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Abstract: 
 
The Community Climate System Model (CCSM) has been developed over the 
last decade, and it is used to understand past, present, and future climates. The 
latest versions of the model, CCSM4 and CESM1, contain totally new coupling 
capabilities in the CPL7 coupler that permit additional flexibility and extensibility 
to address the challenges involved in earth system modeling. An integral part of 
CPL7 is the implementation of a coupling architecture that takes a completely 
new approach with respect to the high-level design of the system. CCSM4 now 
contains a top-level driver that calls model component init, run, and finalize 
methods through specified interfaces.  The top-level driver allows the model 
components to be placed on relatively arbitrary hardware processor layouts and 
run sequentially, concurrently, or mixed.  The new coupling architecture 
continues to provide "plug and play" capability of data and active components, 
but improvements have been made to the memory and performance scaling of 
the coupler that support much higher resolution configurations.  CCSM4 now 
scales better to higher processor counts, and the ability to handle global 
resolutions up to one-tenth degree is demonstrated.  
  
   
Introduction: 
 
Background 
 
Climate modeling consists of complex multi-physics applications and is one of 
today’s high performance computing challenges. The Community Climate 
System Model (CCSM) is a coupled, state-of-the-art global climate model   
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consisting of four fundamental physical components:  an atmosphere model, a 
surface land model, an ocean model, and a sea ice model.  The Community 
Earth System Model (CESM) adds a new land-ice component, land and ocean 
biogeochemistry functionality, an atmospheric chemistry model, and a capability 
for the atmospheric component to span a larger range of altitudes. The CCSM 
and CESM components can be “data” components or “active” dynamical 
components. Each dynamical component typically contains both fluid-dynamics 
solvers and detailed parameterizations to compute the internal and external 
forcing terms that arise from such diverse phenomena as the passage of 
radiation through the atmosphere, the release of latent heat by phase changes of 
water, and the effects of friction and unresolved turbulent scales.  
 
As the CCSM/CESM components evolve in time, they periodically exchange 
boundary data via the use of coupling software.  This coupling software supports 
communication of data between components, interpolation of data between 
different component grids, merging of fields from several “source” components to 
a “destination” component, and the production of various diagnostics among 
other things.  CCSM3 (Collins et al., 2006a) used the CPL6 coupling software 
(Craig et al., 2005).  In what follows, we present an overview of the high-level 
design and performance of the new CPL7 coupling software that forms an 
integral part of CCSM4 and CESM1. In the following discussion, the name 
“CCSM4” or “CPL7” will be used to describe capabilities in both CCSM4 and 
CESM1. 
 
Couplers are a key component of climate models. In particular, coupling of 
models normally involves at least three different aspects: the coupling 
architecture, the communication infrastructure, and the coupling methods.  The 
coupling architecture is generally associated with the overall control of the 
system, including the temporal sequencing of the model components.  The 
communication infrastructure supports data transfer between components and 
depending on the overall design, can be implemented from a high level driver 
through subroutine calls or from within the model components directly.  Finally, 
coupling methods provide capabilities such as mapping between different 
component grids, merging from several source components to a destination 
component, computation of physical quantities such as fluxes, or the computation 
of diagnostics.  Every coupled climate model application needs to address these 
aspects, and they are generally implemented using a combination of community 
tools and custom-built software.  
 
Coupling architectures can be distinguished by four basic features: whether data 
is sent through a “hub” or communicated directly between components, whether 
communication of data is handled via a top-level driver or from calls directly in 
the components, how the coupled model components are configured on 
hardware processors and whether a system is run as a single executable or as 
multiple executables.  CCSM has always had, and continues to have, a hub 
design. To couple models developed separately into a single application, CCSM 
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developed, over the past fifteen years, coupling architectures that permitted 
coupling with minimum modification to component models.  
 
It is important to distinguish between temporal concurrency and processor 
concurrency.  Component models can be run on mutually exclusive processors, 
but if they are sequenced temporally in the implementation, a concurrent 
processor layout would actually run sequentially.  Two models will run 
concurrently across processors only if they are run on unique sets of processors 
and if there are no temporal dependencies between the components that will limit 
concurrency. 
 
Single executable designs do not automatically imply that models are running on 
the same processors sequentially.  In general, components can be laid out in 
relatively arbitrary processor groups with single executable systems.  On the 
other hand, multiple executable systems normally imply that the model 
components are running concurrently on unique processors sets since hardware 
systems generally disallow multiple executables from sharing the same 
processors and interleaving.  
 
A particular coupled climate model implementation is fundamentally driven by 
architectural choices related to component sequencing, coupling frequency and 
lags, concurrency, scientific requirements, job launching, component integration, 
and interoperability.  For example, the Parallel Climate Model (PCM)  
(Washington et al., 2000)  incorporated a high level driver that supported 
sequential execution of components in a single executable.  In this case, the 
coupler was a driver that called components via subroutine interfaces and the 
sequencing and coupling operations were custom built around particular scientific 
needs.  On the other hand, the Oasis coupler (Valcke et al., 2006a) is a more 
generic coupler component designed to support coupling of multiple executable 
components that communicate via calls to a shared coupling interface called 
PRISM (Valcke, 2006b). Oasis supports both coupling through a hub and direct 
coupling between components.  The design of these two couplers is 
fundamentally different, yet they both meet the scientific needs of their 
community.  Other examples of climate model couplers are FMS 
(http://www.gfdl.noaa.gov/fms), FOAM (Jacob et al., 2001), PALM 
(http://www.cerfacs.fr/globc/PALM_WEB) and FLUME.  Other examples of 
coupling libraries are MCT (Larson et al., 2005), ESMF (Hill et al., 2004), and the 
Distributed Data Broker (Drummond et al., 2001). 
  
 
Motivation 
 
Prior to CCSM4, CCSM operated as a multiple executable system where all 
models ran concurrently over disjoint sets of hardware processors and where 
each component model was a separate binary program. The components started 
independently and communicated to the coupler at regular intervals via send and 
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receive methods called directly from within each component.  The coupler acted 
as a central hub coordinating data exchange, implicitly managing lags and 
sequencing, and executing coupler operations such as mapping (interpolation) 
and merging. In practice the coupler sequencing was difficult to understand 
because of the embedded communication calls in components.  In addition, 
although special efforts were made in CCSM3 to maximize the amount of 
concurrency, the multiple executable concurrent design limited model throughput 
in some configurations.  In addition, the CCSM3 design made porting and 
debugging challenging on occasion largely because of the multiple executable 
job launch. Finally, the prior CCSM implementations were not consistent with an 
ability to couple using the Earth System Model Framework (ESMF). 
 
Recent advances in physics algorithms in CCSM4 components, including an 
updated and improved atmospheric boundary layer scheme and new radiation 
and surface albedo algorithms, require that components be coupled more 
frequently than in the past for stability reasons.  In addition, as resolutions 
increase, component timesteps decrease and coupling frequencies tend to 
increase.  With the recent need for higher frequency coupling, limitations in the 
CCSM3/CPL6 capability to overlap work in concurrent execution became 
increasingly critical. 
 
In the past, CAM (Collins et al., 2006b) and CLM (Bonan et al., 2002; Oleson et 
al., 2010) “stand-alone” coupled systems have been publicly available from 
NCAR as sequentially coupled single executable climate models with all 
components running on the same grid.  They are extensions of the prior CCM 
and LSM release models that have existed at NCAR since the 1980s.  The CAM 
“stand-alone” model was an atmosphere, land-surface, data-ocean (using 
prescribed sea surface temperatures), and thermodynamic-only sea ice (using 
prescribed ice coverage) coupled system.   The CLM “stand-alone” model 
consisted of data-atmosphere and land-surface coupled components. Over the 
past decade, these “stand-alone” models were released and supported in parallel 
to CCSM with overlapping resources from NCAR.  For several reasons including 
code unification, reduced maintenance, and expanded features such as an ability 
to run on a single processor, CCSM4 developers wanted to duplicate several 
features associated with the CAM and CLM “stand-alone” systems. 
 
With CPL7 in CCSM4, a completely new approach has been taken with respect 
to the high-level architecture and design of the system. The system is now 
controlled by a top-level driver that runs on all processors, and components are 
run via calls to standard component subroutine interfaces that run on all or 
arbitrary subsets of hardware processors. This overall effort was undertaken for 
several reasons including ability to better support new science, desire to support 
fully sequential and single processor integration, migration to a single executable 
system for ease in porting and use, increased flexibility of component layouts on 
hardware processors to improve performance over a wider range of problems, 
ability to support coupling via Earth System Model Framework (ESMF) 
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superstructure, and targeting much higher resolutions and higher processor 
counts with improved performance and memory scalability. 
 
CCSM4 has greatly expanded the flexibility of component layouts by moving to a 
single executable system that continues to support concurrent processor layouts 
but also supports components running sequentially or in mixed 
sequential/concurrent mode. This new wider layout choice gives users more 
flexibility in optimizing load balance and efficiency for any simulation 
configuration.  CCSM4 was also rewritten to significantly reduce memory use and 
improve memory scaling.   Previous CCSM versions were run mostly at global 
resolutions of one to five degrees, and memory usage was not a constraint. 
CCSM4 now supports the ability to run global one-tenth degree resolutions using 
tens of thousands of processors on massively parallel machines with relatively 
limited memory available per processor, especially given the problem size.  
 
In what follows, we describe the CPL7 design in CCSM4 in more detail, with a 
focus on sequencing, interfaces, infrastructure, memory scaling, and processor 
layout.  Some performance results will also be presented. 
 
 
Design: 
 
Overview 
 
CCSM4/CPL7 is built as a single executable with a single high-level driver that 
runs on all processors, calls components, handles sequencing, manages 
component layout on hardware processors, and communicates data between 
components.  The driver calls all model components via common and standard 
interfaces.  The driver also directly calls coupler methods for mapping 
(interpolation), rearranging, merging, flux calculation, and diagnostics.  In 
CCSM4, the model components and the coupler methods can run on subsets of 
all the processors.  In effect, the CPL6 sequencing and hub attributes have been 
migrated to the driver level while the CPL6 coupler operations such as mapping 
and merging are done as if a separate coupler component existed in CCSM4.   
 
CCSM4 supports both data and active components models.  In general, an active 
component needs data from and provides data to the coupler.  Data components, 
on the other hand, normally only read forcing data from external data files and 
then provide this data to the coupler.  In CCSM4, like CCSM3, the atmosphere, 
land, and sea ice models are always tightly coupled to better resolve the diurnal 
cycle.  It is important to point out that atmosphere/ocean fluxes are computed in 
the coupler (and not in the ocean component) at the same frequency that the 
atmosphere, land and sea ice models communicate. Similarly, the diurnal cycle 
of ocean surface albedo is also computed in the coupler for use by the 
atmosphere model. This coupling is typically hourly, although at higher 
resolutions it can be more frequent.  Since the ocean model is not responsible for 



 

 

6 

computing atmosphere/ocean fluxes, it is typically coupled once or a few times 
per day. The looser ocean coupling frequency means the ocean state and 
response is lagged in the system.   This also permits the ocean model to run 
efficiently on a mutually exclusive set of processors from the atmosphere, land, 
sea-ice and coupler components. There is an option in CCSM4 to run the ocean 
tightly coupled without any lags, but this is normally used only when running with 
data ocean components. 
 
Depending on the resolution, hardware, run length and physics, a CCSM4 run 
can take several hours to several months of wall time to complete.  Runs typically 
encompass model simulation times of decades or centuries, with the model 
typically running between one and fifty simulated years per wall clock day.  
CCSM4 has exact restart capability, and the model is typically run in individual 
one year or multi-year chunks.  CCSM4 also has automatic resubmission and 
automatic long-term data archiving capability.  
 
Sequencing and Concurrency 
 
In CCSM4, the component processor layouts and MPI communicators are 
derived from simple user-specified namelist input. Presently, there are seven 
basic MPI processor groups in CCSM4.  These are associated with the 
atmosphere, land, ocean, sea ice, land ice, coupler, and global groups, although 
others can be added easily.  Each of the basic MPI groups can be associated 
with different processors, and a user can overlap MPI groups on hardware 
processors relatively arbitrarily. If any processor groups overlap each other in at 
least one processor, then those components will run sequentially.  Each 
processor group is described at runtime using three scalar variables: the number 
of MPI tasks, the number of OpenMP threads per MPI task, and the global MPI 
task rank of the root process for that group.  For example, a layout where the 
number of MPI tasks is 8, the number of threads per MPI task is 4, and the root 
process is MPI task 16 would create a processor group that consisted of 32 
hardware processors, starting at global MPI task number 16, and it would contain 
8 MPI tasks.  The driver derives all MPI communicators at initialization and 
passes them to the component models for use.  This input information is used 
both to set MPI groups and to set batch and job launching parameters. 
 
As mentioned in the introduction, there are two aspects that determine whether 
component models run concurrently.  The first is whether unique chunks of work 
are running on distinct processor groups.  The second is the sequencing of this 
work in the driver.  As much as possible, the CCSM4 driver sequencing has been 
implemented to maximize the potential amount of concurrency of work between 
different components.  Ideally, in a single coupling step, the forcing for all models 
would be computed first.  The models could then all run concurrently, and then 
the driver time would advance.  However, scientific requirements such as the 
coordination of surface albedo and atmospheric radiation as well as boundary 
layer stability impose constraints on the coupling lags.  Figure 1 shows the 
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maximum amount of concurrency currently allowed in the CCSM4 driver for a 
fully active system configuration. More concurrency is technically possible, but 
the scientific constraints impose a limitation on the coupling between the 
atmosphere model and the land and sea-ice models such that the atmosphere 
model must be run sequentially with both of those surface models.  Again, figure 
1 does not necessarily represent the optimum processor layout for performance 
for any configuration, but provides a practical limit to the amount of concurrency 
currently supported in the system.  It is important to point out that, with CCSM4, 
results are within numerical round-off regardless of the layout of components on 
processors.  Results are not bit-for-bit identical in this case because some 
physical components introduce round-off level changes when changing 
processor counts. 
 
There is a loss of concurrency in CCSM4 relative to CCSM3. In CCSM4, the 
model run methods are called from the driver, and the coupling from the overall 
system perspective looks like “send to component, run component, receive from 
component”.  In CCSM3, the coupling was done via direct calls from inside each 
component and the send and receive calls could be interleaved with work such 
that the model run method appeared to have two phases, one between the 
coupling send and receive, the other between the receive and send.  Although 
that allowed greater concurrency in CCSM3, it was also designed for concurrent-
only execution. In CCSM4, multiple run phases were not implemented to simplify 
the model and provide an opportunity for greater interoperability.  This choice 
was made with the full understanding that there would be some potential loss of 
model concurrency in specific cases.  However, it was felt that the additional 
flexibility of allowing models to run in a mixed sequential/concurrent system 
would overcome any performance degradation due to a potential loss of 
concurrency. 
 
Component Interfaces 
 
The CCSM4 component model interfaces are based on an initialize, run, and 
finalize approach with consistent arguments across different component models.  
Although the standard CCSM4 interface arguments currently consist of Fortran 
and Model Coupling Toolkit (MCT) (Larson et al., 2005) datatypes, an alternative 
version is available which is compatible with the ESMF superstructure.  As part of 
initialization, the grid and component decomposition information is passed from 
the component back to the driver.   The driver/coupler acquires all information 
about resolution, configurations, and processor layout at run-time from either 
input files or from communication with components.  The physical coupling fields 
are passed through the interfaces in the initialize, run, and finalize phases.   The 
run interface also contains a clock that specifies the current time and the run 
length for the model.  
 
Initialization of the system in CCSM4 is relatively straight-forward.  First, the 
varied MPI communicators are setup in the driver.  Then the component 
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initialization methods are called on the appropriate processor groups, and grid 
and decomposition information is passed back to the driver.  Once the driver has 
the grid and decomposition information from the components, various 
rearrangers and mappers are initialized that will move data between processors, 
decompositions, and grids as needed at the driver level.  No distinction is made 
in the coupler implementation for sequential versus concurrent execution.  In 
general, even for cases where two components have identical grids and 
processor layouts, often their decomposition is different for performance reasons.  
In cases where the grid, decomposition, and processor layout are identical 
between components, the mapping or rearranging operation will degenerate to a 
local data copy. 
 
The sequencing of the driver run loop for the CCSM4 configuration with coupler, 
land, sea ice, atmosphere, and ocean components is shown in figure 2. This 
order of operations is hard-wired in the CCSM4 driver and is based on scientific 
constraints first and performance optimization second.  The letter “C” in figure 2 
indicates a coupling operation where data is communicated between the coupler 
component and another component.  This step introduces a cross-component 
dependence, where one component will normally wait for the other component 
before communication proceeds.  The letter “R” in figure 2 indicates independent 
work carried out by that component.  Coupling to the atmosphere, land, and sea 
ice models occurs every step through the run loop, while coupling to the ocean 
normally occurs less frequently.  Figure 2 shows that if components are run 
concurrently, the ocean will begin first, followed by the land and sea ice.  The 
atmosphere model will not start until data from the sea ice and land models is 
communicated to the coupler, used to compute coupling data for the atmosphere 
model, and then sent to the atmosphere component.  The ocean is always able 
to integrate concurrently with all other components in the design.  Figure 2 
provides the detailed implementation that limits the total amount of concurrency 
shown in Figure 1.  The coupler is constantly computing between communication 
steps, and some of this work is overlapped with other components.  Generally, 
the coupler work and communication costs are small compared to the active 
model run times.   
 
Additional Software and Parallel IO 
 
CPL6 was built using the Model Coupling Toolkit  (MCT) infrastructure library, 
and CPL7 continues to rely heavily on MCT. MCT supports many critical coupling 
needs such as managing data parallelism and performing parallel remapping. 
The high-level data types in CPL7 consist largely of MCT data types, and MCT is 
used for all rearranging and mapping of data between processors, 
decompositions, and grids.  Although the CPL7 coupling architecture is 
dependent on MCT infrastructure, the high level superstructure is designed to be 
compatible with ESMF (Collins et al., 2005), and CCSM4 components are ESMF 
compliant.  In addition, the CCSM project continues to evaluate the use of ESMF 
infrastructure as a complement to the MCT capabilities.  Mapping weights are still 
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generated offline using the SCRIP package (Jones, 1998). In order to minimize 
the memory footprint, mapping weights are read into CCSM4 using a method that 
reads and distributes the weights in reasonably small chunks.  
 
CCSM4 is targeting much higher resolutions than any previous versions. Efforts 
have been made to reduce the memory footprint and improve memory scaling in 
all components with a goal of being able to run the fully coupled system at one-
tenth degree global resolution on tens-of-thousands of processors, with each 
processor having as little as 512 MB of memory.  This target limits the number of 
non-distributed arrays that can be allocated on any single processor to just a few 
at any time and has led to some significant component refactoring especially in 
initialization.  In addition, the memory required to carry out traditional serial I/O at 
higher resolutions is unacceptable, and serial I/O performance at higher 
resolutions can be a significant bottleneck.  In response to the I/O limitiation, the 
development of a parallel I/O (PIO) library (Dennis et al, 2011b), based on 
NetCDF, pNetCDF  (www.mcs.anl.gov/parallel-netcdf), and MPI-IO has been 
underway within the CCSM community to address I/O performance and memory 
usage in the model.  All model components are currently using the PIO software 
extensively, and use of PIO permits CCSM4 to run at resolutions that were not 
previously possible due to memory limitations.  
 
Performance, Scaling, and Load Balance 
 
To target scaling to tens of thousands of processors, developers for all 
components have worked at improving performance scaling via changes to 
algorithms, infrastructure, and decompositions.  In particular, decompositions 
using shared memory blocks, space filling curves (Dennis et al., 2011a), and all 
three spatial dimensions have been implemented to varying degrees in order to 
increase parallelization and improve scalability in all components. 
 
CCSM4 load balance refers to allocating and laying out model components on 
processors to optimize performance and minimize idle time. CCSM4 
performance, load balance, and scalability are constrained by the problem size, 
complexity, and multiple model character of the system. Within the system, each 
component has its own scaling characteristics, and variation in scaling of a 
component occurs because of internal load imbalance, decomposition 
capabilities, or communication patterns.  Component performance can also vary 
as the model integrates forward in time.  This occurs because of seasonal 
variability of the cost of physics in models, changes in performance during an 
adjustment (spin-up) phase, and temporal variability in calling certain model 
operations like radiation, dynamics, or I/O.  Within these constraints, a load 
balance configuration with acceptable idle-time and reasonably good throughput 
is nearly always possible to configure with CCSM4.  CCSM4 has significantly 
increased the flexibility of the possible processor layouts, and this has resulted in 
better load balance configurations compared to previous CCSM versions. 
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In practice, load-balancing CCSM4 involves a number of considerations such as 
which components are run, their absolute resolution, and their relative resolution; 
cost, scaling and processor count capabilities for each component; and internal 
load imbalance within a component. It is often best to load balance the system 
with all significant run-time I/O turned off because this generally occurs 
infrequently (typically one timestep per month in CCSM4), is best treated as a 
separate cost, and can bias interpretation of the overall model load balance. The 
ability to use OpenMP and the performance of OpenMP threading in some or all 
of the system is dependent on the hardware/OS support as well as whether the 
system supports running all MPI and mixed MPI/OpenMP on overlapping 
processors for different components.  Finally, the processor layout, whether 
sequential, concurrent, or some combination of the two, can be varied.  Typically, 
a series of short test runs is done with the desired production configuration to 
establish a reasonable load balance setup for the production job.  CCSM4 
provides some post-run analysis of the performance and load balance of the 
system to assist users in improving the processor layouts. 
 
 
Results: 
 
In this section, performance scaling results will be presented for four different 
coupler kernels.  Then some full model results will be presented to show how the 
layout of components on hardware processors impacts overall model 
performance.  The four kernels that will be discussed are a field merge on the 
ocean grid, an atmosphere-ocean flux calculation, a rearrangement of ocean 
data between two different decompositions, and an atmosphere to ocean 
mapping.  These kernels represent the most common CCSM coupler operations.  
Results will be presented from three different hardware platforms, bluefire, 
jaguarpf, and intrepid and at two different model resolutions, “f19_g16” and 
“f05_t12”.  
 
Bluefire is an IBM SP6 at the National Center for Atmospheric Research (NCAR) 
with 4096 4.7 GHz processors and 4 GB of memory per processor.  Processors 
are grouped into 32-way nodes, and each processor supports up to 4 FLOPS 
(floating point operations) per clock cycle. The interconnect uses an InifiniBand 
switch, and each node has eight 4X DDR links.  Bluefire supports simultaneous 
multi-threading (SMT) which allows 64 MPI tasks to be assigned to each node, 
and SMT mode was used for all timing results on bluefire.  Jaguarpf is a Cray 
XT5 at the National Center for Computational Sciences (NCCS) at Oak Ridge 
National Laboratory (ORNL) that has 18,688 nodes of dual hex-core AMD 
processors running at 2.6 Ghz with 16 GB of memory per node.  The total 
number of processors available is 224,256, and the interconnect uses a SeaStar 
2+ router.  Intrepid is an IBM Bluegene/P at Argonne National Laboratory (ANL) 
with 163,840 850 MHz PowerPC 450 processors.  There are 4 processors per 
shared memory node, 1024 nodes per rack, and each node has 2 GB of 
memory. 

James White � 12/10/10 2:40 PM
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The “f19_g16” is a moderate resolution grid and consists of a nominally two 
degree atmosphere/land grid with 144 x 96 horizontal gridpoints coupled to a 
nominally one degree ocean/ice grid with 320 x 384 gridpoints. The “f05_t12” is a 
high resolution configuration with 576 x 384 gridpoints on a nominally half degree 
atmosphere/land grid coupled to a nominally one-tenth degree global resolution 
ocean/ice configuration with 3600 x 2400 horizontal grid points.  All cases were 
run with shared memory parallelism (OpenMP) turned off, and one MPI task was 
placed on each processor with the following exceptions. On bluefire, the IBM 
SP6, SMT mode was used as indicated above.  On intrepid at the high resolution 
“f05_t12” configuration, one MPI task was assigned to each 4-way node due to 
memory limitations.  
 
Tests were carried out on all machines in a production environment.  As a result, 
some variability in timings was observed.  Cases were rerun as needed to try to 
understand the variability better, and generally, best times are shown.  All cases 
were carried out as 20 day runs using a dead model configuration without any 
history or restart I/O.  All timers were isolated with MPI_BARRIER calls, and the 
time on the slowest task is presented.  Over each 20 day integration, each kernel 
was called 960 times, and the time was summed over all the calls over and each 
MPI task.  The times presented in the plots are seconds per simulated model 
day.  All results are plotted in log/log format, and each plot uses the same 
horizontal and vertical axis scales for easier comparison.  In addition, the same 
linear scaling reference line is included in each plot, and the horizontal axis is the 
number of MPI tasks used by the coupler in the testcase. 
 
Figure 3 shows performance of the ocean field merge kernel from the CCSM 
coupler.  This kernel is responsible for merging various fields on the ocean grid 
from different components.  This operation is trivially parallel (there is no 
communication), and the kernel is primarily memory access limited.  At the higher 
“f05_t12” resolution, the performance on all platforms is remarkably similar with 
near linear scaling to over 1000 processors on all machines.  In constrast, the 
performance scaling of the moderate “f19_g16” resolution case is near linear up 
to about 100 processors on all machines.  Above about 100 processors, 
performance tails off on bluefire and intrepid, while jaguarpf performance tails off 
at about 1000 processors. 
 
Figure 4 shows the performance scaling of the atmosphere/ocean flux 
calculation.  This calculation is also trivially parallel and is computed on the 
ocean grid.  Compared to the ocean merge kernel, this computation is dominated 
by mathematical operations including add, multiply, divide, min/max, log, 
exponential, and square root.  The number of FLOPS per memory load in this 
kernel is relatively high, and compared to figure 3, the scaling is near linear on all 
machines to at least 1000 processors even at the moderate resolution. The 
absolute performance of this kernal on bluefire and jaguarpf is nearly identical, 
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but intrepid runs about 10 times slower than the other two machines on this 
highly FLOP intensive metric. 
  
Figure 5 documents the scaling performance of a rearrange operation on the 
ocean grid.  There are no FLOPS in this kernel, just memory access and an MCT 
rearrange of data between an ocean decomposition and an ice decomposition of 
the same grid. This rearrange is nearly an all-to-all communication of data 
between processors, and is performance limited by the communication cost.  
Scaling is generally sub linear for both resolutions across the full range of cases 
tested.  The scaling tails off significantly above about 100 processors at the 
moderate “f19_g16” resolution with jaguarpf becoming slower (rolling over) above 
about 100 processors.  At the higher “f05_t12” resolution, scaling is somewhat 
better, but it still flattens out at about 500 processors on bluefire, it flattens out at 
about 1000 processors on intrepid, and it rolls over at about 500 processors on 
jaguarpf.   
  
Figure 6 shows the atmosphere to ocean mapping performance in CCSM.  This 
kernel is a mixture of communication and multiply-add operations (Jacob et al., 
2005) and is carried out using an MCT mapping method.  In this case, the 
mapping weights are always distributed based on the ocean decomposition at 
initialization.  When the kernel is called, the atmosphere data is rearranged to the 
ocean decomposition such that, for every processor, the atmosphere data 
required for mapping to the local ocean grid is available.  In many cases, 
atmosphere data is rearranged to more than one ocean processor.  When the 
rearrangement is complete, atmosphere data is locally interpolated to the ocean 
grid.  Overall, the performance of this kernel is similar to the performance of the 
rearrange kernel in figure 5 indicating the importance of the rearrange step in the 
overall cost of this operation.  Scaling starts to go flat or even turns over at about 
100 processors for all machines at the moderate “f19_g16” resolution.  The 
“f05_t12” scales well to about 1000 processors, except on jaguarpf where scaling 
flattens dramatically at about 500 processors.  
 
Figures 7 provides some insight into the performance implication of different 
processor layouts for a specific CCSM coupled run.  Figure 7 shows the overall 
performance of each component schematically for an “f19_g16” moderate 
resolution fully prognostic case running on a total of 128 processors.  (a) is a fully 
concurrent layout of components on processors, (b) is a fully sequential layout 
where all components are run on all processors, (c) is fully sequential except the 
ocean model is run concurrently with the rest of the system, and (d) is a more 
general mixed sequential/concurrent layout.  In all cases, the total number of 
processors used is 128 and the idle times, represented by gray boxes, was 
minimized as much as possible. The total run time for each of the four 
configurations is 33.5, 20.8, 21.8, and 19.1 seconds per model day for the (a) 
concurrent layout, (b) sequential layout, (c) sequential plus ocean concurrent 
layout, and (d) mixed sequential/concurrent layout respectively.  Except for the 
(a) fully concurrent layout that has significant idle time because of the 
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sequencing limitations of the atmosphere, land, and ice models in the driver, the 
total performance of the varied processor layouts is relatively close.  
 
The concurrent layout in Figure 7 cannot be compared to the CCSM3 runtime 
because the concurrency is completely different.  As was discussed in the design 
section, the CCSM3 coupling was implemented with two run phases that allowed 
greater overlap of work between components.  In CCSM4, each component has 
just one run phase, and this significantly reduces the amount of potential 
concurrency and increases the runtime of a purely concurrent layout in CCSM4 
compared to what would have been attained in CCSM3.  However, the increased 
flexibility of CCSM4 processor layouts generally results in increased performance 
in nearly all configurations compared to the CCSM3 concurrent-only 
implementation. 
 
In general, Figure 7 demonstrates some of the potential component layouts on 
processors available to users of CCSM4.  The optimal layout and processor 
counts for each component for any given case depends heavily on the scaling 
performance of each component and the resolution of each component.  In 
general, the effectiveness of running models concurrently is a trade-off between 
the idle time created by concurrent execution versus the generally sublinear 
scaling of components as processor counts are increased. 
 
 
 
Summary: 
 
The latest version of the CPL7 coupler for CCSM4 and CESM1 has been 
described.  Since the CCSM3 release, the implementation has been refactored 
significantly.  CCSM4 now contains a top-level driver that calls model component 
init, run, and finalize methods through consistent interfaces.  It also coordinates 
the sequencing and MPI groups of the components to provide greater flexibility in 
processor layouts.  Many changes were also made to improve the memory and 
performance scaling of the coupler, and the CCSM4 coupling overhead has been 
reduced compared to CCSM3.  Most of this effort has been implemented using 
the MCT coupling library, but ESMF compliant interfaces are also available for 
CCSM4 components. 
 
CCSM4 now scales better to higher processor counts compared to CCSM3, and 
CCSM4 is able to handle much higher resolution configurations compared to 
CCSM3.  Scaling curves in the CPL6 paper (Craig et al., 2005) were presented 
to 32 processors for a T42 (nominally three degree) atmosphere/land case 
coupled to a nominally one degree ocean/ice resolution.  In this paper, results 
are presented for cases up to one-tenth degree global resolutions on processor 
counts up to 10,000.  In particular, the CCSM4 has been run with active 
components at one-quarter degree atmosphere and land global resolutions 
coupled to a one-tenth degree ocean and ice global resolution (Dennis et al., 
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2011c).  This could not have been achieved with the CCSM3/CPL6 coupling 
implementation. 
 
The performance of individual coupling kernels has been presented.  As 
expected, trivially parallel operations scale well to high processor counts.  In 
particular, the atmosphere/ocean flux kernel scaled almost linearly on all 
machines.  The memory intensive merge kernel scaled well, and the 
communication intensive rearrange and mapping kernels generally scaled to 
moderate task counts.  Several factors need to be considered when choosing the 
coupler processor count and layout for overall CCSM4 load balance and 
performance.   The coupler cost is generally small compared to other 
components, and it is often run sequentially with other components, particularly 
the atmosphere model.  As a result, the coupler is often placed on available 
processors based on load balance and optimization of the other components 
first.  In general, the coupler will probably run faster on more processors within 
reason.  However, based upon the scaling of the communication kernels on 
jaguarpf, there is the possibility that the coupler will slow down on some 
machines as processor counts are increased, so it is important to evaluate the 
effect of increasing processors on coupler performance before carrying out a 
long run. 
 
Some general statements could also be made about the relative performance of 
the different hardware architectures used in this study.  On a per processor 
basis, bluefire was consistently faster than either jaguarpf or intrepid for the 
coupler timings in general.  The memory intensive merge kernel timings were 
similar for all machines especially in the regime where there are many gridcells 
per processor.  But the computation intensive flux calculation was 10x slower on 
intrepid compared to either bluefire or jaguarpf.  This should be somewhat 
expected based on the relative processor speed.  The performance scaling of the 
communication intensive kernels on all machines tailed off at higher processor 
counts with jaguarpf performing worst at the higher processor counts.  It is 
unclear whether the communication scaling behavior on jaguarpf is inherent to 
the hardware, associated with the local system setup, or related to the diverse 
load on the machine at any given time.   
 
Finally, the flexibility to vary the processor layout in CCSM4 has been 
demonstrated.  The CCSM4 model’s ability to support sequential, concurrent, or 
mixed layouts provides much greater flexibility with respect to overall load 
balance and performance optimization compared to CCSM3. 
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Figure 1: CCSM4 Concurrency capability based on scientific constraints. 
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Figure 2: Driver Loop Sequencing showing the order of operations at the driver 
level and concurrency of the coupler, land, sea ice, atmosphere, and ocean 
components.  An “R” indicates work is being done by that component and a “C” 
indicates the coupler and another component are communicating. 
 
 
 
 
 
 



 
 
Figure 3: Scaling performance of the ocean merge kernel in the CCSM4 coupler 
at at two resolutions (“f19_g16” and “f05_t12”) and on three hardware platforms 
(bluefire, jaguarpf, and intrepid). 
 
 
 
 
 

 
 
 
 
Figure 4: Scaling performance of the atmosphere/ocean flux kernel in the 
CCSM4 coupler at two resolutions (“f19_g16” and “f05_t12”) and on three 
hardware platforms (bluefire, jaguarpf, and intrepid). 
 
 



 
 
Figure 5: Scaling performance of the ocean to ice rearrange kernel in the CCSM4 
coupler at two resolutions (“f19_g16” and “f05_t12”) and on three hardware 
platforms (bluefire, jaguarpf, and intrepid). 
 
 
 
 
 
 

 
 
Figure 6: Scaling performance of the atmosphere to ocean mapping kernel in the 
CCSM4 coupler at two resolutions (“f19_g16” and “f05_t12”) and on three 
hardware platforms (bluefire, jaguarpf, and intrepid). 
 
 
 
 
 
 
 



 
 

 
 

 
 
 

 
  
 
Figure 7: Schematics of CCSM4 component model timing for a fully prognostic 
“f19_g16” configuration running with four different processor layouts.  In all 
cases, the total number of processors used is 128.  Gray boxes represent idle 
time, and the time for each component in seconds per simulated model day is 
indicated.  The total time for a) the fully concurrent layout is 33.5s; for b) the fully 
sequential layout is 20.8s; for c) the sequential layout with the ocean running 
concurrently with other components is 21.8s; and for d) a mixed 
sequential/concurrent layout is 19.1s. 
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