
we selected this trace because it demonstrates the expected 
behavior of an overprovisioned cloud infrastructure that is the 
focus of this work; specifically, it contains many idle VMM 
nodes available to service on-demand requests.  

We emphasize that although we could have generated 
various workload scenarios, we instead chose these two 
realistic workload traces in order to demonstrate and evaluate 
the usefulness of backfill to either the on-demand user 
community or the HTC user community. (We selected an on-
demand trace from the considerably smaller UC Nimbus 
science cloud than a larger and possibly more dynamic cloud 
provider, such as Amazon or the Magellan cloud at Argonne 
National Laboratory [13], because of the lack of availability of 
such traces at the time of this work.) 

Because the UC Nimbus cloud contains only 16 cores and 
our evaluation environment contains 128 cores, we multiplied 
the workloads by 8 so that 16 individual requests for the cloud 
would be 128 individual requests for the entire 128 cores in the 
evaluation environment. Thus, an individual request for a 
single core on the UC cloud is 8 individual requests, each for a 

single core, in our evaluation environment. The on-demand 
user workload requests a total of 56 individual VMs over the 
course of the evaluation. We terminate the evaluation shortly 
after the overlapping Condor trace completes. 

Both workloads submit individual and independent requests; 
each request is for a single core. In the Condor workload the 
jobs simply consist of a program that sleeps for the desired 
amount of time. In the on-demand workload VMs are started 
and run for the appropriate duration. Backfill VMs are capable 
of executing 8 jobs concurrently across the 8 cores in a backfill 
VM, while individual on-demand user requests are single-core 
VMs. RAM is divided evenly among the VMs.  
A. Understanding System Behavior 

To understand the system behavior we compare three 
scenarios. The first scenario considers only the on-demand user 
workload; the number of cores used in this workload is shown 
in Figure 2. In this case the IaaS cloud achieves an average 
utilization of 36.36%, shown in Figure 5, with a minimum 
utilization of 0% and a maximum utilization of 43.75%.  

 
Figure 5. IaaS cloud infrastructure utilization without backfill VMs, 

running only on-demand user VMs. 

 
Figure 6. IaaS cloud infrastructure utilization with on-demand user VMs 

and backfill VMs processing Condor jobs. 

 
Figure 7. Condor job queued time when the job first begins executing, 

using the most recent backfill termination policy. 

 
Figure 8. Condor job queued time when the job begins executing for the 

last time before successful completion, using the most recent backfill 
termination policy. 



The second scenario involves simply running the Condor 
workload on all 16 VMMs (128 cores) without the on-demand 
user workload. In this case the entire Condor workload 
completes in approximately 84 minutes (5042 seconds), as 
shown in Figure 3. 

In the third scenario the Condor workload is overlaid with 
the on-demand user workload. The Condor workload takes 11 
minutes and 45 seconds more than the case where Condor has 
exclusive access to the resources, completing in approximately 
96 minutes (5747 seconds), as shown in Figure 4. However, the 
utilization of the cloud infrastructure, shown in Figure 6, 
increases to an average utilization of 83.82% with a minimum 
utilization of 0% and a maximum of 100%. As the Condor jobs 
complete (just before 6000 seconds in the evaluation), 
utilization again drops because the IaaS cloud is no longer 
running Condor jobs in addition to on-demand user VMs.  

The large increase in utilization is due to the fact that the 
cloud infrastructure is no longer solely dedicated to servicing 
on-demand user VM requests. Instead, the cloud infrastructure 
is also able to process jobs from a Condor workload without 
compromising its ability to service on-demand VM requests. 
The increase in utilization depends on the amount of work in 
the HTC workload. Naturally, longer and more HTC jobs will 
translate into higher utilization.  

While increased utilization certainly benefits the cloud 
provider, Figure 4 also demonstrates that it is advantageous to 
HTC workloads. The workload, which originally takes 
approximately 85 minutes on the same dedicated hardware 
(Figure 3), is delayed by only 11 minutes and 45 seconds 
(completing in just under 96 minutes) when on-demand user 
VMs are introduced into the system, as shown in Figure 4. 
Presumably, however, the cost of utilizing backfill nodes 
would be lower than utilizing dedicated on-demand user VMs 
since backfill VMs may be reclaimed by the cloud provider 
without warning. 

B. Understanding System Performance 
To understand how the IaaS cloud environment and backfill 

solution impacts on-demand users and HTC users, we again 
consider the three scenarios. The first scenario involves the on-
demand user workload; the second scenario involves Condor 
jobs running on the 16 VMM nodes without interruption from 
on-demand user VMs; and the third scenario overlays the first 
two. 

In Figure 7 we can see that the Condor first queued time is 
smallest when no user VMs are present, that is, if Condor is 
allowed exclusive access to its own hardware for executing 
jobs. Enabling backfill and introducing user VMs causes an 
increase in the Condor first queued time because there are 
fewer backfill VMs processing Condor jobs since on-demand 
user VMs are also running. 

When backfill is enabled, there is a noticeable increase in the 
amount of time that Condor jobs are delayed until they finally 
begin executing before successful completion, as seen by the 
numerous spikes for individual Condor jobs in Figure 8 (of 
which there are a total of 48). These 48 jobs actually first begin 
executing much earlier, as seen by the absence of spikes in 
Figure 7. These jobs are delayed because of the arrival of the 
on-demand VMs, which cause the termination of backfill VMs, 
preempting the running Condor jobs. Of the 48 jobs that are 
preempted, the average amount of additional time these jobs 
are delayed (before they begin executing for the final time) is 
627 seconds, with a standard deviation of 76.78 seconds; the 
minimum amount of extra time that a job is delayed is 273 
seconds, and the maximum is 714 seconds. The 48 preempted 
jobs spent a total of 22,716 CPU-seconds processing the 
Condor workload before they were preempted. The entire 
Condor workload required a total of 355,245 CPU-seconds. 
Thus, for our experimental traces, the use of a backfill-enabled 
IaaS cloud resulted in an additional 6.39% of overhead for the 
Condor workload. 

Figure 9 demonstrates the impact that backfill has on on-
demand user requests. When backfill is disabled, all on-
demand user requests are handled in 2 seconds or less. When 
backfill is enabled, however, the amount of time to respond to 
an on-demand user request can be as high as 13 seconds, 
although the majority more closely match the case where 
backfill is disabled. The large delay in response time occurs 
when the Nimbus service must terminate (via clean shutdown) 
backfill VMs in order to service the on-demand user request. 
Additionally, because the evaluation environment consists of 8-
core nodes with backfill VMs consuming all 8 cores, whenever 
a backfill VM is terminated to free space for an on-demand 
user VM (even if the on-demand user request is only for a 
single core), the remaining cores on the VMM node remain idle 
and freely available for future on-demand user VMs. 

While this evaluation is based on two real workload traces, 
one can imagine that under some of the possible workloads, 
backfill VMs may be more or less beneficial to IaaS cloud 
providers and HTC users. Certain workloads, environment 
characteristics, and backfill termination policies will 
undoubtedly lend themselves as more beneficial to one 
community over the other. These are factors that we will 
consider in future work. However, our backfill solution and 

 
Figure 9. Nimbus service response time for on-demand user VM requests. 
This is the time from when the Nimbus service first receives the request 

until the service responds. It includes the time required to terminate 
backfill VMs (when applicable); however, it does not include the time for 

a user VM to boot. 



evaluation demonstrate that when considering a realistic on-
demand user workload trace and a realistic Condor workload 
trace, a shared infrastructure between IaaS cloud providers and 
an HTC job management system can be highly beneficial both 
to the IaaS cloud provider and to the HTC users by increasing 
the utilization of the cloud infrastructure (thereby decreasing 
the overall cost) and contributing cycles that would otherwise 
be idle to processing HTC jobs.  

II. RELATED WORK 
Although our work uses backfill to achieve high utilization 

of an IaaS infrastructure, it is different from work that uses 
backfill scheduling to increase the utilization of large 
supercomputers [7]. Scheduling on supercomputers does not 
typically assume that backfill jobs will be preempted by an on-
demand request, seeking to immediately access the resources, 
while our work assumes this to be the default case. Instead, 
these backfill scheduling algorithms attempt to backfill unused 
resources only with requests that match the available slots both 
in their resource needs as well as their expected runtime. There 
are, however, preemption-based backfill solutions [22] that 
share many similar characteristics to our work. The major 
exception is their focus on queue-based supercomputers and 
our focus on IaaS cloud infrastructures. 

Volunteer computing systems, such as BOINC [2], harvest 
cycles from idle systems distributed across the Internet. Major 
examples of volunteer applications include SETI@Home [2] 
and Folding@Home [11]. These applications are designed to 
accommodate interruptions in service since widely distributed 
computers, operated by a seemingly infinite number of 
disparate users, cannot provide any guarantee of service. In the 
case of volunteer computing systems, interruptions in service 
are usually the result of users returning to their systems to do 
work, systems crashing, or systems becoming disconnected 
from the Internet. Much research on volunteer computing 
focuses on the usefulness, efficiency, and failure prediction of 
these volatile environments [1], [3], [18], [19]. Our work 
focuses on providing cycles within an IaaS infrastructure that 
would have otherwise been idle to other processes, such as 
HTC or volunteer computing, where the services may be 
interrupted by the arrival of requests for on-demand VMs. 
Applications that leverage volunteer computing systems would 
be ideal candidates for backfill VMs because of their ability to 
handle unexpected failures in service. 

In [23] we also leverage recovery techniques, specifically 
suspending and resuming VMs, to achieve high utilization of 
IaaS cloud infrastructures. While the goal of maintaining high 
utilization via introducing different types of leases is the same 
as the work described here, the leases themselves, as well as 
the recovery technique used—specifically that of suspending 
and resuming VMs—are different from the focus in our work. 
Instead of using suspend/resume to support advanced 
reservations, we leverage a recovery system that uses 
resubmission (Condor) to ensure that high utilization is 
achieved and no work is lost. 

Another area that shares related themes to our work is spot 
pricing, as exemplified by Amazon [2]. With spot pricing, users 
place bids for instances, and the cloud provider periodically 

adjusts the price of spot instances, terminating the spot 
instances with bids that fall below the new spot price and 
launching instances that meet or exceed the spot price. Our 
work uses the current demand for on-demand user VMs to 
determine the availability for backfill VMs, whereas Amazon 
bases availability of spot instances on a spot price. 

III. FUTURE WORK 
The backfill implementation used in this paper was an 

initial prototype created to demonstrate of the usefulness of 
combining IaaS cloud infrastructure resources with other 
purposes, such as HTC, through backfill VMs. The prototype 
implementation used in this work is publicly available on 
GitHub [15]. The 2.7 release of the Nimbus toolkit [16] 
includes the official release of the backfill implementation. In 
the 2.7 release backfill instances are essentially zero-cost spot 
instances that have a lower priority than on-demand instances 
and spot instances. Therefore, backfill instances are 
preemptible by both on-demand requests and spot requests. 

Future work includes exploring different variants of the 
policies described in Section II, for instance, exploring finer 
granularity with which to deploy VMs, optimizing the backfill 
image deployment method, and investigating other termination 
policies. Another possible area for future work is suspending 
backfill VMs instead of terminating them. Such a solution may 
be ideal for a backfill application that does not leverage 
resubmission as its recovery mechanism. 

Another set of challenges arises if we broaden the definition 
of the preemptible lease, for example, by removing the 
assumption that only one type of backfill VMs may be used or 
that only the administrator can configure backfill VMs. One 
simple refinement would be for the administrator to define 
multiple backfill VMs and have policies on how backfill 
resources are shared among them (e.g., what percentage of 
available cycles should be devoted to each). However, if users 
are to submit backfill VMs (i.e., the preemptible lease as 
defined in this paper would no longer be “fixed”), an 
arbitration mechanism needs to be defined for deciding 
between various user/instance requests. AWS uses auctions to 
make such decisions (i.e., spot instances) but many other 
mechanisms could also be explored. Additionally, we could 
consider different types of leases, for example, to provide for 
the impact of backfill VMs on parallel jobs where all processes 
for a single parallel job must be available.  

Other areas for future research involve resource utilization, 
energy savings, cost, and pricing. An assumption throughout 
this paper has been that improving utilization is advantageous 
because it leads to better resource amortization and thus lower 
costs per computation cycle. This need not necessarily be so, 
however. Green computing techniques allowing providers to 
power down a proportion of resources [12] may be a better 
option in some cases, and prices obtained by auction need not 
necessarily be sufficient to amortize cost. A more thorough 
model taking into accounts these factors would be beneficial.  

IV. CONCLUSIONS 
In this paper we propose a cloud infrastructure that 

combines on-demand allocation of resources with opportunistic 



provisioning of cycles from idle cloud nodes to other processes, 
such as HTC, by deploying backfill VMs. We extend the open 
source Nimbus IaaS toolkit to deploy backfill VMs on idle 
cloud nodes.  

We evaluate the backfill solution using an on-demand user 
workload and an HTC workload. We find backfill VMs 
contribute to an increase of the utilization of the IaaS cloud 
infrastructure from 37.5% to 100% during a portion of the 
evaluation trace but result in only 6.39% additional overhead 
for processing the HTC workload. Additionally, backfill VMs 
make available cycles that would have otherwise been idle to 
assist in processing HTC jobs. In particular, a Condor workload 
that originally completes in approximately 85 minutes on 
dedicated hardware is delayed by only 11 minutes and 45 
seconds (completing in just under 96 minutes) when on-
demand user VMs are introduced into the system. 

ACKNOWLEDGMENTS 
We thank David LaBissoniere for his help and advice in 

deploying and evaluating our system on FutureGrid. 

This material is based on work supported in part by the U.S. 
Department of Energy under Contract DE-AC02-06CH11357, 
in part by NSF SDCI Grant No. 0721867, and in part by NSF 
Grant No. 0910812 to Indiana University for "FutureGrid: An 
Experimental, High-Performance Grid Test-bed." Partners in 
the FutureGrid project include U. Chicago, U. Florida, San 
Diego Supercomputer Center - UC San Diego, U. Southern 
California, U. Texas at Austin, U. Tennessee at Knoxville, U. 
of Virginia, Purdue I., and T-U. Dresden.  

REFERENCES 
[1] Acharya A, Edjlali G, Saltz J. “The Utility of Exploiting Idle 

Workstations for Parallel Computation,” SIGMETRICS ’97, pp. 225–
234. 

[2] Amazon Web Services. Amazon.com, Inc. [Online]. Retrieved 
December 6, 2010, from: http://www.amazon.com/aws/. 

[3] Anderson D, Fedak G. “The Computational and Storage Potential of 
Volunteer Computing,” CCGRID’06, 2006, pp. 73–80. 

[4] Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. 
“SETI@home: An Experiment in Public-Resource Computing,” 
Communications of the ACM, 45(11), November 2002, 56-61. 

[5] Anderson, D. “BOINC: A System for Public-Resource Computing and 
Storage,” 5th IEEE/ACM Workshop on Grid Computing, Nov. 2004. 

[6] Thain D, Cieslak D, Chawla N. “Condor Log Analyzer,” 
http://condorlog.cse.nd.edu, 2009. 

[7] Feitelson DG, Rudolph L. “Parallel Job Scheduling: Issues and 
Approaches.” In Lecture Notes in Computer Science: Job Scheduling 
Strategies for Parallel Processing, vol. 949, Springer, Berlin, 1995. 

[8] FutureGrid. [Online]. Retrieved December 6, 2010, from: 
http://futuregrid.org/. 

[9] Internet Retailer Magazine. [Online]. Retrieved December 6, 2010, 
from: http://www.internetretailer.com/top500/list/. 

[10] Keahey K, Foster I, Freeman T, Zhang X. “Virtual Workspaces: 
Achieving Quality of Service and Quality of Life in the Grid,” Scientific 
Programming Journal, 13(4), 2005, 265–276. (Special Issue: Dynamic 
Grids and Worldwide Computing). 

[11] Larson SM, Snow CD, Shirts M, Pande VS. Folding@Home and 
Genome@Home: Using Distributed Computing to Tackle Previously 
Intractable Problems in Computational Biology. Computational 
Genomics, Horizon Press, 2002. 

[12] Lefèvre L, Orgerie, AC. “Designing and Evaluating an Energy Efficient 
Cloud,” The Journal of Supercomputing, 51, 2010, 352–373. 

[13] Magellan. [Online]. Retrieved Feburary 11, 2011, from: 
http://magellan.alcf.anl.gov/. 

[14] Michael A, et al., “Above the Clouds: A Berkeley View of Cloud 
Computing,” EECS Department, University of California, Berkeley, 
Tech. Rep. UCB/EECS-2009-28, Feb. 2009. 

[15] Nimbus 2.6 Backfill (prototype). GitHub. [Online]. Retrieved December 
6, 2010, from: https://github.com/pdmars/nimbus/tree/backfill-2.6. 

[16] Nimbus. [Online]. Retrieved December 6, 2010, from: 
http://www.nimbusproject.org/. 

[17] Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, 
Zagorodnov D. “The Eucalyptus Open-Source Cloud-Computing 
System.,” CCA08: Cloud Computing and Its Applications, 2008. 

[18] Ren X, Lee S, Eigenmann R, and Bagchi S. “Resource Failure 
Prediction in Fine-Grained Cycle Sharing System,” HPDC ’06, 2006. 

[19] Ryu K and Hollingsworth J. “Unobtrusiveness and Efficiency in Idle 
Cycle Stealing for PC Grids,” in Proceedings of IPDPS’04, 2004, p. 62a. 

[20] Science Clouds. [Online]. Retrieved December 6, 2010, from: 
http://www.scienceclouds.org/ 

[21] Smith JE, Nair R. Virtual Machines: Versatile Platforms for Systems and 
Processes. Morgan Kaufmann Publishers, San Francisco, 2005. 

[22] Snell Q, Clement M, Jackson D. “Preemption Based Backfill,” pp. 24–
37 in Job Scheduling Strategies for Parallel Processing, Lect. Notes in 
Comput. Sci. vol. 2537, edited by DG Feitelson, L Rudolph, and U 
Schwiegelshohn, Springer Verlag, Berlin, 2002. 

[23] Sotomayor B, Keahey K, Foster I. “Combining Batch Execution and 
Leasing Using Virtual Machines,” 17th International ACM Symposium 
on High-Performance Parallel and Distributed Computing (HPDC) 
Boston, June 2008. 

[24] Tannenbaum T, Wright D, Miller K, Livny M. “Condor – A Distributed 
Job Scheduler,” in Beowulf Cluster Computing with Linux, edited by T. 
Sterling, The MIT Press, 2002. 

[25] Woitaszek M, Tufo H. “Developing a Cloud Computing Charging 
Model for High-Performance Computing Resources,” in IEEE 10th 
International Conference on Computer and Information Technology, 
July 2010, pp. 210–217. 

 
 
 
The submitted manuscript has been created by UChicago Argonne, LLC, 
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. 
Department of Energy Office of Science laboratory, is operated under 
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, 
and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide 
license in said article to reproduce, prepare derivative works, distribute copies 
to the public, and perform publicly and display publicly, by or on behalf of the 
Government. 

 


