of a one-level additive Schwarz method for problems with slippery beds or steep
geometry, even at low resolution, as investigated in Section 4.3.

3.2. Dirichlet boundary conditions

Multigrid is often sensitive to the enforcement of boundary conditions. Ideally, Dirichlet conditions would
be completely removed from the solution space, but doing so complicates grid management on structured
grids, so instead we leave these degrees of freedom in the system but decouple them from the other equations.
During residual evaluation in the finite-element context, this strategy corresponds to evaluating integrals
with the Dirichlet condition satisfied exactly and setting the residual on the Dirichlet nodes to be equal to
a multiple of the current solution. With this scheme, all rows and columns of the Jacobian corresponding
to Dirichlet nodes are zero except for a single diagonal entry. Thus the system retains symmetry, and
satisfaction of the Dirichlet conditions does not interfere with solving the other equations. For good multigrid
performance, the diagonal entry should be similar to the diagonal entry of the Jacobian for nearby nodes. To
ensure this, we set the residual at Dirichlet nodes to

fu = 2η(4hyhz/hx + hxhz/hy + hxhy/hz)u (5)

fv = 2η(hyhz/hx + 4hxhz/hy + hxhy/hz)u, (6)

where hx, hy, hz are the local element dimensions. This scaling produces the same diagonal entries that
would appear if the domain was extended so that constant viscosity momentum equations appeared at the
formerly Dirichlet nodes.

3.3. Matrices

The most expensive operations are Jacobian assembly and sparse matrix kernels. The former involves
evaluation of transcendental functions and quadrature loops. While transcendental functions take most of
the time for residual evaluation, they are less significant than quadrature loops for assembly. The quadrature
loops were explicitly vectorized by using SSE2 intrinsics, which led to a 30% speedup on Core 2 and Opteron
architectures using both GNU and Intel compilers. There was no manual vectorization for the Blue Gene/P
results quoted in Section 4.2.

Assembly costs could be further mitigated by recomputing it less frequently, either by using a modified
Newton method (degrades nonlinear convergence rate) or by applying the current operator matrix-free by
finite differencing the residual or using automatic differentiation, in which case only the preconditioner is
lagged. These are runtime options in the present code; but since they do not offer a clear benefit, theyhave
not been pursued in the present work. If matrix-free application of the true Jacobian is used, several other
preconditioning options become available without impacting the nonlinear convergence rate. One could
assemble only the block-tridiagonal column coupling, ignoring horizontal coupling, thus saving the memory
for the finest level(s). Additionally, a truly 2D coarse problem can be defined by using the shallow stream
equations [2, 3, 16] and restriction operators defined by integrating the entire column. These possibilities
are also runtime options, but they have not exhibited a level of robustness comparable to that of the more
conventional methods pursued here.

The Jacobian is always symmetric positive definite and has a natural block size of 2, so we use a symmetric
block format (PETSc’s SBAIJ). This format stores one column index per 2× 2 block in the upper triangular
part of the matrix and therefore uses about half the storage of the nonsymmetric BAIJ format, which in turn
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Table 1: Throughput (Mflop/s) for different matrix formats on Core 2 Duo (P8700) and Opteron 2356 (two sockets). MatSolve is
a forward- and back-solve with incomplete Cholesky factors. The AIJ format is using “inodes” which unrolls across consecutive
rows with identical nonzero pattern (pairs in this case).

XXXXXXXXXXKernel
Format Core 2, 1 thread Opteron, 4 processes

AIJ BAIJ SBAIJ AIJ BAIJ SBAIJ
MatMult 812 985 1507 2226 2918 3119
MatSolve 718 957 955 1573 2869 2858

uses 25% less memory than a scalar format (AIJ). Multiplication for symmetric storage requires twice as
much parallel communication as nonsymmetric storage, albeit with the same number of messages. In return,
the diagonal part of a parallel decomposition does twice as much work per matrix entry and thus achieves
higher throughput, as shown in Table 1.

There are two ways to construct matrices on the coarse levels of multigrid methods. The first, which
we use in almost all our numerical examples, is to rediscretize the system on the coarse mesh. In our
implementation, this involves re-evaluating nonlinearities on each level of the hierarchy, although restricting
fine-level coefficients of the linearized problem would also be possible. This procedure produces coarse
operators that are as sparse as possible on each of the levels. The Galerkin procedure is an alternative that
is mandatory for algebraic multigrid. Given an interpolation operator P : Vcoarse → Vfine and assembled
fine-level matrix Afine, the Galerkin coarse operator is Acoarse = PTAfineP . These operators work well for
some problems, but computing the sparse matrix product in parallel involves significant communication
and irregular memory access, so it is relatively expensive. Additionally, second-order-accurate interpolation
operators cause a loss of sparsity in the coarse-level operators, an effect known as stencil growth. Stencil
growth tends to blur regions where the solution has local structure and usually reduces the effectiveness of
inexpensive smoothers.

4. Numerical examples

We present several numerical examples that demonstrate the algorithmic and parallel scalability of the
Newton-Krylov multigrid approach.

4.1. Algorithmic Scalability

We consider three model problems inspired by the periodic domain ISMIP-HOM [12] tests. All use surface
s(x, y) = −x sinα, where α is the surface slope (the coordinate system is not rotated) and a bed similar to
bA(x, y) = s(x, y)− 1000 m + 500 m · sin x̂ sin ŷ for (x, y) ∈ [0, L)2 with x̂ = 2πx/L, ŷ = 2πy/L. Test X uses
bed bX = bA and stickiness parameter

β2
X(x, y) =

{
2000 Pa a m−1, if r = |(x̂, ŷ)− (π, π)| < 1

0, otherwise

which is free slip except for a sticky circle at the center of the domain, which is not aligned with the grid.
This problem exhibits shear localization at the edges of the sticky region and is most extreme at high aspect
ratio. We choose L = 80 km and α = 0.05◦3, which produce velocities from 0.9 km a−1 to 47 km a−1. A
visual representation of the nonlinear solve process is shown in Figure 1. This was run on 8 processors
starting from a coarse grid of 16× 16× 1, refining twice in the horizontal by factors of 2 in both x and y,
then three times in the vertical by factors of 8 each to reach a fine mesh of 64× 64× 513, which has elements
of nominal dimension 1250× 1250× 1.95 meters. In this example and the next one, Luis Chacón’s variant of
the Eisenstat-Walker [17] method was used to automatically adjust linear solve tolerances as the nonlinear

3This problem may be run with the options -thi hom X -thi L 80e3 -thi alpha 0.05, the other cases can be selected with
similar options.
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Figure 1: Grid-sequenced Newton-Krylov solution of test X. The solid lines denote nonlinear iterations, and the dotted lines
with × denote linear residuals.

solve converges. Solving the linear systems to higher tolerance would have little impact on the number of
nonlinear iterations and would be visible in the form of more × marks below the solid lines. That most ×
marks lie on the solid line for nonlinear residual is an indication that effort is well balanced between linear
and nonlinear solves.

Note that approximately 10 linear V-cycles on the fine level are required to reduce the residual by 10
orders of magnitude. We remark that Picard iteration takes at least 50 iterations to reach this tolerance
(sometimes many more; cf. [18], in which hundreds or thousands of iterations were needed for an easier
problem). Additionally, each linear solve for this fine-level problem requires hundreds or thousands of
iterations with a one-level additive Schwarz method; see Section 4.3, which considers a smaller problem.

Test Y places a 200 m tower with vertical walls on the top of each hump and uses an uncorrelated but
smoothly varying stickiness resembling a dimpled sombrero:

bY (x, y) =

{
bA(x, y), if bA(x, y) < −700 m

bA(x, y) + 200 m, otherwise

β2
Y (x, y) = 1000 Pa a m−1 · (1 + sin(

√
16r)/

√
10−2 + 16r cos

3x̂

2
cos

3ŷ

2
.

This tests the quality of the coarse grids even when large geometric errors are committed. Note that the
hydrostatic equations cannot be considered valid in this regime since the topography is too abrupt. Such
topography is present in reality, however, so we may still desire an efficient solver. Figure 2 depicts the
solve for this problem in a 10 km square domain. Because of the successively better resolution of the “cliff,”
performance deteriorates on each level, as can be seen by the closer spacing of linear solve marks (×). It is
entirely acceptable up to level 3, however, where the elements are approximately 12 m thick and stretch to
reach over a 200 m cliff in 125 m horizontal. On the finest level, they are 6 m thick and stretch over the cliff
in 62 m horizontal, a slope of 73◦. The approximation properties of such elements is poor and, considering
that the continuum equations are invalid here, we believe this resolved topography is significantly rougher
than will needed in applications.

Test Z sets bZ = bA, β2
Z = β2

X , and nonlinear sliding with exponent m = 0.3. It is a regime where the
hydrostatic equations are valid, provided the wavelength L is not too small. We use this case to explore
linear solve performance in Figure 3.
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Figure 2: Grid sequenced Newton-Krylov convergence for test Y .
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Figure 3: Average number of Krylov iterations per nonlinear iteration. Each nonlinear system was solved to a relative tolerance
of 10−2.
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Figure 4: Strong scaling on Shaheen. The straight lines on the strong scaling plot have slope −1, which is optimal. Grid
sequencing is used, but only the nonlinear solve on the finest level is shown since strong scalability is most important when
many time steps are needed.

4.2. Parallel Scalability on Blue Gene/P

We investigate strong scaling using test Z at 80 km with basal friction exponent m = 0.3 on Shaheen, a
Blue Gene/P at the KAUST Supercomputing Laboratory. Two problem sizes are solved, with coarse meshes
of 16× 16× 3 and 32× 32× 3, respectively. Both use five levels of isotropic refinement to reach target meshes
of 256× 256× 48 and 512× 512× 48, the latter with nominal element sizes of 156× 156× 21 meters. The
coarse problems are solved redundantly in each case and also using the XXT direct solver of [19] (TFS),
which exhibits significantly better scalability, as shown in Figure 4 on a fixed global problem size (strong
scalability).

Figure 5 shows weak scalability. The size of the coarse grid was held constant, and additional levels
were added as the number of processes was increased, such that the subdomain sizes remain approximately
constant.

4.3. Algebraic methods

Building a geometric hierarchy with rediscretization on coarse levels adds software complexity that many
developers of numerical models do not want to deal with. In this section, we summarize the performance
characteristics of several popular algebraic methods. We consider test X, L = 80 km, α = 0.03, with
40 × 40 × 12 elements distributed over four processes. We compare our multigrid method with several
one-level domain decomposition methods, two algebraic multigrids, and field-split approaches. This problem
is challenging for the standard Newton iteration which requires 37 iterations and should be accompanied by
grid sequencing for efficiency. It takes the problem through a range of nonlinearities, however. Thus the
number of Krylov iterations to solve with a relative tolerance of 10−5, presented below, is a good test of the
linear solver.

We first consider one-level domain decomposition methods with incomplete factorization, which are
currently used to solve the hydrostatic equations by [20, 21] among others. To keep iteration counts
representative, we use full GMRES (no restart) with modified Gram-Schmidt orthogonalization (note that
neither is practical for production use). Conventional symmetric additive Schwarz is denoted ASM(k), where
k is the overlap, restricted additive Schwarz [22] is denoted RASM(k). The average number of GMRES
iterations per Newton is shown in Table 2. Note that increasing overlap has no benefit when incomplete
subdomain solvers are used.

8



16 128 1024
Number of processes

5

10

15

20

25

30

35

40

Ti
m

e
(s

ec
on

ds
)

32× 32× 3 coarse level, Redundant SNESFunctionEval
32× 32× 3 coarse level, Redundant SNESJacobianEval
32× 32× 3 coarse level, Redundant PCApply

Figure 5: Weak scaling on Shaheen with a breakdown of time spent in different phases of the solution process. Times are for the
full grid-sequenced problem instead of just the finest level solve.

Table 2: Average number of GMRES iterations per Newton for one-level domain decomposition with different overlap and fill.
Negative pivots appeared frequently in all cases where incomplete factorization was used.hhhhhhhhhhhhhhhDecomposition

Subdomain
ICC(0) ICC(1) ICC(4) Cholesky

Block Jacobi 367 315 220 97
ASM(1) 508 441 296 59
RASM(1) 368 306 190 52
ASM(2) 521 445 316 44
RASM(2) 365 305 189 38
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Table 3: Average number of GMRES iterations per Newton for field-split preconditioners with different ways of combining the
splits and different solvers within the splits. BoomerAMG used 7 levels and ML had 3 with the same solver parameters as
discussed in the text for the coupled approach.

Solver in Splits Additive Multiplicative Sym. Multiplicative
Cholesky 19 9.9 9.3
ML 41 34 30
BoomerAMG 89 83 78
RASM(1)+Cholesky 186 173 84

The parallel algebraic multigrid packages ML [23] and BoomerAMG [24] provide potentially scalable
alternatives. ML is based on smoothed aggregation, tends to coarsen very rapidly, and provides its restriction
and coarse-level matrices to PETSc so that that elaborate smoothers can be used. ML does not converge for
this problem with standard options; but with FGMRES on the outside of the V-cycle and GMRES(1) with
RASM(1) as the smoother, using ICC(0) for the subdomain solve except on level 1, where a direct solve was
used, we see 34 V-cycles per Newton. ML needs only three levels to reach a coarse level with 144 degrees
of freedom. BoomerAMG is a classical algebraic multigrid, which tends to coarsen slowly on anisotropic
problems and does not expose the internal details, so smoother choices are limited. BoomerAMG needs seven
levels to reach a coarse grid with 663 degrees of freedom and averages 76 iterations per Newton. There were
other, somewhat challenging problems for which BoomerAMG was competitive in terms of iteration count,
but the setup costs and required number of levels were always large.

Another approach to solving multicomponent problems is to split the components and solve scalar
problems for each in hopes that the scalar problems can be more readily handled by available software
such as algebraic multigrid. The split problems can be combined additively, multiplicatively, or symmetric
multiplicatively. Unlike most Schwarz methods, additive methods are not typically implemented to expose
concurrency, but it is simpler to implement in a matrix-light way because only the “self-coupling” terms
need to be made available. Multiplicative methods need to apply the off-diagonal submatrix, and the most
efficient way to do so is usually by assembling it; but the submatrix can also be applied by finite differencing
the full residual. The results, shown in Table 3, are uninspiring, especially when considering that field-split
creates additional synchronization points and attains lower throughput since it works with scalar matrices
instead of block matrices (see Table 1).

A good geometric multigrid for this problem uses four-levels with a coarse grid of 10× 10× 2 elements,
which is semi-refined twice by a factor of 2 in the horizontal, then by a factor of 6 in the vertical to reach the
target 40× 40× 12 grid. The smoothers consist of a domain decomposition method and a subdomain solver
that may be exact or inexact. Direct solves for the subdomain problems on level 1 are inexpensive and tend
to improve robustness so we always use a direct solve. A different refinement involves a 10× 10× 1 coarse
grid and semi-refines twice by a factor of 2 in the horizontal, then by a factor of 12 in the vertical to reach the
same target grid. The coarse levels are smaller in this case so the refinement is more efficient provided the
iteratation counts are similar. Table 4 explores a variety of multigrid preconditioner configurations with each
coarse level. A distinct effect is that inexact subdomain solvers cause minimal performance degradation; cf.
Section 2 where a factor of 5 to 10 degradation is visible. Use of Galerkin coarse operators has a catastrophic
effect on the iteration count and may help explain the poor robustness exhibited by the algebraic multigrids.
We cannot explain why symmetric additive Schwarz performs so poorly in this problem, but the other
numbers are robust to changes in resolution, spatial domain, and number of processes.

We remark that when using grid sequencing and the method in the last row of Table 4, the problem can
be solved in seven Newton iterations on the fine level and an average of 5.4 V-cycles per Newton. If the
Eisenstat-Walker method is used to avoid oversolving, the problem takes eight Newton iterations with a total
of 12 V-cycles.
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Table 4: Average GMRES iterations per Newton for different multigrid preconditioners.

Coarse Problem
Level 1 Level 2 and 3

Its
Decomp. Subdomain Decomp. Subdomain

10× 10× 2 Redisc BJacobi Cholesky BJacobi Cholesky 8.9
10× 10× 2 Redisc BJacobi Cholesky BJacobi ICC(0) 9.6
10× 10× 2 Redisc BJacobi Cholesky ASM(1) ICC(0) 11.9
10× 10× 2 Redisc BJacobi Cholesky RASM(1) ICC(0) 6.9
10× 10× 2 Redisc ASM(1) Cholesky ASM(1) ICC(0) 20.2
10× 10× 2 Redisc RASM(1) Cholesky RASM(1) ICC(0) 5.9
10× 10× 2 Galerkin RASM(1) Cholesky RASM(1) ICC(0) 54.
10× 10× 1 Redisc BJacobi Cholesky BJacobi ICC(0) 10.3
10× 10× 1 Redisc ASM(1) Cholesky BJacobi ICC(0) 10.1
10× 10× 1 Redisc RASM(1) Cholesky BJacobi ICC(0) 6.9

5. Conclusion

We have presented a grid-sequenced Newton-Krylov multigrid algorithm for solving the hydrostatic
equations for ice sheet flow. This geometric multigrid method demonstrates textbook multigrid efficiency
for extreme topography and basal conditions and offers O(1000) speedups relative to Picard linearization
and one-level domain decomposition with incomplete factorization, the methods currently used to solve
these equations [20, 21, 25, 18, 11]. Algebraic multigrid and field-split preconditioners were not found to be
competitive in terms of robustness or efficiency.
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