Available online at www.sciencedirect.com

ScienceDirect Procedia Computer

Science

ELSEVIER Procedia Computer Science 00 (2011) 1-12

Toward Malleable Model Coupling

Dai-Hee Kim?, J. Walter Larson®®¢, Kenneth Chiu®

“Department of Computer Science, SUNY Binghamton, P.O. Box 60000, Binghamton, NY 13902, USA
Email: {dkim17 ,kchiu}@cs.binghamton.edu
" Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA
Email: 1arson@mcs.anl.gov
¢Computation Institute, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637, USA
4School of Computer Science, The Australian National University, Canberra, ACT 0200, AUSTRALIA

Abstract

Model coupling is a well-known method employed to simulate complex multiphysics and multiscale phenomena.
Approaches have concentrated on coupling parallel models involving static data distribution among processes without
the consideration of top-level dynamic load balancing. Malleability, the ability to change during execution the number of
processes in an application, allows applications to configure themselves to better utilize available system resources. To
date, however, malleability has been applied primarily to monolithic applications. We have extended the Model Coupling
Toolkit (MCT) to support processing element malleability for coupled models, resulting in the Malleable Model Coupling
Toolkit (MMCT). MMCT consists of a load balance manager (LBM) implementing a practical dynamic load-balancing
algorithm and a malleable model registry that allows management of dynamically evolving MPI communicators. MMCT
requires only standard MPI-2, sockets, and MCT. We benchmark MMCT using a synthetic, simplified coupled model
application similar to the Community Climate System Model. Preliminary performance data demonstrate the efficacy of
the LBM and a low (= 3%) monitoring overhead.

Keywords: MPI, Dynamic Load Balance, Model Coupling, Multiphysics Modeling, Multiscale Modeling

1. Introduction

Current scientific challenges often involve complex systems spanning multiple disciplines (e.g., a climate system
model) or spatiotemporal scales (e.g., nested-domain numerical weather prediction)—multiphysics and multiscale prob-
lems, respectively. A defining characteristic of these systems is the existence of data dependencies, or couplings, between
their constituent subsystem models, or constituents. Thus, multiphysics and multiscale models are more generally called
coupled models or coupled systems. Coupled models abound among grand challenge applications in computational sci-
ence. Advancements in microprocessor technology and the advent of parallel computing have enabled coupled model
development. The march toward exascale computing will make coupled models increasingly common and pose new
challenges for model coupling software. A critical requirement for utilizing up to million-way parallelism will be the
design and implementation of highly effective and efficient load balance mechanisms, including support for dynamic load
balance both within and between constituents. An online automatic rebalancing scheme will be critical as multiphysics
and multiscale models grow in complexity from relatively few to large numbers of constituents.

The challenge inherent in building coupled models is called the coupling problem [1]. Moreover, coupled systems
frequently employ parallel computing, in particular distributed-memory parallelism using the Message Passing Interface
(MPI) [2] standard, giving rise to the parallel coupling problem (PCP) [1]. Each constituent in a parallel coupled
model resides on a set of processors—or processing elements (PEs)—called a PE cohort, or simply cohort. Parallel
coupled models evolve their state by solving each constituent’s equations of evolution on its respective cohort, with
data dependencies on other constituents satisfied at a minimum by parallel M X N data transfers [3], though other data
transformation operations (e.g., intermesh interpolation) are likely required.

/ Procedia Computer Science 00 (2011) 1-12 2

The main performance concern of scientists who use coupled models is throughput, which is the amount of simulation
accomplished (in terms of the model’s timestep) divided by the wall clock time required to perform the simulation;
for example, throughput in a coupled climate model is measured in model years per wall-clock day. Achieving high
throughput requires not only that individual constituents scale well but also that the resources allocated to each constituent
be harmonized to minimize lost cycles while constituents await data during the coupling process. A key challenge
in building efficient parallel coupled models is the allocation of resources, specifically PEs, to constituents, and the
reallocation of resources should runtime load characteristics change dramatically during a simulation. Load balance
and resource allocation in parallel coupled models strongly affect model throughput. The present work’s focus is solely
on this aspect of the PCP. Typically, parallel coupled models employ static load balance, with resource allocation to
constituent subsystems determined offline through trial and error. Automatic dynamic load balance, both within and
between constituents, is thus highly desirable. Load balance within a constituent is amenable to existing load-balancing
approaches. Interconstituent load balance, however, requires further work, in particular the capability for a coupled
model to resize constituents’ PE cohorts to better use system resources; we call this property cohort malleability, or
simply malleability [4]. We define a parallel coupled model with malleable constituent cohorts to be a malleable coupled
model (MCM).

Malleability imposes new requirements on coupled model infrastructure: (1) load monitoring; (2) evaluation of cur-
rent load balance; (3) algorithms for computing more optimal resource distributions; (4) checkpointing or redistribution
of constituents’ states; (5) reallocation of constituent PE pools; and (6) instantiation and initialization of constituents
on the resized PE pools, including handshaking of interconstituent M X N communication schedules. One can also
view these requirements as the sequence of operations performed by an MCM as it rebalances itself. Our primary fo-
cus is a generic, portable solution to requirements (1-3) and (5-6). We view checkpointing or redistribution as highly
application-specific. A general mechanism for checkpointing parallel codes is a problem beyond the scope of our work.

Malleable iterative parallel applications have been investigated and shown to be beneficial. The ReSHAPE [5] frame-
work adopts malleability for efficient job scheduling by resizing the processor allocation of malleable applications based
on the utilization of distributed resources. Maghraoui et al. [6, 7] introduced malleable iterative MPI applications that
can change their process configuration dynamically by working with the PCM/IOS runtime environment. PCM/IOS pro-
vides mechanisms for reconfiguration, most notably a profiling module that monitors the status of applications to guide
and inform resource reallocation. SRS [8] also provides methods to allow a parallel application to reconfigure itself
through its stop and restart processes. These approaches, however, are not immediately applicable to malleable model
coupling because they are targeted to monolithic parallel applications, as opposed to frameworks/toolkits for model cou-
pling. Ko et al. [9] describe a coupled multiphysics simulation that can optimize the allocation of constituents on the
given set of PEs. The load-balancing algorithm described in [9] is acceptable only for a coupled model consisting of
two constituents. Moreover, each model communicates by exchanging files, an approach that is less general than MPI
or socket-based communication. The CSCAPES project [10] has investigated load balancing and allocation issues but
primarily has used a priori knowledge about the application and has examined mainly load balance within a constituent.
As coupled models become increasingly complex, mechanisms that gather online performance information and utilize it
to perform interconstituent dynamic load balance become increasingly attractive.

To address these issues, we extended the Model Coupling Toolkit (MCT) [11, 12] to enable it to support malleable
MPI communicators and a malleable MPI_COMM_World, thus supporting MCMs. MCT is generic MPI-based coupling
middleware that is widely used by the climate, weather, and ocean modeling communities. We enhanced MCT by adding
load-monitoring and optimization schemes, a central load balance manager, and a mechanism for resizing constituents’
cohorts. The resulting system—malleable MCT (MMCT)—extends MCT’s programming model to allow construction
of parallel coupled models whose constituent PE cohort configuration is automatically reconfigurable at runtime using
decisions made by its load balance manager. We then investigated various dynamic load-balancing techniques to show
the feasibility of the approach and the effectiveness of the modifications to MCT. We devised general optimization and
expansion algorithms loosely based on the gradient descent method [13]. The optimization and expansion algorithms are
used to optimize the configuration for N constituents and to allocate more available resources on a homogeneous cluster
to improve utilization of distributed resources and coupled model throughput.

We briefly discuss MCT, describe our load-balancing mechanism, and give an overview of MMCT in Sections 2,
3, and 4, respectively. In Section 5 we describe a testbed coupled climate model simulator that employs MMCT to
implement malleable model coupling, and we present preliminary performance results. We conclude with a discussion
of the implications of our results and an outline of future work necessary to deploy MMCT in production.

2. Model Coupling Toolkit

MCT is open-source software [14] that provides an API consisting of datatypes and functions supporting the de-
scription of constituents and their input/output data, parallel data transfer and redistribution, and commonly encountered

/ Procedia Computer Science 00 (2011) 1-12 3

data transformation operations. Supported data transformation operations include conservative intergrid interpolation
implemented as a parallel linear transformation, time integration (averaging) of flux (state) variables, and merging of
outputs from multiple constituents for input to another constituent. Collectively, MCT’s API is widely applicable to data
coupling between legacy MPI-based parallel models. MCT implements a peer communication approach: couplings are
viewed as large-scale M x N messaging between models, extended by other data transformation operations. A complete
discussion of MCT’s design philosophy and object model is given in [11]. A detailed description of MCT’s parallel data
transfer and regridding facilities is given in [12]. MCT has been used in numerous applications, most notably as coupling
middleware for versions 3 and 4 of the Community Climate System Model (CCSM) [15, 16], used by an international
community to study climate change, climate variability, climate sensitivity, and paleoclimates.

Below we describe aspects of MCT pertinent to its extension to support malleability. The MCT programming model
is largely unchanged by the implementation of cohort malleability, and modifications of an existing parallel coupled
model to make it an MCM should be straightforward.

The MCTWorld class is a lightweight constituent registry, encapsulating the number of constituents in the coupled
model, the allocation of processors to constituents, and their individual communicators. MCT was developed by using
the MPI-1 standard’s [2] communicator creation and manipulation scheme. The MCTWorld class encapsulates a global
communicator that is typically a copy of MPI_.COMM_WORLD. The singleton MCTWorld can be created by using either
a single master call by the root PE on the global communicator or a distributed call by each PE on each constituent’s
cohort, with individual constituent communicators previously created by application of a communicator splitting mech-
anism such as MPI_COMM_SPLIT() to the global communicator. MCT stores the communicator ID and list of member
MPI processes for each cohort in the MCT_World. MCT builds communications schedulers for M X N transfers through
process ID lookup using the MCT_World registry. This is conceptually attractive because it allows constituents to ex-
change domain decomposition descriptions defined using local process IDs on their respective communicators, with the
MCT_World the interlocutor to create interconstituent communications schedules. In the current, publicly released ver-
sion of MCT, the MCT_World class is considered a singleton, instantiated in the global variable ThisMCTWorld, and
static over the life of an application at runtime.

3. Load-Balancing Algorithm

We first define terms for timestepping and resource allocation in coupled models. The time evolution of a coupled
model occurs as each constituent solves its respective equations of evolution on its domain, utilizing (supplying) coupling
input (output) from (to) other constituents. The provision (uptake) of coupling data occurs during coupling events [1].
The timing of coupling events may not be known in advance, but rather as a consequence of runtime behavior. Or,
the coupling events may be known a priori—scheduled coupling [1]. For some scheduled coupling situations, the full
schedule of interconstituent coupling time intervals may be mutually commensurate, resulting in a coupling cycle [1].
The ratio of timescales corresponding to the constituent’s timestep versus the interval between coupling events can be
used to define the tfightness of the couplings [1]. For example, in the standard configuration of CCSM, the constituents
are the atmosphere, ocean, sea-ice, and land models and an additional entity called the coupler; all data traffic be-
tween the constituents in CCSM is directed via the coupler. In a standard configuration of CCSM, the model timesteps
are {Afym, Atocn, Alice, Atiand, Atept} = {20, 20, 60, 60, 60} minutes. CCSM’s couplings are scheduled, with the interval
between the atmosphere, land, and sea-ice models’ interactions with the coupler occuring hourly, while the ocean com-
municates with the coupler once per model-day; thus CCSM has a repeating coupling cycle AT equal to one model-day.
Note that the atmosphere, land, and sea-ice models are more tightly coupled to the system than is the ocean model.

PE cohorts in coupled models can be defined in a wide variety of configurations, or process compositions [1]. The
two most basic are sequential and parallel compositions [17]. A sequential composition allocates all constituents to
the same PE cohort, with the coupled system running as an event loop executing each constituent in turn. A parallel
composition allocates each constituent its own PE cohort, and these cohorts are disjoint.

Consider a coupled model with N constituents. In the load balance analysis that follows, we assume that each
constituent has its own constant timestep Af;,i € {1, ..., N}; coupling events fall into a coupling cycle AT > At;Vi; and
the constituents are configured in a parallel composition. These assumptions, though highly restrictive, are present in a
wide variety of coupled climate, weather, and ocean applications.

Our load-balancing schemes analyze constituent profiling data gathered over a load-sampling interval (LSI); in the
analyses presented here, the LSI corresponds to the coupling cycle time AT. The global iteration time 7 is the wall clock
time required by the coupled model to evolve its state over a period AT. The constituent iteration time 7; is the wall clock
time required for the constituent to evolve its state over the period AT this time is decomposed as 7; = 7, * + 7, ", the
sum of the constituent computation and constituent coupling times, respectively. In other words, 7" and 7;"" are the

wall clock times during which the constituent computes its internal state (including comcomitant communciations within

/ Procedia Computer Science 00 (2011) 1-12 4

initialize
prev_iter_time = co; prev_comp.-sum = oo;
prev_donor = -1; prev_recipient = -1;

end
update
prev_iter_time = cur_iter_time;
prev_comp_sum = cur_comp_sum; { n-models 1s THE NUMBER OF MODELS. MODELS_COMP IS AN ARRAY OF MODEL
previdonor = donor; previrecipient = recipient; REFERENCES IN DECREASING T;Omp ORDER. MODELS_SLOPE IS AN ARRAY OF MODEL
end REFERENCES SORTED IN DECREASING DERIVATIVE 6Tf°mp ORDER.}
initialize; {FIRST SEARCH.}
repeat for i = n_models — 1to 1 do
cur_iter_time = 7¢; {CURRENT SMALLEST SLOPE.}
cur_comp-_sum = sum of Tfomp of all models; donor = models_slopel[i];
{ConpirrION 1.} {PICK GREATEST COMP TIME AS RECIPIENT. }
if cur_iter_time < prev_iter_time and cur_comp_sum < prev_comp_sum for j = 0 to j = numodels — 1 do
then if models_comp[j].comp_time > donor.comp_time and mod-
Mark [prev_recipient, prev_donor] pair as a non-viable reallocation els_comp][j] not donor then
direction; recipient = models_comp[j];
Choose [donor, recipient] pair using SEL1 or SEL2; end if
num-_procs = 1; try_count = 1; end for
update; if [donor, recipient] pair is viable reallocation direction then
{ConprTION 2.} return [donor, recipient];
else if (curiter_time < prev.tertime or curcomp.sum < end if
prev_comp_sum) and try_count < try_count_limit then end for
{TRY AGAIN.} {SECOND SEARCH, IF SLOWEST MODEL CAN NO LONGER BENEFIT FROM MORE PRO-
donor, recipient = [prev_donor, prev_recipient]; CESSORS. }
num-_procs = 1; try_count++; for i = 0 to n_models — 1 do
update; donor = models_compl[i];
else {Conpition 3} for j = 0 to n_models — 1 do
Mark [prev_donor, prev_recipient] pair as a non-viable reallocation if models_slope[j].comp_time < donor.comp_time and mod-
direction; els_slope[j] not donor then
{REVERSE DIRECTION TO UNDO} recipient = models_slope[j];
donor, recipient = [prev_recipient, prev_donor]; end if
num-procs = try_count; end for
initialize; if [donor, recipient] pair is viable reallocation direction then
end if return [donor, recipient];
if [donor, recipient] pair is viable then end if
reallocate([donor, recipient], num_procs); end for
end if {NO VIABLE DIRECTION}
until [donor, recipient] pair is viable return [-1, -1];
Figure 1: Optimization algorithm. Figure 2: SEL2 selection algorithm.

its cohort) and awaits (supplies) data from (to) other constituents, respectively. Our objective is to formulate analyses of
(T, oTns T, L, Ty T} that guide constituent cohort reallocation to decrease 7¢.

We assume that 77" for a constituent follows a simple curve with respect to the number of PEs N; allocated to it.
Initially, the curve slopes downward, indicating that the performance increases. At some point, we assume performance
saturates, and the curve starts to slope upward, indicating that communication and other overheads are starting to dom-
inate Tfomp . The iteration time of the complete coupled application, 7¢, is a complex function of its PE allocation to its
constituents. If the models are fully concurrent and never wait on each other except at the end of an iteration, the 7¢ will
be the same as that of the slowest constituent (i.e., the one with the maximum value of 7;"""). In more realistic cases,
however, the situation is more complex.

We assume that two types of allocation situations may occur. The first is where the current PE allocation across
constituents is performaing poorly and needs to be rebalanced. We consider this an optimization phase. The other is
where a new PE is to be donated to the application’s global PE pool, and thus a recipient constituent needs to be chosen.
We call this an expansion phase. The two phases may be interleaved, of course. Contraction, or rescinding a PE from
the global pool, would also be a useful operation but is not considered in this paper; it will be examined in future work.

Optimization. The algorithm for optimization is described in Figure 1. We assume that each pair of constituents, a donor
and a recipient, represents a direction for possible reallocation (i.e., taking a PE away from the donor and giving it to
the recipient). The algorithm reallocates in a direction as long as performance is improved. The directions that are tried
are selected by the algorithms SEL1 and SEL2 given in Figure 3 and 2, respectively. When it is detected that a direction
works, the opposite direction is marked false, to indicate that it should not be considered. Once a direction fails to
improve performance, the last reallocation is undone. The algorithm tries all possible directions for reallocation at least
once.

/ Procedia Computer Science 00 (2011) 1-12 5

{ n_models 1s THE NUMBER OF MODELS. MODELS_COMP IS AN ARRAY OF MODEL
REFERENCES SORTED IN DECREASING ‘rfomp ORDER.}
{FIRST SEARCH.}
for i = n_models — 1 to 1 do
{CURRENT FASTEST. }
donor = models_compl[i];
for j=0toi—1do
{CURRENT SLOWEST.}
recipient = models_comp[j];
end for
if [donor, recipient] pair is viable direction then
return [donor, recipient];
end if
end for
{SECOND SEARCH, IF SLOW MODEL CAN NO LONGER BENEFIT FROM MORE PROCES-
SORS. }
for i = 0 to n_models — 1 do
{CURRENT SLOWEST. }
donor = models_compli];
for j =i+ 1ton-models — 1 do
{Next slowest.}
recipient = models_comp[j];
end for
if [donor, recipient] pair is viable reallocation direction then
return [donor, recipient];
end if
end for
{NO VIABLE DIRECTION.}
return [-1, -1];

Figure 3: SELI selection algorithm.

call EMCTWorld_init(comms, nprocs, lbm_info)
call EMCT_LB_init(current_iter, end_iter)
if (Get_emctstatus() == EMCT_BEGIN) then
!Initialize model
endif
do i = current_iter, end_iter
call EMCT_LB_profile(Routs, comms)
emct_status = Get_emctstatus()
if (emct_status == EMCT_SHRINK) then
'Redistribute data
call EMCT_LB_resizeset(emct_status, comms)
elseif (emct_status == EMCT_EXPAND) then
call EMCT_LB_resizeset(emct_status, comms, i,
end_iter)
'Redistribute data
elseif (emct_ststus == EMCT_PRESERVE) then
call EMCT_LB_resizeset(emct_status, comms)
endif
if (emct_status /= EMCT_RUN)
'Recompute communication schedule with
!connected models
endif
'Do own job for simulation
enddo

Figure 4: Fortran skeleton code for an MMCT-based MCM.

The performance of a constituent may be subject to factors other than the number of processors, such as OS jitter,
communication bottlenecks caused by other jobs, or computational changes in any particular iteration. We detect such an
anomaly by using both 7 and the sum Zfi , Tfomp . If a reallocation direction reduces one of these quantities but not the
other, we consider this an ambiguous situation and continue to reallocate in this direction until we can unambiguously
determine that this direction negatively affects performance.

To choose the donor and recipient constituents, we tried two different algorithms. The SEL1 algorithm uses only a
constituent’s computation time 7; to make its decisions. The SEL2 algorithm uses a constituent’s 7;""* and the ratio
6Tf°mp = ‘rfomp /N;. We call the term (5T§0mp the derivative, which is under the assumption of perfect intraconstituent load
balance, a finite-difference approximation of d7°*™ /dN;; the uncertainty in the derivative 67;""" is proportional to load
imbalance within the ith constituent. For both SEL1 and SEL2, the guiding heuristic is that we should try to speed the
slowest constituent (i.e., the one with the greatest 7, 7).

SEL1 proceeds by iterating through the constituents in increasing order of their Tfomp, choosing each in turn as a
candidate donor. For each candidate donor, the slowest constituent is chosen as a recipient. This pair is used as a
candidate direction, and the first viable direction is used. If no viable directions can be found, we assume that the slowest
constituent has reached the point of negative returns. SEL1 then tries to donate from the slower constituents. Details are
given in Figure 3.

We noted that SEL1 did not always work well, as discussed in Section 5. To address this issue, we modified the
algorithm to also consider the derivative. SEL2 proceeds by iterating through the constituents in increasing order of their
derivative 6Tf°mp , choosing each in turn as a candidate donor. For each candidate donor, the slowest constituent (one with
the greatest ‘rfomp) is chosen as a recipient. This pair is used as a candidate direction, and the first viable direction is used.
If no viable directions can be found this way, we assume that the slowest constituent has reached the point of negative

returns. We then try to donate from the slower constituents instead. Details are given in Figure 2.

Expansion. The expansion algorithm uses the same algorithm as the optimization algorithm execpt that no donor con-
stituent is chosen. Instead, the processor is a free processor obtained externally. The recipient can be chosen by two

means. The first is based on 7;""" ; the second is based on 67,

4. Malleable MCT

We extended MCT for use in developing MCMs by adding a communicator management system that employs dy-
namic process management, a global constituent load diagnosis and balance calculation system that employs the algo-

/ Procedia Computer Science 00 (2011) 1-12 6

rithms described in Section 3, and a central load balance manager that coordinates constituent cohort reapportionment.
The current implementation of MMCT is a research prototype but is fully capable of supporting malleable parallel com-
position of models such as the testbed application described and evaluated in Section 5. Two new modules were added to
MCT to implement these features. EMCTWorld implements dynamic process management to enable constituent cohort
malleability. EMCT_LB implements interconstituent dynamic load balancing. The current MCT programming model is
unchanged aside from these additions; in fact, legacy MCT applications can use the nonmalleability features in MMCT
without modification. No modifications to the MCTWorld source code were required. For reference, we provide a
skeleton Fortran code (Figure 4) to illustrate the usage of MMCT’s methods in an MMCT-based MCM.

EMCTWorld represents a profound change in how MCT’s constituent registry is initialized and functions. In MCT,
constituents’ individual communicators are created by splitting the global communicator. This top-down approach,
however, is not appropriate for MCMs because any initial PE that belongs to MPI_.COMM_WORLD cannot be removed
at runtime; hence MCTWorld is considered a singleton class in MCT. In MMCT we employed a bottom-up approach that
leverages MPI2’s [2] dynamic process management facility to create and manipulate communicators. MPI-2 allows one
to spawn new PEs that can be merged into the global communicator. In MMCT the global communicator is constructed
by combining constituents’ communicators via invocations of MPI_Comm_Connect() and MPI_Comm_Accept(). These
operations reside in the EMCTWorld_init() method. Under MMCT, an MCM with N constituents is initialized with a
global communicator containing N PEs, one per constituent; these PEs are each constituent’s head nodes and are the
only PEs guaranteed to remain with the constituent throughout the full run of the MCM. PEs are added incrementally
to each constituent’s communicator to establish the initial configuration of (Py, ..., Py) PE’s. EMCTWorld_init() also
registers the constituents’ and global communicators in the MCTWorld module, allowing the rest of MCT to function as
is.

The LoadBalance module encapsulates system constituent load information and implements the initialization, load
assessment and rebalancing, and PE reallocation mechanisms. EMCT_LB_init() initializes the LoadBalance module
by referring to communicators registered in the MCTWorld object. ECMT_LB_profile() is the constituent load balance
analysis system and is called periodically in the global time integration loop of an MCM. This function is typically
invoked at the beginning of the time loop of the malleable constituent to measure the constituent’s computation and
coupling times, 7, and 7; " (e.g., execution times for routines such as MCT_Send(), MCT_Recv(), and MCT_Wait()),
respectively. This function also serves as a synchronization point in the MCM, which is vital to ensuring constituent
cohort reallocation proceeds correctly. EMCT _LB_resizeset() performs constituent cohort resizing. Each constituent PE
cohort undergoes one of three actions—expand, shrink, or preserve—that result in respective increased, decreased, or
unchanged size.

Each PE in an MMCT-based system has a status that evolves as the system runs. Five possible status values exist—
BEGIN, SHRINK, EXPAND, PRESERVE, and RUN. The process status can be queried at any time by calling the MMCT
function Get_emctstatus(). BEGIN indicates the malleable coupled model is to be initialized. SHRINK, EXPAND, and
PRESERVE indicate constituent cohort reallocation must occur, with appropriate action required to resize allocated
memory for data and/or data redistribution. RUN indicates no cohort reapportionment is necessary; that is, the system
is in between load diagnosis or rebalancing events. Note that when the PE status is not RUN, constituents will likely
require re-handshaking of interconstituent parallel data transfer communication schedules.

The centralized load balance manager (LBM) runs on a physical processor distinct from the MPI global communica-
tor. It communicates with constituents’ head nodes using out-of-band, socket-based communications; thus the commu-
nications burden on the LBM scales as the number of an MCM’s constituents rather than the total number of MPI PEs,
lowering the likelihood the LBM will be a bottleneck. Socket-based communications were chosen to separate concerns
between the LBM and issues of the MPI-based malleable simulation environment, such as communicator management.

The LBM is initialized with the machine information of the cluster on which the MCM will run and sends a list of
machines and/or free PEs to the MCM’s constituents’ head nodes. The LBM receives profiling data reports from each
constituent’s head node; these reports are generated by constituents’ calls to ECMT_LB_profile(). The LBM analyzes
constituents’ profiling data using one of its load balance algorithms, computing a refined resource allocation for the
MCM. The LBM sends reconfiguration decisions to each constituent’s head node, with orders on whether the constituent
must SHRINK, EXPAND, or PRESERVE its cohort; for SHRINK or EXPAND decisions, a list of machines/PEs to be
respectively eliminated or added to the cohort is included.

The runtime architecture for a simple MMCT-based MCM is depicted in Figure 6. Constituents’ argument lists
must be extended to include the following arguments: NPEi, the initial number of PEs assigned to the ith constituent;
LBM_HOST, the hostname of machine where LBM will run; and LBM_PORT, the port number constituents’ head nodes
will use to communicate with the LBM. The MCM application is invoked by first initiating execution of the LBM,
followed by execution of the MPI-based coupled model using mpiexec:

mpiexec -np 1 ./constituentl $NPE1 $LBM_HOST $LBM_PORT

/ Procedia Computer Science 00 (2011) 1-12 7

Climate benchmark

Foreach (day) { Foreach (day) { Foreach (day) {
mctload() Foreach (hour) {
Foreach (hour) { recv_atm()

sload() | —1 sload() sload()

pl
send_cpl() /// send_atm() = A
} recv_cpl()«—]| Enctload() mpiexec ut of Band Sommunicafion (socket)
} send_ocean() » recv_cpl() \

recv_ocean() «—| mctload()

atm C ocn

mctload() — send_cpl() MPD Load Balance Manager
} } (MPICH2) (LBM)
atm cpl ocn
Figure 6: Runtime architecture for the Climate benchmarkwith MPD and
Figure 5: Climate benchmark application. LBM.

-np 1 ./constituentN $NPEN $LBM_HOST $LBM_PORT

Runtime overhead for the LBM was measured as part of the testbed experiments described in Section 5. The LBM,
out-of-band LBM/MCM, communications, constituent profiling, and optimization algorithms occupied approximately
3% of the total wall-clock runtime—well below the performance gains realized by enabling interconstituent dynamic
load balance. This initial result augurs well for MMCT’s viability in implementing model coupling malleability.

The prototype MMCT provides a scientist-friendly programming model for implementing constituent cohort mal-
leability in MCMs. Creating a fully functional MCM still requires the model developers to change the number of PEs in
the middle of a run, with accompanying reinstantiation and reinitialization of constituents and re-handshaking of inter-
constituent M X N connections. These tasks can be handled by explicitly coding the necessary state checkpointing and
data redistribution mechanisms (which is what we did for our testbed application in Section 5); leveraging any system-
level checkpoint/restart functionality that may already be present to provide fault tolerance; or, if the application supports
it, using its own restart file mechanisms. For CCSM, we expect the easiest, most portable checkpointing strategy may be
to leverage its restart file mechanism (for a description and example, consult Chapter 5 of [18]).

5. Results

To validate our algorithms and evaluate the performance of MMCT, we have built a malleable coupled model testbed
application that mimics a coupled climate model running in parallel composition. The testbed consists of three con-
stituents: atmosphere (atm), ocean (ocn), and coupler (cpl) that computes interfacial fluxes exchanged between atm and
ocn. The atm grid is identical to that of CCSM’s atmosphere’s T42 spectral solver, with 64 latitudes and 128 longitudes.
The ocn grid corresponds to CCSM’s ocean grid, with 384 latitudes and 320 longitudes. The domain decompositions
of these two-dimensional grids are described by using MCT GlobalSegMaps. Parallel data transfer schedules are stored
in MCT Routers. The domain decompositions for this test case are purely one-dimensional by latitude. The cpl uses
both atmosphere and ocean grids and performs intergrid interpolation of field and flux data. The amount of data is not
large, but our goal in this work was to focus on the feasibility of the implementing a malleable MCT and using it with
a variety of possible load balancing algorithms.Larger data sets would result in greater data redistribution costs, which
would affect the scheduling and trade-offs of reallocation decisions, but not our primary contributions.

Figure 5 shows the simplified structure of the climate testbed and the communication pattern between atmosphere
model, ocean model, and coupler. Each model invokes four routines denoted as sload(), mctload(), send(), and recv()
inside the time evolution loop. The sload() functions in atm, cpl, and ocn use the sleep() function to simulate the amount
of time taken by each model to integrate its equations of evolution during intervals between coupling events. The amount
of sleep time is determined from previously measured CCSM performance data [19] on a number of PE cohort sizes. The
function mctload() performs several MCT data transformation operations, including intergrid interpolation, implemented
as sparse matrix-vector multiplication, and time averaging/accumulation of state/flux data. Taken together, these loads
provide a plausible picture of constituent load balance in a coupled climate model. Interconstituent communications
occur between atm and cpl and between ocn and cpl. These parallel data transfers are implemented by using MCT,
encapsulated in interconstituent communication via send() and receive(). These M X N transfers comprise numerous
point-to-point nonblocking MPI messages, but the overall transfers employ MP|_Waitall(); this means the overall parallel
data transfer constitutes blocking communication. The intercommunication pattern (arrows in Figure 5) allows all models
to run concurrently since the ocean model can perform its own work while the atmosphere model is doing computation
and communication with the coupler in a nested time loop representing 24 hours.

We benchmarked the optimization and expansion algorithms and the performance of MMCT LBM on Argonne
National Laboratory’s Fusion cluster. Fusion contains 320 compute nodes, each with dual 2.53 GHz Xeon quad core
processors and 36 GB or 96 GB memory. The nodes are connected by InfiniBand QDR.

/ Procedia Computer Science 00 (2011) 1-12 8

100 27 120 34

LRSI
Oy, k32
100 m S

25 FHD
".i&;"-.N'e-o-&o-o-oo@@@@@o@<>f 30
2 <esee cpl_SELL 20 X ':' - SERC 28 e cpl_SEL1

"3
3

< °
2 &
» o « o
W E o atm_se1 W £ o-atm_sEl
3 l s 2% £
P PYa-] «+E&+ ocn_SEL1 P 6 --BF-ocn_SEL1
I3 S 5 S
2 ® cpl_SEL2 2 2 g cpl_SEL2
|7}
2 £ —o—atm_SEL2 2 £ _o—atm_sEL2
19 ® 40 2 B
A 8 —B—ocn_SEL2 © —H—ocn_SEL2
AcaA. = K
2 Blp, o O .5 tau_G_SEL1 F20 9 .5 tauc_sell
BN DB BANAANE |, 2
—%—tau_G_SEL2 18 —%—tau_G_SEL2
10 S A A A A A A AN AN AN A A DA AN A A
Ariy RAL AR AR AR A N A DA A
ApAADDDALDDD
0 15 0 16
3 19 35 51 67 83 99 115 131 147 163 179 195 211 227 240 3 19 35 51 67 8 99 115 131 147 163 179 195 211 227 240
Number of coupling cycles Number of coupling cycles

Figure 7: Optimization with SEL1 and SEL?2 for INIT1 case: SEL1 found Figure 8: Optimization with SEL1 and SEL2 for the INIT2 case: SELI
(19, 61, 80) with 7 = 19.3s was found at the 195th coupling cycle, and found (9, 93, 58) 7 = 23.7s at the 139th coupling cycle, and SEL2 found

SEL2 found (20, 55, 85) with 7¢ = 19.3s at the 187th coupling cycle. (16, 65, 79) ¢ = 19.4s at the 227th coupling cycle.
120 27 90 27
s La=EeEsE
80
100 25 X}(’-ﬁ%\-xxx HZEE'BZL‘
B - 70 % P
B SSEEe 8 2
. % X ———HHEREEEEEEEEES 3 oo olsil L .:nn:.snn::nu.n: 2 ol SELL
I X E o I OIS oo DG 89D ATEEADD UL E .o
2 x 000000OOOOOOe0| m | OUaAmSEHL L R o S ERBBERBEREIBS] © & o am S
5 e XS 2 § B oen SELL 4 o » 5 oo sl
2 3 ® cpl_SEL2 2w <94 O g cpl_SEL2
Q L
2 ¢ PRVES M £ —o—atm_SEL2 2 W M2 o atm_sEL2
40 198 30 T
8 —B-ocn_sE2 % /)%(20 g —H—ocn_SEL2
O .x-tau_G_SEL1 20 st 1 © % tau_G_SELL
20 17 ——tau_G_SEL2 N T A A b —s—tau_G_SEL2
r A ADBAAAAAANANAN [AR ris
0 15 0 17
3 19 35 51 67 8 99 115 131 147 159 175 191 207 223 240 3 19 35 51 67 83 95 111 127 143 159 175 191 207 223 239 255
Number of coupling cycles Number of coupling cycles

Figure 9: Optimization with SEL1 and SEL?2 on initial configuration for the =~ Figure 10: Expansion algorithm with SEL1 and SEL2: SEL1 found (14, 51,
INIT3 case: SEL1 found (11, 69, 80) with 7 = 19.6s at the 167th coupling 61) with 7 = 23.1s at the 143rd coupling cycle, and SEL?2 found (16, 54,
cycle, and SEL2 found (15, 61, 84) 7 = 19.6s at the 155th coupling cycle. 83) with 7 = 19.5s at the 247th coupling cycle.

The optimization algorithm was tested by running the climate model simulator benchmark with three initial PE
allocations. For all these allocations the initial global processor pool has 160 PEs, a number drawn from previous bench-
marking data [19]. Through trial and error, CCSM developers had discovered that a PE configuration (Ncpi, Nam, Nocn) =
(16, 64, 80) worked well for the model for its standard resolution and configuration; in the discussion that follows, we
refer to this as the “ideal” configuration.

For reference purposes, we ran the benchmark with the ideal constituent PE cohort configuration, with the LBM active
but no PE redistribution performed. This setup allowed us to measure for our simulator the “ideal” value of 75 = 19.5s,
analogous to that found by hand tuning CCSM. We will use this ideal value to estimate PE cohort reallocation overhead.

We performed three experiments with #ry_count_limit = 2, shown in Figure 1, and differing initial allocations. In
the discussion that follows we describe model configurations as the triple (Nepl, Nam, Nocn). The first initial allocation,
INIT1 = (54,53, 53), was as uniform an apportionment of PEs between constituents as possible; this allocation overpro-
visions cpl with PEs. The second initial allocation, INIT2 = (10, 110, 40) overprovisions the atm constituent. The third
initial allocation, INIT3 = (10, 40, 110), overprovisions the slowest constituent (ocn).

Table 1 summarizes throughput improvements realized by performing cohort reallocation employing the SEL1 and
SEL2 criteria. For the INIT1 case, values of 75 obtained by the SEL1 and SEL2 algorithms were almost the same
as the ideal 7. Both SEL1 and SEL2 improved the throughput by 22% from the initial allocation. Moreover, the
final allocations obtained by SEL1 and SEL2 were similar to the ideal allocation; the reason is that all constituents had

Table 1: 7 (seconds) Table 2: Reconfiguration and M X N Re-handshaking timings (sec).
Alg., Init. alloc. | Initial 7¢ | SEL1 | SEL2 Create PE | Create PE
Opt., INIT1 24.9 194 19.5 (intra- (extra-
Opt., INIT2 31.7 21.8 19.5 Operation | Remove PE cohort) cohort)
Opt., INIT3 25.9 20 19.9 Reconfig 0.05 0.1 32
Exp. 26.3 22.8 21.8 Reroute 0.44 0.45 0.52

/ Procedia Computer Science 00 (2011) 1-12 9

sufficient PEs so that reconfiguration for any donor/recipient pair resulted in smooth changes to 7, allowing both SEL1
and SEL2 to find near-ideal allocations. For the INIT2 and INIT3 cases, both SEL1 and SEL2 found good cohort PE
allocations but were not always able to match the ideal value of 7. Instabilities in our benchmark’s global iteration
time is the likely cause. For example, underprovisioning cpl often makes the 75 noisy because it adversely impacts
interconstituent communications times, notably the hourly interactions with atm.

For the INIT?2 case, SEL2 performed superior load balancing to SEL1 because SEL2 can avoid choosing constituents
with a large derivatives as either donor or recipient. Moreover, the fluctuation caused by a constituent that is allocated
too few processors can be reduced as its PE cohort size is increased. Additionally, SEL2 always tries to reallocate PEs in
a way that reduces noise. For the INIT2 case, in 83% of the runs (5 times out of 6) SEL2 found an allocation that resulted
in a 7 < 20 s. The other run was very close, with 7 = 20.6 s. By contrast, SEL1 found a near-ideal configuration
in only 33% (2 times out of 6) of the runs. As a result, SEL2 reduced 75 by 38.4% on average for this case. For the
INIT3 case, both SEL1 and SEL2 found a near-ideal allocation (7 < 20s) 83% of the time (5 times out of 6), with the
remaining trials for SEL1 and SEL2 producing values of 7 of 22.25 s and 21.75 s, respectively. On average, SEL1 and
SEL2 reduced 7 by about 23% from its initial value.

Figures 7, 8, and 9 display the time evolution of constituent PE cohort configurations determined by the SEL1 and
SEL2 algorithms for the INIT1, INIT2, and INIT3 cases, respectively. Superimposed on these plots are curves for the
time evolution of 7 (the scale for 7 is on right vertical axis in each plot). The time unit for all of these plots is the
LBI, which corresponds to the coupling cycle (one model-day). SEL2 reduced 7 smoothly. In Figure 7, SEL2 found
an optimal allocation of (20, 55, 85) with ¢ = 19.3 s, slightly better than the ideal value. This implies the allocation
for constituents could differ from their ideal allocations depending on the degree of concurrency of the coupled model.
Figure 8 shows the time evolution of SEL1 and SEL2 for the INIT2 case. Here, SEL1 chose cpl as the donor, handing
over PEs to ocn at the fourth coupling cycle even though cpl was starved for resources; cpl ceased donating PEs to
ocn at the 35th iteration and took back two PEs from ocn to undo previous reconfiguration, an action caused by large
increments in 7. By this point, however, cpl had already lost 6 of its initially allocated 10 PEs, making it so badly
underallocated that it made 7 unstable, disrupting the optimization process. By contrast, SEL2 chose atm as the donor
because it realized that atm had sufficient processors and its iteration time would not be greatly changed even if it lost a
processor; this decision stabilized ¢ until optimization was completed.

Figure 9 demonstrates that both SEL1 and SEL?2 determined good, though slightly different allocations for the INIT3
case. SEL1 encounters a similar problem here as with INIT2, but less dramatic. SEL1 chose cpl as the donor for atm
early in the run. But, cpl did not lose as many processors as in the INIT2 case because the benefit generated by adding
processors to atm was often less pronounced than the disadvantage resulting from removing PEs from cpl. Moreover, cpl
did not donate any PEs to ocn because ocn was initially overallocated. Hence, cpl maintained 8 PEs, which is enough to
reduce—though not eliminate—the fluctuations in 7 caused by underprovisioning cpl.

To evaluate the expansion algorithm, we ran the climate benchmark on an initial configuration of (10,40,50) PEs with
try_count limit = 2. We chose this initial allocation as it represents a 38% across-the-board cut in constituents’ resource
allocations in the ideal configuration of (16,64,80). Table 1 shows 7 when run with the expansion algorithm using
the SEL1 and SEL2 criteria. Both variations reduce 7, but the performance was worse than we expected. Figure 10
shows the time evolution of the PE cohorts for the expansion algorithm with SEL1 and SEL2; time evolution curves
for corresponding 7 values are also included (refer to right vertical axis for scale). The expansion algorithm with
SEL1 found the ideal allocation for one of the six trials because it just kept adding processors to ocn, which was the
slowest model. This caused the communication overhead imposed on other constituents to be large and unstable, since
the other constituents maintained their PE cohort sizes as the ocn cohort was expanded. Eventually, ocn could not be a
recipient once the communication or noise was larger than the decreased time by adding a processor to ocn. At the 51st
coupling cycle, 7 increased while ocn gained processors, meaning that ocn could not be a recipient during the rest of
the expansion process. When recipients were selected with SEL2, the algorithm determined good allocations 50% of the
time (3 times out of 6) and on average improved 7 by 13%. For the three trials where this approach failed, we found
that after adding processors to atm, whose derivative was biggest at the beginning of iteration, 7¢ slightly increased (by
less than 0.05 s). We believe this noise in 7 originates in unstable communication costs and overhead; future work will
seek to address these fluctuations by appropriate filtering or weighting.

Our performance results demonstrate MMCT can support coupling malleability and achieve faster runtimes. An
important question is: At what cost? That is, what is the overhead associated with redistributing a constituent’s state data
from the old cohort to the new one? Table 2 summarizes wall clock time measured from ocn with under the expansion
algorithm, including reconfiguration (the cost of adding or removing a PE) and rerouting (re-handshaking the M x N
communications schedules). In our test case, the model grids are still rather coarse, and data redistribution costs were
low compared to 7. The overhead for rerouting is nearly equal to that of adding or removing a PE if the operation
is performed on a machine where the current cohort resides. The wall clock time to create a processor on an extra-

/ Procedia Computer Science 00 (2011) 1-12 10

cohort machine, however, is more than 3 seconds. We believe that this overhead is caused by MPI-2 mechanisms to
spawn processes. Consequently, when reconfiguration occurs for removing processors or creating a processor on an
intra-cohort machine, it would increase the ideal global iteration time by 3% approximately; if it creates a processor on
an extra-cohort machine, it increases the ideal global iteration time by 19%. We believe these overheads can be reduced
by weighing the frequency of reallocation with the possible benefits. This will be an area of future study.

6. Conclusion and Future Work

Coupled systems are an important feature on the scientific computing landscape. Achieving the scalability required
for these systems to use exascale platforms will prove a tremendous challenge. We have identified top-level load balance
to be a crucial problem. We have shown the feasibility of malleable coupling by developing a simple yet effective research
prototype that is an extension of the widely used Model Coupling Toolkit. This coupling malleability mechanism,
MMCT, extends the MCT API to runtime reallocation of PE resources in a wide class of parallel coupled models.
Benchmark results for the simple load-balancing strategies currently included in MMCT demonstrate their effectiveness;
the schemes reported here provide significant improvements in model throughput with acceptably low overhead. Both of
these performance characteristics will be studied further, with an eye to their optimization.

Future research and development will focus on creating a production environment. Further investigation of the current
load balance schemes in our LBM is warranted, along with investigations into a wider variety of load-balancing strategies.
Such research will become critical once we move beyond the current assumption of a purely parallel composition to
nested compositions such as those used in CCSM4. MMCT’s LBM requires further design to make it open to inclusion
of third-party load diagnosis and management software. Additionally, MMCT’s architecture must be expanded to offer
interoperability with current and emerging parallel application checkpointing mechanisms.

Acknowledgments

We thank the Laboratory Research Computing Resource Center at Argonne National Laboratory for access to their
Fusion cluster. Argonne National Laboratory is supported by the U.S. Department of Energy, under Contract DE-ACO02-
06CH11357. Work at SUNY Binghamton is supported by the National Science Foundation.

References

[1] J. W. Larson, Ten organising principles for coupling in multiphysics and multiscale models, ANZIAM Journal 48 (2009) C1090-C1111.

[2] The Message Passing Interface (MPI) standard, http://www-unix.mcs.anl.gov/mpi/.

[3] F. Bertrand, R. Bramley, D. E. Bernholdt, J. A. Kohl, A. Sussman, J. W. Larson, K. Damevski, Data redistribution and remote method invocation
for coupled components, J. Parallel Distrib. Comput. 66 (7) (2006) 931-946.

[4] D. G. Feitelson, L. Rudolph, Towards convergence in job schedulers for parallel supercomputers, in: Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing, Springer-Verlag, 1996, pp. 1-26.

[5] R. Sudarsan, C. Ribbens, ReSHAPE: A framework for dynamic resizing and scheduling of homogeneous applications in a parallel environment,
in: Parallel Processing, 2007, ICPP2007., IEEE, 2007.

[6] K. E. Maghraoui, B. K. Szymanski, C. Varela, An architecture for reconfigurable iterative mpi applications in dynamic environments, in: Pro-
ceedings of the Sixth International Conference on Parallel Processing and Applied Mathematics (PPAM2005), number 3911 in LNCS, Springer
Verlag, 2005, pp. 258-271.

[71 K. El Maghraoui, T.J. Desell, B. K. Szymanski, C. A. Varela, Dynamic malleability in iterative MPI applications, in: Proceedings of the Seventh
IEEE International Symposium on Cluster Computing and the Grid, CCGRID ’07, IEEE, 2007, pp. 591-598.

[8] S.S. Vadhiyar, J. J. Dongarra, SRS - a framework for developing malleable and migratable parallel applications for distributed systems, Parallel
Processing Letters. 13 (2) (2003) 291-312.

[9] S.-H. Ko, N. Kim, J. Kim, A. Thota, S. Jha, Efficient runtime environment for coupled multi-physics simulations: Dynamic resource allocation
and load-balancing, in: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, 2010, pp.
349-358.

[10] Institute for Combinatorial Scientific Computing and Petascale Simulations, http://www.cscapes.org/.

[11] J. Larson, R. Jacob, E. Ong, The Model Coupling Toolkit: A new Fortran90 toolkit for building multi-physics parallel coupled models, Int. J.
High Perf. Comp. App. 19 (3) (2005) 277-292. doi:10.1177/1094342005056115.

[12] R. Jacob, J. Larson, E. Ong, MXN communication and parallel interpolation in CCSM3 using the Model Coupling Tookit, Int. J. High Perf.
Comp. App. 19 (3) (2005) 293-308. doi:10.1177/1094342005056116.

[13] J.C. Meza, Steepest descent, in: Wiley Interdisciplinay Revies: Computational Statistics, Vol. 2, 2010, pp. 719-722.

[14] Model Coupling Toolkit Web site, http://mcs.anl.gov/mct/.

[15] Community Climate System Model Web Site, http://www.cesm.ucar.edu/models/ccsmé.0/.

[16] A.P. Craig, B. Kaufmann, R. Jacob, T. Bettge, J. Larson, E. Ong, C. Ding, H. He, CPL6: The new extensible high-performance parallel coupler
for the Community Climate System Model, Int. J. High Perf. Comp. App. 19 (3) (2005) 309-327. doi:10.1177/1094342005056117.

[17] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Addison Wesley, Reading, Mas-
sachusetts, 1995.

[18] Community Climate System Model Version 4.0 Users” Guide, http://www.cesm.ucar.edu/models/ccsm4.0/ccsm_doc/bookl.html/.

[19] J. W. Larson, R. L. Jacob, E. T. Ong, A. Craig, B. Kauffman, T. Bettge, Y. Yoshida, J. Ueno, H. Komatsu, S.Ichikawa, C. Chen, P. Worley,
Benchmarking a parallel coupled model, poster presented at Supercomputing *03.

/ Procedia Computer Science 00 (2011) 1-12 11

Government License

The submitted manuscript has been created by UChicago Argonne, LL.C, Operator of Argonne National Laboratory
("Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-
ACO02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

