

1

A New Flexible Coupler for Earth System Modeling
developed for CCSM4 and CESM1.

Anthony P. Craig, tcraig@ucar.edu
Climate and Global Dynamics Division, National Center for Atmospheric
Research, Boulder, Colorado, USA

Mariana Vertenstein
Climate and Global Dynamics Division, National Center for Atmospheric
Research, Boulder, Colorado, USA

Robert Jacob
Mathematics and Computer Science Division, Argonne National Laboratory.
Argonne, Illinois, USA

Abstract:

The Community Climate System Model (CCSM) has been developed over the
last decade, and it is used to understand past, present, and future climates. The
latest versions of the model, CCSM4 and CESM1, contain totally new coupling
capabilities in the CPL7 coupler that permit additional flexibility and extensibility
to address the challenges involved in earth system modeling. An integral part of
CPL7 is the implementation of a coupling architecture that takes a completely
new approach with respect to the high-level design of the system. CCSM4 now
contains a top-level driver that calls model component init, run, and finalize
methods through specified interfaces. The top-level driver allows the model
components to be placed on relatively arbitrary hardware processor layouts and
run sequentially, concurrently, or mixed. The new coupling architecture
continues to provide "plug and play" capability of data and active components,
but improvements have been made to the memory and performance scaling of
the coupler that support much higher resolution configurations. CCSM4 now
scales better to higher processor counts, and the ability to handle global
resolutions up to one-tenth degree is demonstrated.

Introduction:

Background

Climate modeling consists of complex multi-physics applications and is one of
today’s high performance computing challenges. The Community Climate
System Model (CCSM) is a coupled, state-of-the-art global climate model

2

consisting of four fundamental physical components: an atmosphere model, a
surface land model, an ocean model, and a sea ice model. The Community
Earth System Model (CESM) adds a new land-ice component, land and ocean
biogeochemistry functionality, an atmospheric chemistry model, and a capability
for the atmospheric component to span a larger range of altitudes. The CCSM
and CESM components can be “data” components or “active” dynamical
components. Each dynamical component typically contains both fluid-dynamics
solvers and detailed parameterizations to compute the internal and external
forcing terms that arise from such diverse phenomena as the passage of
radiation through the atmosphere, the release of latent heat by phase changes of
water, and the effects of friction and unresolved turbulent scales.

As the CCSM/CESM components evolve in time, they periodically exchange
boundary data via the use of coupling software. This coupling software supports
communication of data between components, interpolation of data between
different component grids, merging of fields from several “source” components to
a “destination” component, and the production of various diagnostics among
other things. CCSM3 (Collins et al., 2006a) used the CPL6 coupling software
(Craig et al., 2005). In what follows, we present an overview of the high-level
design and performance of the new CPL7 coupling software that forms an
integral part of CCSM4 and CESM1. In the following discussion, the name
“CCSM4” or “CPL7” will be used to describe capabilities in both CCSM4 and
CESM1.

Couplers are a key component of climate models. In particular, coupling of
models normally involves at least three different aspects: the coupling
architecture, the communication infrastructure, and the coupling methods. The
coupling architecture is generally associated with the overall control of the
system, including the temporal sequencing of the model components. The
communication infrastructure supports data transfer between components and
depending on the overall design, can be implemented from a high level driver
through subroutine calls or from within the model components directly. Finally,
coupling methods provide capabilities such as mapping between different
component grids, merging from several source components to a destination
component, computation of physical quantities such as fluxes, or the computation
of diagnostics. Every coupled climate model application needs to address these
aspects, and they are generally implemented using a combination of community
tools and custom-built software.

Coupling architectures can be distinguished by four basic features: whether data
is sent through a “hub” or communicated directly between components, whether
communication of data is handled via a top-level driver or from calls directly in
the components, how the coupled model components are configured on
hardware processors and whether a system is run as a single executable or as
multiple executables. CCSM has always had, and continues to have, a hub
design. To couple models developed separately into a single application, CCSM

3

developed, over the past fifteen years, coupling architectures that permitted
coupling with minimum modification to component models.

It is important to distinguish between temporal concurrency and processor
concurrency. Component models can be run on mutually exclusive processors,
but if they are sequenced temporally in the implementation, a concurrent
processor layout would actually run sequentially. Two models will run
concurrently across processors only if they are run on unique sets of processors
and if there are no temporal dependencies between the components that will limit
concurrency.

Single executable designs do not automatically imply that models are running on
the same processors sequentially. In general, components can be laid out in
relatively arbitrary processor groups with single executable systems. On the
other hand, multiple executable systems normally imply that the model
components are running concurrently on unique processors sets since hardware
systems generally disallow multiple executables from sharing the same
processors and interleaving.

A particular coupled climate model implementation is fundamentally driven by
architectural choices related to component sequencing, coupling frequency and
lags, concurrency, scientific requirements, job launching, component integration,
and interoperability. For example, the Parallel Climate Model (PCM)
(Washington et al., 2000) incorporated a high level driver that supported
sequential execution of components in a single executable. In this case, the
coupler was a driver that called components via subroutine interfaces and the
sequencing and coupling operations were custom built around particular scientific
needs. On the other hand, the Oasis coupler (Valcke et al., 2006a) is a more
generic coupler component designed to support coupling of multiple executable
components that communicate via calls to a shared coupling interface called
PRISM (Valcke, 2006b). Oasis supports both coupling through a hub and direct
coupling between components. The design of these two couplers is
fundamentally different, yet they both meet the scientific needs of their
community. Other examples of climate model couplers are FMS
(http://www.gfdl.noaa.gov/fms), FOAM (Jacob et al., 2001), PALM
(http://www.cerfacs.fr/globc/PALM_WEB) and FLUME. Other examples of
coupling libraries are MCT (Larson et al., 2005), ESMF (Hill et al., 2004), and the
Distributed Data Broker (Drummond et al., 2001).

Motivation

Prior to CCSM4, CCSM operated as a multiple executable system where all
models ran concurrently over disjoint sets of hardware processors and where
each component model was a separate binary program. The components started
independently and communicated to the coupler at regular intervals via send and

4

receive methods called directly from within each component. The coupler acted
as a central hub coordinating data exchange, implicitly managing lags and
sequencing, and executing coupler operations such as mapping (interpolation)
and merging. In practice the coupler sequencing was difficult to understand
because of the embedded communication calls in components. In addition,
although special efforts were made in CCSM3 to maximize the amount of
concurrency, the multiple executable concurrent design limited model throughput
in some configurations. In addition, the CCSM3 design made porting and
debugging challenging on occasion largely because of the multiple executable
job launch. Finally, the prior CCSM implementations were not consistent with an
ability to couple using the Earth System Model Framework (ESMF).

Recent advances in physics algorithms in CCSM4 components, including an
updated and improved atmospheric boundary layer scheme and new radiation
and surface albedo algorithms, require that components be coupled more
frequently than in the past for stability reasons. In addition, as resolutions
increase, component timesteps decrease and coupling frequencies tend to
increase. With the recent need for higher frequency coupling, limitations in the
CCSM3/CPL6 capability to overlap work in concurrent execution became
increasingly critical.

In the past, CAM (Collins et al., 2006b) and CLM (Bonan et al., 2002; Oleson et
al., 2010) “stand-alone” coupled systems have been publicly available from
NCAR as sequentially coupled single executable climate models with all
components running on the same grid. They are extensions of the prior CCM
and LSM release models that have existed at NCAR since the 1980s. The CAM
“stand-alone” model was an atmosphere, land-surface, data-ocean (using
prescribed sea surface temperatures), and thermodynamic-only sea ice (using
prescribed ice coverage) coupled system. The CLM “stand-alone” model
consisted of data-atmosphere and land-surface coupled components. Over the
past decade, these “stand-alone” models were released and supported in parallel
to CCSM with overlapping resources from NCAR. For several reasons including
code unification, reduced maintenance, and expanded features such as an ability
to run on a single processor, CCSM4 developers wanted to duplicate several
features associated with the CAM and CLM “stand-alone” systems.

With CPL7 in CCSM4, a completely new approach has been taken with respect
to the high-level architecture and design of the system. The system is now
controlled by a top-level driver that runs on all processors, and components are
run via calls to standard component subroutine interfaces that run on all or
arbitrary subsets of hardware processors. This overall effort was undertaken for
several reasons including ability to better support new science, desire to support
fully sequential and single processor integration, migration to a single executable
system for ease in porting and use, increased flexibility of component layouts on
hardware processors to improve performance over a wider range of problems,
ability to support coupling via Earth System Model Framework (ESMF)

James White � 12/10/10 2:15 PM
Comment: The following seems like an
overview. The “Motivation” subsection seems
to have ended. Maybe add an “Overview”
subsection here? Though that might be
awkward since a different “Overview”
subsection is next.

5

superstructure, and targeting much higher resolutions and higher processor
counts with improved performance and memory scalability.

CCSM4 has greatly expanded the flexibility of component layouts by moving to a
single executable system that continues to support concurrent processor layouts
but also supports components running sequentially or in mixed
sequential/concurrent mode. This new wider layout choice gives users more
flexibility in optimizing load balance and efficiency for any simulation
configuration. CCSM4 was also rewritten to significantly reduce memory use and
improve memory scaling. Previous CCSM versions were run mostly at global
resolutions of one to five degrees, and memory usage was not a constraint.
CCSM4 now supports the ability to run global one-tenth degree resolutions using
tens of thousands of processors on massively parallel machines with relatively
limited memory available per processor, especially given the problem size.

In what follows, we describe the CPL7 design in CCSM4 in more detail, with a
focus on sequencing, interfaces, infrastructure, memory scaling, and processor
layout. Some performance results will also be presented.

Design:

Overview

CCSM4/CPL7 is built as a single executable with a single high-level driver that
runs on all processors, calls components, handles sequencing, manages
component layout on hardware processors, and communicates data between
components. The driver calls all model components via common and standard
interfaces. The driver also directly calls coupler methods for mapping
(interpolation), rearranging, merging, flux calculation, and diagnostics. In
CCSM4, the model components and the coupler methods can run on subsets of
all the processors. In effect, the CPL6 sequencing and hub attributes have been
migrated to the driver level while the CPL6 coupler operations such as mapping
and merging are done as if a separate coupler component existed in CCSM4.

CCSM4 supports both data and active components models. In general, an active
component needs data from and provides data to the coupler. Data components,
on the other hand, normally only read forcing data from external data files and
then provide this data to the coupler. In CCSM4, like CCSM3, the atmosphere,
land, and sea ice models are always tightly coupled to better resolve the diurnal
cycle. It is important to point out that atmosphere/ocean fluxes are computed in
the coupler (and not in the ocean component) at the same frequency that the
atmosphere, land and sea ice models communicate. Similarly, the diurnal cycle
of ocean surface albedo is also computed in the coupler for use by the
atmosphere model. This coupling is typically hourly, although at higher
resolutions it can be more frequent. Since the ocean model is not responsible for

6

computing atmosphere/ocean fluxes, it is typically coupled once or a few times
per day. The looser ocean coupling frequency means the ocean state and
response is lagged in the system. This also permits the ocean model to run
efficiently on a mutually exclusive set of processors from the atmosphere, land,
sea-ice and coupler components. There is an option in CCSM4 to run the ocean
tightly coupled without any lags, but this is normally used only when running with
data ocean components.

Depending on the resolution, hardware, run length and physics, a CCSM4 run
can take several hours to several months of wall time to complete. Runs typically
encompass model simulation times of decades or centuries, with the model
typically running between one and fifty simulated years per wall clock day.
CCSM4 has exact restart capability, and the model is typically run in individual
one year or multi-year chunks. CCSM4 also has automatic resubmission and
automatic long-term data archiving capability.

Sequencing and Concurrency

In CCSM4, the component processor layouts and MPI communicators are
derived from simple user-specified namelist input. Presently, there are seven
basic MPI processor groups in CCSM4. These are associated with the
atmosphere, land, ocean, sea ice, land ice, coupler, and global groups, although
others can be added easily. Each of the basic MPI groups can be associated
with different processors, and a user can overlap MPI groups on hardware
processors relatively arbitrarily. If any processor groups overlap each other in at
least one processor, then those components will run sequentially. Each
processor group is described at runtime using three scalar variables: the number
of MPI tasks, the number of OpenMP threads per MPI task, and the global MPI
task rank of the root process for that group. For example, a layout where the
number of MPI tasks is 8, the number of threads per MPI task is 4, and the root
process is MPI task 16 would create a processor group that consisted of 32
hardware processors, starting at global MPI task number 16, and it would contain
8 MPI tasks. The driver derives all MPI communicators at initialization and
passes them to the component models for use. This input information is used
both to set MPI groups and to set batch and job launching parameters.

As mentioned in the introduction, there are two aspects that determine whether
component models run concurrently. The first is whether unique chunks of work
are running on distinct processor groups. The second is the sequencing of this
work in the driver. As much as possible, the CCSM4 driver sequencing has been
implemented to maximize the potential amount of concurrency of work between
different components. Ideally, in a single coupling step, the forcing for all models
would be computed first. The models could then all run concurrently, and then
the driver time would advance. However, scientific requirements such as the
coordination of surface albedo and atmospheric radiation as well as boundary
layer stability impose constraints on the coupling lags. Figure 1 shows the

7

maximum amount of concurrency currently allowed in the CCSM4 driver for a
fully active system configuration. More concurrency is technically possible, but
the scientific constraints impose a limitation on the coupling between the
atmosphere model and the land and sea-ice models such that the atmosphere
model must be run sequentially with both of those surface models. Again, figure
1 does not necessarily represent the optimum processor layout for performance
for any configuration, but provides a practical limit to the amount of concurrency
currently supported in the system. It is important to point out that, with CCSM4,
results are within numerical round-off regardless of the layout of components on
processors. Results are not bit-for-bit identical in this case because some
physical components introduce round-off level changes when changing
processor counts.

There is a loss of concurrency in CCSM4 relative to CCSM3. In CCSM4, the
model run methods are called from the driver, and the coupling from the overall
system perspective looks like “send to component, run component, receive from
component”. In CCSM3, the coupling was done via direct calls from inside each
component and the send and receive calls could be interleaved with work such
that the model run method appeared to have two phases, one between the
coupling send and receive, the other between the receive and send. Although
that allowed greater concurrency in CCSM3, it was also designed for concurrent-
only execution. In CCSM4, multiple run phases were not implemented to simplify
the model and provide an opportunity for greater interoperability. This choice
was made with the full understanding that there would be some potential loss of
model concurrency in specific cases. However, it was felt that the additional
flexibility of allowing models to run in a mixed sequential/concurrent system
would overcome any performance degradation due to a potential loss of
concurrency.

Component Interfaces

The CCSM4 component model interfaces are based on an initialize, run, and
finalize approach with consistent arguments across different component models.
Although the standard CCSM4 interface arguments currently consist of Fortran
and Model Coupling Toolkit (MCT) (Larson et al., 2005) datatypes, an alternative
version is available which is compatible with the ESMF superstructure. As part of
initialization, the grid and component decomposition information is passed from
the component back to the driver. The driver/coupler acquires all information
about resolution, configurations, and processor layout at run-time from either
input files or from communication with components. The physical coupling fields
are passed through the interfaces in the initialize, run, and finalize phases. The
run interface also contains a clock that specifies the current time and the run
length for the model.

Initialization of the system in CCSM4 is relatively straight-forward. First, the
varied MPI communicators are setup in the driver. Then the component

8

initialization methods are called on the appropriate processor groups, and grid
and decomposition information is passed back to the driver. Once the driver has
the grid and decomposition information from the components, various
rearrangers and mappers are initialized that will move data between processors,
decompositions, and grids as needed at the driver level. No distinction is made
in the coupler implementation for sequential versus concurrent execution. In
general, even for cases where two components have identical grids and
processor layouts, often their decomposition is different for performance reasons.
In cases where the grid, decomposition, and processor layout are identical
between components, the mapping or rearranging operation will degenerate to a
local data copy.

The sequencing of the driver run loop for the CCSM4 configuration with coupler,
land, sea ice, atmosphere, and ocean components is shown in figure 2. This
order of operations is hard-wired in the CCSM4 driver and is based on scientific
constraints first and performance optimization second. The letter “C” in figure 2
indicates a coupling operation where data is communicated between the coupler
component and another component. This step introduces a cross-component
dependence, where one component will normally wait for the other component
before communication proceeds. The letter “R” in figure 2 indicates independent
work carried out by that component. Coupling to the atmosphere, land, and sea
ice models occurs every step through the run loop, while coupling to the ocean
normally occurs less frequently. Figure 2 shows that if components are run
concurrently, the ocean will begin first, followed by the land and sea ice. The
atmosphere model will not start until data from the sea ice and land models is
communicated to the coupler, used to compute coupling data for the atmosphere
model, and then sent to the atmosphere component. The ocean is always able
to integrate concurrently with all other components in the design. Figure 2
provides the detailed implementation that limits the total amount of concurrency
shown in Figure 1. The coupler is constantly computing between communication
steps, and some of this work is overlapped with other components. Generally,
the coupler work and communication costs are small compared to the active
model run times.

Additional Software and Parallel IO

CPL6 was built using the Model Coupling Toolkit (MCT) infrastructure library,
and CPL7 continues to rely heavily on MCT. MCT supports many critical coupling
needs such as managing data parallelism and performing parallel remapping.
The high-level data types in CPL7 consist largely of MCT data types, and MCT is
used for all rearranging and mapping of data between processors,
decompositions, and grids. Although the CPL7 coupling architecture is
dependent on MCT infrastructure, the high level superstructure is designed to be
compatible with ESMF (Collins et al., 2005), and CCSM4 components are ESMF
compliant. In addition, the CCSM project continues to evaluate the use of ESMF
infrastructure as a complement to the MCT capabilities. Mapping weights are still

9

generated offline using the SCRIP package (Jones, 1998). In order to minimize
the memory footprint, mapping weights are read into CCSM4 using a method that
reads and distributes the weights in reasonably small chunks.

CCSM4 is targeting much higher resolutions than any previous versions. Efforts
have been made to reduce the memory footprint and improve memory scaling in
all components with a goal of being able to run the fully coupled system at one-
tenth degree global resolution on tens-of-thousands of processors, with each
processor having as little as 512 MB of memory. This target limits the number of
non-distributed arrays that can be allocated on any single processor to just a few
at any time and has led to some significant component refactoring especially in
initialization. In addition, the memory required to carry out traditional serial I/O at
higher resolutions is unacceptable, and serial I/O performance at higher
resolutions can be a significant bottleneck. In response to the I/O limitiation, the
development of a parallel I/O (PIO) library (Dennis et al, 2011b), based on
NetCDF, pNetCDF (www.mcs.anl.gov/parallel-netcdf), and MPI-IO has been
underway within the CCSM community to address I/O performance and memory
usage in the model. All model components are currently using the PIO software
extensively, and use of PIO permits CCSM4 to run at resolutions that were not
previously possible due to memory limitations.

Performance, Scaling, and Load Balance

To target scaling to tens of thousands of processors, developers for all
components have worked at improving performance scaling via changes to
algorithms, infrastructure, and decompositions. In particular, decompositions
using shared memory blocks, space filling curves (Dennis et al., 2011a), and all
three spatial dimensions have been implemented to varying degrees in order to
increase parallelization and improve scalability in all components.

CCSM4 load balance refers to allocating and laying out model components on
processors to optimize performance and minimize idle time. CCSM4
performance, load balance, and scalability are constrained by the problem size,
complexity, and multiple model character of the system. Within the system, each
component has its own scaling characteristics, and variation in scaling of a
component occurs because of internal load imbalance, decomposition
capabilities, or communication patterns. Component performance can also vary
as the model integrates forward in time. This occurs because of seasonal
variability of the cost of physics in models, changes in performance during an
adjustment (spin-up) phase, and temporal variability in calling certain model
operations like radiation, dynamics, or I/O. Within these constraints, a load
balance configuration with acceptable idle-time and reasonably good throughput
is nearly always possible to configure with CCSM4. CCSM4 has significantly
increased the flexibility of the possible processor layouts, and this has resulted in
better load balance configurations compared to previous CCSM versions.

10

In practice, load-balancing CCSM4 involves a number of considerations such as
which components are run, their absolute resolution, and their relative resolution;
cost, scaling and processor count capabilities for each component; and internal
load imbalance within a component. It is often best to load balance the system
with all significant run-time I/O turned off because this generally occurs
infrequently (typically one timestep per month in CCSM4), is best treated as a
separate cost, and can bias interpretation of the overall model load balance. The
ability to use OpenMP and the performance of OpenMP threading in some or all
of the system is dependent on the hardware/OS support as well as whether the
system supports running all MPI and mixed MPI/OpenMP on overlapping
processors for different components. Finally, the processor layout, whether
sequential, concurrent, or some combination of the two, can be varied. Typically,
a series of short test runs is done with the desired production configuration to
establish a reasonable load balance setup for the production job. CCSM4
provides some post-run analysis of the performance and load balance of the
system to assist users in improving the processor layouts.

Results:

In this section, performance scaling results will be presented for four different
coupler kernels. Then some full model results will be presented to show how the
layout of components on hardware processors impacts overall model
performance. The four kernels that will be discussed are a field merge on the
ocean grid, an atmosphere-ocean flux calculation, a rearrangement of ocean
data between two different decompositions, and an atmosphere to ocean
mapping. These kernels represent the most common CCSM coupler operations.
Results will be presented from three different hardware platforms, bluefire,
jaguarpf, and intrepid and at two different model resolutions, “f19_g16” and
“f05_t12”.

Bluefire is an IBM SP6 at the National Center for Atmospheric Research (NCAR)
with 4096 4.7 GHz processors and 4 GB of memory per processor. Processors
are grouped into 32-way nodes, and each processor supports up to 4 FLOPS
(floating point operations) per clock cycle. The interconnect uses an InifiniBand
switch, and each node has eight 4X DDR links. Bluefire supports simultaneous
multi-threading (SMT) which allows 64 MPI tasks to be assigned to each node,
and SMT mode was used for all timing results on bluefire. Jaguarpf is a Cray
XT5 at the National Center for Computational Sciences (NCCS) at Oak Ridge
National Laboratory (ORNL) that has 18,688 nodes of dual hex-core AMD
processors running at 2.6 Ghz with 16 GB of memory per node. The total
number of processors available is 224,256, and the interconnect uses a SeaStar
2+ router. Intrepid is an IBM Bluegene/P at Argonne National Laboratory (ANL)
with 163,840 850 MHz PowerPC 450 processors. There are 4 processors per
shared memory node, 1024 nodes per rack, and each node has 2 GB of
memory.

James White � 12/10/10 2:40 PM
Comment: I think if computer names as
proper nouns, so I would use “Bluefire”,
“JaguarPF” (or “Jaguarpf”), and “Intrepid”.

11

The “f19_g16” is a moderate resolution grid and consists of a nominally two
degree atmosphere/land grid with 144 x 96 horizontal gridpoints coupled to a
nominally one degree ocean/ice grid with 320 x 384 gridpoints. The “f05_t12” is a
high resolution configuration with 576 x 384 gridpoints on a nominally half degree
atmosphere/land grid coupled to a nominally one-tenth degree global resolution
ocean/ice configuration with 3600 x 2400 horizontal grid points. All cases were
run with shared memory parallelism (OpenMP) turned off, and one MPI task was
placed on each processor with the following exceptions. On bluefire, the IBM
SP6, SMT mode was used as indicated above. On intrepid at the high resolution
“f05_t12” configuration, one MPI task was assigned to each 4-way node due to
memory limitations.

Tests were carried out on all machines in a production environment. As a result,
some variability in timings was observed. Cases were rerun as needed to try to
understand the variability better, and generally, best times are shown. All cases
were carried out as 20 day runs using a dead model configuration without any
history or restart I/O. All timers were isolated with MPI_BARRIER calls, and the
time on the slowest task is presented. Over each 20 day integration, each kernel
was called 960 times, and the time was summed over all the calls over and each
MPI task. The times presented in the plots are seconds per simulated model
day. All results are plotted in log/log format, and each plot uses the same
horizontal and vertical axis scales for easier comparison. In addition, the same
linear scaling reference line is included in each plot, and the horizontal axis is the
number of MPI tasks used by the coupler in the testcase.

Figure 3 shows performance of the ocean field merge kernel from the CCSM
coupler. This kernel is responsible for merging various fields on the ocean grid
from different components. This operation is trivially parallel (there is no
communication), and the kernel is primarily memory access limited. At the higher
“f05_t12” resolution, the performance on all platforms is remarkably similar with
near linear scaling to over 1000 processors on all machines. In constrast, the
performance scaling of the moderate “f19_g16” resolution case is near linear up
to about 100 processors on all machines. Above about 100 processors,
performance tails off on bluefire and intrepid, while jaguarpf performance tails off
at about 1000 processors.

Figure 4 shows the performance scaling of the atmosphere/ocean flux
calculation. This calculation is also trivially parallel and is computed on the
ocean grid. Compared to the ocean merge kernel, this computation is dominated
by mathematical operations including add, multiply, divide, min/max, log,
exponential, and square root. The number of FLOPS per memory load in this
kernel is relatively high, and compared to figure 3, the scaling is near linear on all
machines to at least 1000 processors even at the moderate resolution. The
absolute performance of this kernal on bluefire and jaguarpf is nearly identical,

12

but intrepid runs about 10 times slower than the other two machines on this
highly FLOP intensive metric.

Figure 5 documents the scaling performance of a rearrange operation on the
ocean grid. There are no FLOPS in this kernel, just memory access and an MCT
rearrange of data between an ocean decomposition and an ice decomposition of
the same grid. This rearrange is nearly an all-to-all communication of data
between processors, and is performance limited by the communication cost.
Scaling is generally sub linear for both resolutions across the full range of cases
tested. The scaling tails off significantly above about 100 processors at the
moderate “f19_g16” resolution with jaguarpf becoming slower (rolling over) above
about 100 processors. At the higher “f05_t12” resolution, scaling is somewhat
better, but it still flattens out at about 500 processors on bluefire, it flattens out at
about 1000 processors on intrepid, and it rolls over at about 500 processors on
jaguarpf.

Figure 6 shows the atmosphere to ocean mapping performance in CCSM. This
kernel is a mixture of communication and multiply-add operations (Jacob et al.,
2005) and is carried out using an MCT mapping method. In this case, the
mapping weights are always distributed based on the ocean decomposition at
initialization. When the kernel is called, the atmosphere data is rearranged to the
ocean decomposition such that, for every processor, the atmosphere data
required for mapping to the local ocean grid is available. In many cases,
atmosphere data is rearranged to more than one ocean processor. When the
rearrangement is complete, atmosphere data is locally interpolated to the ocean
grid. Overall, the performance of this kernel is similar to the performance of the
rearrange kernel in figure 5 indicating the importance of the rearrange step in the
overall cost of this operation. Scaling starts to go flat or even turns over at about
100 processors for all machines at the moderate “f19_g16” resolution. The
“f05_t12” scales well to about 1000 processors, except on jaguarpf where scaling
flattens dramatically at about 500 processors.

Figures 7 provides some insight into the performance implication of different
processor layouts for a specific CCSM coupled run. Figure 7 shows the overall
performance of each component schematically for an “f19_g16” moderate
resolution fully prognostic case running on a total of 128 processors. (a) is a fully
concurrent layout of components on processors, (b) is a fully sequential layout
where all components are run on all processors, (c) is fully sequential except the
ocean model is run concurrently with the rest of the system, and (d) is a more
general mixed sequential/concurrent layout. In all cases, the total number of
processors used is 128 and the idle times, represented by gray boxes, was
minimized as much as possible. The total run time for each of the four
configurations is 33.5, 20.8, 21.8, and 19.1 seconds per model day for the (a)
concurrent layout, (b) sequential layout, (c) sequential plus ocean concurrent
layout, and (d) mixed sequential/concurrent layout respectively. Except for the
(a) fully concurrent layout that has significant idle time because of the

James White � 12/10/10 3:19 PM

James White � 12/10/10 3:21 PM

Comment: Why 10x slower? Because you
are only using one processor per node? This
seems too much slower.

Comment: Where do the times in the figure
come from?

13

sequencing limitations of the atmosphere, land, and ice models in the driver, the
total performance of the varied processor layouts is relatively close.

The concurrent layout in Figure 7 cannot be compared to the CCSM3 runtime
because the concurrency is completely different. As was discussed in the design
section, the CCSM3 coupling was implemented with two run phases that allowed
greater overlap of work between components. In CCSM4, each component has
just one run phase, and this significantly reduces the amount of potential
concurrency and increases the runtime of a purely concurrent layout in CCSM4
compared to what would have been attained in CCSM3. However, the increased
flexibility of CCSM4 processor layouts generally results in increased performance
in nearly all configurations compared to the CCSM3 concurrent-only
implementation.

In general, Figure 7 demonstrates some of the potential component layouts on
processors available to users of CCSM4. The optimal layout and processor
counts for each component for any given case depends heavily on the scaling
performance of each component and the resolution of each component. In
general, the effectiveness of running models concurrently is a trade-off between
the idle time created by concurrent execution versus the generally sublinear
scaling of components as processor counts are increased.

Summary:

The latest version of the CPL7 coupler for CCSM4 and CESM1 has been
described. Since the CCSM3 release, the implementation has been refactored
significantly. CCSM4 now contains a top-level driver that calls model component
init, run, and finalize methods through consistent interfaces. It also coordinates
the sequencing and MPI groups of the components to provide greater flexibility in
processor layouts. Many changes were also made to improve the memory and
performance scaling of the coupler, and the CCSM4 coupling overhead has been
reduced compared to CCSM3. Most of this effort has been implemented using
the MCT coupling library, but ESMF compliant interfaces are also available for
CCSM4 components.

CCSM4 now scales better to higher processor counts compared to CCSM3, and
CCSM4 is able to handle much higher resolution configurations compared to
CCSM3. Scaling curves in the CPL6 paper (Craig et al., 2005) were presented
to 32 processors for a T42 (nominally three degree) atmosphere/land case
coupled to a nominally one degree ocean/ice resolution. In this paper, results
are presented for cases up to one-tenth degree global resolutions on processor
counts up to 10,000. In particular, the CCSM4 has been run with active
components at one-quarter degree atmosphere and land global resolutions
coupled to a one-tenth degree ocean and ice global resolution (Dennis et al.,

James White � 12/10/10 3:22 PM
Comment: Do you have measurements
supporting this?

14

2011c). This could not have been achieved with the CCSM3/CPL6 coupling
implementation.

The performance of individual coupling kernels has been presented. As
expected, trivially parallel operations scale well to high processor counts. In
particular, the atmosphere/ocean flux kernel scaled almost linearly on all
machines. The memory intensive merge kernel scaled well, and the
communication intensive rearrange and mapping kernels generally scaled to
moderate task counts. Several factors need to be considered when choosing the
coupler processor count and layout for overall CCSM4 load balance and
performance. The coupler cost is generally small compared to other
components, and it is often run sequentially with other components, particularly
the atmosphere model. As a result, the coupler is often placed on available
processors based on load balance and optimization of the other components
first. In general, the coupler will probably run faster on more processors within
reason. However, based upon the scaling of the communication kernels on
jaguarpf, there is the possibility that the coupler will slow down on some
machines as processor counts are increased, so it is important to evaluate the
effect of increasing processors on coupler performance before carrying out a
long run.

Some general statements could also be made about the relative performance of
the different hardware architectures used in this study. On a per processor
basis, bluefire was consistently faster than either jaguarpf or intrepid for the
coupler timings in general. The memory intensive merge kernel timings were
similar for all machines especially in the regime where there are many gridcells
per processor. But the computation intensive flux calculation was 10x slower on
intrepid compared to either bluefire or jaguarpf. This should be somewhat
expected based on the relative processor speed. The performance scaling of the
communication intensive kernels on all machines tailed off at higher processor
counts with jaguarpf performing worst at the higher processor counts. It is
unclear whether the communication scaling behavior on jaguarpf is inherent to
the hardware, associated with the local system setup, or related to the diverse
load on the machine at any given time.

Finally, the flexibility to vary the processor layout in CCSM4 has been
demonstrated. The CCSM4 model’s ability to support sequential, concurrent, or
mixed layouts provides much greater flexibility with respect to overall load
balance and performance optimization compared to CCSM3.

Acknowledgements:

A. Craig and M. Vertenstein have been supported by U.S. Department of Energy
grants DE-FC02-97ER62402 and XX. M. Vertenstein has also been supported
by the National Science Foundation grant AGS-0856145. R. Jacob been

15

supported by the Office of Science (BER), U.S. Department of Energy under
contract DE-AC02-06CH11357. The authors which to thank the National Center
for Atmospheric Research, the Oak Ridge National Laboratory, and the Argonne
National Laboratory for access to and assistance with computing resources.

References:

Bonan, G.B., K.W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R.E.
Dickinson and X.L. Yang (2002). The land surface climatology of the Community
Land Model coupled to the NCAR Community Climate Model. Journal of
Climate. 15:3123-3149.

Collins, N., G. Theurich, C. DeLuca, M. Suarez, A. Trayanov, V. Balaji, P. Li, W.
Yang, C. Hill, and A. da Silva (2005). Design and Implementation of Components
in the Earth System Modeling Framework. International Journal of High
Performance Computing Applications. 19(3):341-350.

Collins, W.D., C.M. Bitz, M.L. Blackmon, G.B. Bonan, C.S. Bretherton, J.A.
Carton, P. Chang, S.C. Doney, J.J. Hack, T.B. Henderson, J.T. Kiehl, W.M.
Large, D.S. McKenna, B.D. Santer and R.D. Smith (2006a). The Community
Climate System Model Version 3 (CCSM3). Journal of Climate. 19(11):2122-
2143.

Collins, W.D., P.J. Rasch, B.A. Boville, J.J. Hack, J.R. McCaa, D.L. Williamson,
B.P. Briegleb, C.M. Bitz, S-J. Lin and M. Zhang (2006b). The Formulation and
Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3).
Journal of Climate. 19(11):2144-2161.

Craig, A.P, R.Jacob, B. Kauffman, T. Bettge, J. Larson, E. Ong, C. Ding, and Y.
He (2005). CPL6: The New Extensible High Performance Parallel Coupler for
the Community Climate System Model. International Journal of High
Performance Computing Applications. 19(3):309-328.

Dennis, J.M., D Bailey, E. Hunke (2011a). A Probabilistic Weighted Space-Filling
Curve Partitioning for Spatial Load Imbalance. International Journal of High
Performance Computing Applications. Submitted.

Dennis, J.M., J. Edwards, R. Loy, R. Jacob, A. Mirin, A.P. Craig, M. Vertenstein
(2011b). An Application Level Parallel I/O Library for Earth System Models.
International Journal of High Performance Computing Applications. Submitted.

Dennis, J.M., M. Vertenstein, P. Worley, A. Mirin, A.P. Craig (2011c). An Ultra-
High-Resolution Capability in the Community Climate System Model.
International Journal of High Performance Computing Applications. Submitted.

16

Drummond, L. A. , J. Demmel, C. R. Mechoso, H. Robinson, K. Sklower and J. A.
Spahr (2001). A Data Broker for Distributed Computing Environments. Lecture
Notes in Computer Science. 2073:31-40.

Hill, C., C. DeLuca, V. Balaji, M. Suarez and A. da Silva (2004). Architecture of
the Earth System Modeling Framework. Computing in Science and Engineering.
6(1).

Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Anderson (2001).
Computational Design and Performance of the Fast Ocean Atmosphere Model,
Version One. Proc. 2001 International Conference on Computational Science,
eds. V. N. Alexandrov, J. J. Dongarra, C. J. K. Tan, Springer-Verlag, pp. 175-
184.

Jacob, R., J. Larson, and E. Ong (2005). MxN Communication and Parallel
Interpolation in CCSM3 Using the Model Coupling Toolkit. International Journal
of High Performance Computing Applications, 19(3):293-307,

Jones, P.W. (1998). A User’s Guide for SCRIP: A Spherical Coordinate
Remapping and Interpolation Package. Los Alamos National Laboratory, Los
Alamos, NM.

Larson, J., R. Jacob and E. Ong (2005). The Model Coupling Toolkit: A new
Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models.
International Journal of High Performance Computing Applications. 19(3):277-
292.

Oleson, K., D.M. Lawrence, G. B. Bonan, M. Flanner, E. Kluzek, P. Lawrence, S.
Levis, S. Swenson, P. Thornton, A. Dai, M. Decker, R. Dickinson, J. Feddema, C.
Heald, F. Hoffman, J. Lamarque, N. Mahowald, G. Niu, T. Qian, J. Randerson, S.
Running, K. Sakaguchi, A. Slater, R. Stockli, A. Wang, Z. Yang, and X. Zeng
(2010). Technical description of version 4.0 of the Community Land Model
(CLM). NCAR Technical Note, NCAR/TN-478+STR.

Valcke, S., E. Guilyardi and C. Larsson (2006a). PRISM and ENES: A European
approach to Earth system modelling. Concurrency Computat.: Pract. Exper.
18(2):231-245.

Valcke, S. (2006b). OASIS3 User Guide (prism_2-5). CERFACS Technical
Report TR/CMGC/06/73, PRISM Report No 3, Toulouse, France. 60 pp.

Washington, W.M., J.W. Weatherly, G.A. Meehl, A.J. Semtner Jr., T.W. Bettge,
A.P. Craig, W.G. Strand Jr., J.M. Arblaster, V.B. Wayland, R. James and Y.
Zhang (2000). Parallel climate model (PCM) control and transient simulations.
Climate Dynamics. 16(10/11):755-774.

17

Figures:

Figure 1: CCSM4 Concurrency capability based on scientific constraints.

Processors

DRIVER

SEA ICE LAND

ATMOSPHERE

OCEAN COUPLER

Driver Operation CPL LND ICE ATM OCN

Ocean Prep R
CPL to OCEAN communication C C
Land Prep R
CPL to LAND communication C C
Sea Ice Prep R
CPL to ICE communication C C
Ocean Run R
Ice Run R
Land Run R
Atm/Ocean Surface Flux Computation R
ICE to CPL communication C C
Ice Post R
LAND to CPL communication C C
Land Post R
Atm Prep R
CPL to ATM communication C C
Atm Run R
ATM to CPL communication C C
Atm Post R
OCEAN to CPL communication C C
Ocean Post R

Figure 2: Driver Loop Sequencing showing the order of operations at the driver
level and concurrency of the coupler, land, sea ice, atmosphere, and ocean
components. An “R” indicates work is being done by that component and a “C”
indicates the coupler and another component are communicating.

Figure 3: Scaling performance of the ocean merge kernel in the CCSM4 coupler
at at two resolutions (“f19_g16” and “f05_t12”) and on three hardware platforms
(bluefire, jaguarpf, and intrepid).

Figure 4: Scaling performance of the atmosphere/ocean flux kernel in the
CCSM4 coupler at two resolutions (“f19_g16” and “f05_t12”) and on three
hardware platforms (bluefire, jaguarpf, and intrepid).

Figure 5: Scaling performance of the ocean to ice rearrange kernel in the CCSM4
coupler at two resolutions (“f19_g16” and “f05_t12”) and on three hardware
platforms (bluefire, jaguarpf, and intrepid).

Figure 6: Scaling performance of the atmosphere to ocean mapping kernel in the
CCSM4 coupler at two resolutions (“f19_g16” and “f05_t12”) and on three
hardware platforms (bluefire, jaguarpf, and intrepid).

Figure 7: Schematics of CCSM4 component model timing for a fully prognostic
“f19_g16” configuration running with four different processor layouts. In all
cases, the total number of processors used is 128. Gray boxes represent idle
time, and the time for each component in seconds per simulated model day is
indicated. The total time for a) the fully concurrent layout is 33.5s; for b) the fully
sequential layout is 20.8s; for c) the sequential layout with the ocean running
concurrently with other components is 21.8s; and for d) a mixed
sequential/concurrent layout is 19.1s.

DRV

LND (1.4s)

ICE (5.0s)

ATM (6.2s)

OCN (8.2s)

CPL (0.5s)

OCN (14.9s)

DRV

LND (2.3s)

ICE (8.4s)

ATM (11.2s)

CPL (0.7s)
OCN
(19.1s)

DRV

LND
(3.3s) ICE (8.5s)

ATM (8.9s)

CPL (0.7s)

OCN
(28.3s)

ATM
(14.0s)

ICE
(15.4s)

LND
(6.3s)

DRV

CPL
(5.4s)

time

processors

time

processors

time

processors

time

processors

