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Abstract

We explore the use of block entropy as a dynamics classifier for meteorological timeseries data. The block entropy
estimates define the entropy growth curve H(L) with respect to word length L. For a finitary process, the entropy
growth curve tends to an asymtotic linear regime H(L) = E + h,L, with entropy rate h, and excess entropy E.
These quantities apportion the system’s information content into “memory” (E) and randomness (%,). We discuss
the challenges inherent in analyzing weather data using symbolic techniques. We apply the block entropy-based
techniques to Australian daily precipitation data from the Patched Point Dataset station record collection and version
3 of the Australian Water Availability Project analysis dataset. Preliminary results demonstrate /,and E are viable
climatological classifiers for precipitation, with station records from similar climatic regimes possessing similar values
of hyand E. The entropy rates of convergence analysis rules out finite order Markov processes for orders falling
within the range of block sizes considered. Differences between entropy parameters associated with station records
and analyses at station locations may provide clues regarding analysis error sources.
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1. Introduction

The climate system is complex, and its underlying dynamics are at best a manifestation of finite-dimensional
chaos. Much effort has been devoted to climate modeling, numerical weather prediction, data assimilation, and
statistical analysis, but the prediction horizon for skillful weather forecasting is around two weeks. Markov models of
climate processes assume an underlying fusion of determinism and randomness in the system’s dynamics. A method
for potentially disentangling the “random” and “ordered” elements in meteorological timeseries is thus attractive.
Model-data evaluation provides another motivation for techniques capable of separating sources of discrepancies
between model output and observations.

One possible approach is information theory, which provides powerful tools for quantifying the information con-
tent of systems (the shannon entropy) and methodologies for quantifying agreement between corresponding data
(comparing timeseries or spatial patterns element by element using mutual information) or probability mass or den-
sity functions (the Kullback-Leibler divergence). Information theory has been applied to the climate system in many
ways, with studies of similarity [1, 2], predictability [3], complexity [4], and variability [5]. These tools are at their
strongest when applied to discrete data; that is, data involving a finite number of state values.
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Another powerful technique is symbolic dynamics [6, 7, 8], by which a continuous timeseries x(¢) is reduced to
a sequence of symbols and the progression of these symbols is analyzed. This reduction technique is called coarse-
graining of symbolization [9]. The symbols correspond to discretization of the range x into a finite, integral number of

N states A =1{S1,...,Sn}, where A is the sequence’s alphabet; the size of this alphabet is |[A| = N. The time domain
t is discretized as well, with t — {t1,...,#y}, and t;;; — #; = At Vi. Time evolution for the sequence becomes a shift
operation t; — t;.1. Thus, transformation of x(¢) into a symbol sequence yields {X;, X5,...,X; ...} withX; € A Vi.

Symbol-based analysis of continuous-valued data may seem drastic, but has many strengths. It is less sensitive to
measurement noise than are continuum-based techniques (e.g., spectral analysis). Moreover, reduction from floating-
point data to a limited symbol alphabet can increase the computational speed while reducing the memory footprint.
Symbol techniques thus are well suited to emerging novel computing architectures such as field programmable gate
arrays, graphical processing units, and the next generation of leadership-class supercomputers with low memory per
node. Symbolic dynamics has been applied widely—and with great success—to communications, bioinformatics,
dynamical systems theory, and many other fields [9].

The main challenge in applying symbolic dynamics to a continuous timeseries is the choice of a symbolization
scheme. Common approaches include threshold crossings (e.g., crossing the mean or median of a timeseries) and
behavioral classes (e.g., DNA bases). The alphabet size is indicative of how much information is retained after
symbolization. A symbolization’s resulting dynamics may be highly sensitive to threshold choice. We will discuss
this issue further in the context of weather data in section 3.

We are exploring the use of symbolic-information-theoretic techniques to form an integrated diagnostic for a mete-
orological timeseries’ dynamics. In particular, we are interested in how “randomness” and ““structure” are apportioned
in in the climate system. The present work uses block-entropy analysis combined with knowledge of entropy rates
of convergence to apportion randomness versus order in a meteorological timeseries and quantify how randomness
(embodied in the entropy rate h,) is exchanged for order (quantified by the excess entropy E) as longer blocks are
used in the analysis. Block entropy has been used previously to study climate. Nicolis et al. [10] analyzed Swiss
daily weather data that were coarse-grained into three classes (convective, advective, and mixed) and estimated block
entropies and entropy rates, and ruled out a first order Markov process as the system’s underlying dynamics. We have
applied block-entropy analysis to Australian rainfall timeseries and have found that the excess entropy and entropy
rate for a station timeseries are a classifier for the climate at that location. We also employ these tools to rule out Rth
order Markov processes, where R is the length of the longest blocks used in our analyses.

2. Symbolic Dynamics, Information Theory, and Complexity

In this section we provide a brief theoretical background to the methods developed and applied in this paper.

2.1. Informaton Theory

Information theory provides mathematical tools for structural description and intercomparison of probability mass
functions (PMFs) and probability density functions (PDFs) for discrete and continuous variables, respectively. In-
formation theory was orginally developed to model communications channels [11], but the formalism has roots in
Boltzmann’s statistical mechanical derivation of thermodynamic entropy. Below, we define information-theoretic
quantities for discrete variables; a continuum analogue for (1) exists but must be used with care. Complete introduc-
tory discussions can be found in widely-used textbooks [12, 13].

Consider a discrete variable X capable of taking on the N > 0 values {xj,...,xy}. The PMF % = {r,... 7y}
contains the probabilities of X taking on respectively the values {xi, ..., xy}. A PMF satisfies the following conditions:
suitability as a probability, specifically, 0 < m; < 1 Vi € {1,..., N}, and normalization, Zf\i 7 = 1. The Shannon
entropy (SE), or simply entropy is

N
H(X) = —Zﬂilogm. (1)
i=1

The base of the logarithm in (1) determines the units of H(X), with bases 2 and e yielding bits and nats, respectively.
Unless otherwise specified, all logarithms used henceforth are base 2, and we measure all information-theoretic quan-
tities in bits.
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Given a symbol sequence X = Xy, X, ..., X», we can analyze it by computing word statistics. Here, a “word” is
a string of length L symbols, with each symbol drawn from some alphabet A. If | A| = N symbols, then the number of
possible words of length L is A4 (L) = N*. The distribution of words of length L < . within X can be measured as
follows. A sliding window of length L shifts through X one symbol at a time; each shift reveals a new word of length
L, which is identified with index w € {1,..., Nt}, and its counter n,, is incremented. A total of .Z — L + 1 words is
sampled, resulting in a set of word counts {ny, ..., nyc}. APMF % = (ry,...nyc} is constructed from the word counts,
with 7, = n,,/(.Z — L + 1); note 7 meets the boundedness and normalization conditions that define a PMF. The block
entropy H(L) for X can be computed by using (1). Computing H(L) for a range of L-values yields the entropy growth
curve [14].

2.2. Entropy Rates of Convergence

Crutchfield and Feldman [14] proposed a framework for assessing randomness versus order based on entropy
rates of convergence of the entropy growth curve. In their schema, a process is finitary (infinitary) if a finite (infinite)
amount of information is required to predict it; periodic, Markov, and hidden Markov models are examples of finitary
processes. For a finitary process, the entropy growth curve H(L) eventually enters a linear asymptotic regime, with
H(L) = E + h,L, where h,is the entropy rate and E is the excess entropy. E measures the effective memory of the
system. The entropy rate &, quantifies a system’s irreducible randomness. The entropy rate h, = lim; ,H(L)/L,
a limit that is guaranteed to exist for a stationary source [12]. Key fundamental quantities are H(L) and its discrete
derivatives and discrete integrals. For a function F(L), its discrete derivative is defined by AF(L) = F(L) — F(L —
1), L > 1. Higher-order discrete derivatives can be defined by AWF(L) = A o A" VF(L) (e.g., A>’F(L) = F(L) -
2F(L — 1) + F(L — 2)). Discrete definite integration of a function F(L) between the limits L = A and L = B is
accomplished by the sum Zf: 4 F(L). Definitions and further details regarding the properties of discrete derivatives
and integrals can be found in Section IIIA of [14]. Analysis of the entropy growth curve using discrete derivatives
and integrals of H(L) recovers previously known complexity, predictability, and memory metrics, and yields a new
quantity called the transient information.

The first two discrete derivatives of H(L) are the entropy gain /,(L) and predictabillity gain A?H(L), respectively:

h,(L) = AH(L); 2

and
A’H(L) = hy(L) = hy(L-1), L>0. 3)

By definition, AH(0) = log, |Al, because we have no measurements to tell us anything to dispute the notion that the
sequence has a uniform distribution of symbols from its alphabet [14]. AH(1) = H(1) because H(0) = 0 by definition;
in short, no measurements mean no information. The entropy gain measures how much more information appears
embodied in the system when viewed using words of length L rather than L — 1. The entropy gain is a finite-L estimate
hyu(L) of hy,. Another finite-L estimate 4, can be computed by ignoring the excess entropy; s," = H(L)/L,L > 1. The
two estimates have differing convergence rates to h,; h,'(L) > h,(L) > h, [14]. For a finitary process, h,(L) decays
toward its limit &, faster than 1/L; for some constant A, h,(L) — h, < A/L [14]. The predictability gain measures how
much more quickly the entropy rate is approaching its asymptotic value , when words of length L rather than L—1 are
considered; for a finitary process, A’H(L) < 0, and equality is satisfied only when the asymptotic linear entropy growth
regime is reached. For a finitary process, all higher-order discrete derivatives satisfy lim; ., A™H(L) = 0;Vn > 2.

Three integral quantities—the excess entropy E, the total predictability G, and the transient information 7—
parameterize the system’s predictability and how the entropy growth curve approaches the linear regime (Table 1). The
total predictability G quantifies the amount of nonrandom behavior in the system. The synchronization information
measures the degree of difficulty encountered to synchronize—that is, to get into the linear asymptotic regime of the
entropy growth curve—to a system.

A finite-L estimator of E is

E(L) = H(L) — LAH(L). “)

The total predictability G satisfies the condition

log, [Al = |G| + hy,. 4)
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Table 1: Integrals of Entropy Rates of Convergence

Quantity Definition Table 2: Sample E and A, Values for Binary Processes
Process Type E hy,
Generic form I, =37, [AP(L) —lim; . APH(L)] Coin Flip:
PHEADS = 0.5 0.0 1.0
Excess Entropy E =7, [AH(L) - hy] Period-P log, P 0
Order-R Markov | H(R) — Rh, constant > 0
Finitary:
Total Predictability G=Y57,ANH(L) (exp. decay) H](_l)zjﬂ (L) = hy, =
A2k
Infinitary:
Transient Information T=3¥7o[E+hL-HL) (log. growth) | ¢; +c;logL | constant > 0

In the present work, we focus exclusively on A, E, and A2H(L) to study the symbolic dynamics of rainfall data; other
quantities were presented for the sake of completeness. In principle, we could compute finite-L estimates of 7" and G,
but this is deferred for future work. The values (E, ) are a strong classifier for processes (Table 2) [14]. In particular,
we note that purely random independent identically distributed (IID) processes may be distinguished from each other,
and that finite-order Markov processes can be identified.

3. Practical Considerations

We now address practical considerations in applying symbol-based analysis to meteorological timeseries data.

3.1. Symbolization

Creating symbolic sequences from continuous data is easily accomplished by using a partition. On the other
hand, finding a partition that captures completely the continuous system’s dynamics—a generating partition—is ex-
tremely difficult [15, 16]. Threshold crossing-based partitions are particularly prone to creating symbol sequences
whose subsequent analysis can yield erroneous results [17]. Weather observations, however, offer alternatives to
threshold-crossing based partitioning through observation conventions. Numerous examples exist. For example the
binary wet/dry partition has been used to study precipitation occurrence complexity [4], and to model it as a Markov
process [18]. Cloud amount is frequently reported or visualized in octas (9 symbols; O=no cloud, 8=totally overcast),
tenths (11 symbols; O=no cloud, 10=totally overcast), and percent (101 symbols; O=no cloud, 100=totally overcast).
Atmospheric turbulence is classified by using six Pasquill stability classes, which are integrated measures derived
from surface wind speed, incoming solar radiation, and nighttime cloud cover. Seasonal forecasting systems typi-
cally employ either fernary or quintenary partitions based on terciles or quintiles, respectively. Given the perils of
a misplaced threshold partition, we have chosen to concentrate on partitions derived from observing and forecast-
ing conventions; although these partitions may not be ’generating’ with respect to the underlying system’s smooth
dynamics—assuming they exist—they do result in meteorologically relevant symbolic systems whose dynamics are
of interest.

3.2. Finite Sequence Length

At first glance the meteorological observational record appears long, but in terms of timeseries analysis techniques
most datasets are undesirably short; the longest weather station record is the Central England Temperature (CET)
Record, which has monthly observations from the year 1659 to the present and daily observations from 1772 to the
present [19]. Even for a binary alphabet the number of possible L-words scales as 2, meaning that the simplest
possible word analysis of the CET will suffer undersampling for L > 16, and redundancy within the CET will cast
suspicion on values of L = 16 and less; how much less depends on the entropy rate 4,0f the sample. The longest
hourly precipitation observation records span ~100 years, but this number of observations (=876 600 ) still places word
analyses of L > 20 under suspicion. In all cases, one can envision a predictability “horizon” time 7, = log 4 -ZAt,
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where . is the number of observations and Az is the spacing between them. Computation of block entropies H(L)
for increasing L will eventually encounter problems associated with the sequence length .Z; eventually, H(L) will
saturate, with /,(L) approaching zero, and E will approach the constant value log.# [20]. Thus, finite sequence
length can defeat entropy rate-based analyses because there may not be enough data to provide word statistics of
sufficient quality at word lengths associated with the asymptotic linear regime.

It is desirable to estimate at what word length L* one can no longer trust completely H(L) and associated statistics.
There are /L independent (i.e., nonoverlapping) words of length L in a sequence of length ., from which one
could reasonably require . > L|A|*. For an IID process, this constraint is reasonable. For a process with temporal
data dependencies, the entropy rate—the average amount of information per symbol—will affect L*; Lesne et al. [20]
propose a condition for L-words to have good statistics that is derived from this assumption

ZLhy > LA In| A, (6)

with equality satisfied by the cutoff value L*. In the analysis presented here, we will place the most trust in quantities
associated with word lengths L < L*.

3.3. Implementation

We have constructed a prototype word analysis system capable of handling (modulo computational resources)
alphabets of arbitrary size. This system provides facilities for symbolization of continuously valued timeseries; object
representations for symbol sequences and word logs (a bundle of PMFs or other word statistics for a range of word
lengths for a sequence); and methods for computing word count quantiles, C’and C® complexities, and entropy rate
of convergence statistics. It can also use estimates of %, to determine L*. The present Fortran implementation has
been tested extensively on a number of cases, including key examples from [14].

4. Case Study: Australian Daily Rainfall

We apply the techniques discussed in Sections 2 and 3 to Australian daily rainfall amounts from the Patched Point
Dataset (PPD [21]) and Phase 3 data from the Australian Water Availability Project (AWAP [22]).

4.1. Datasets Used in this Study

The PPD data comprises all variables available from Australian Bureau of Meteorology stations; the term “point”
identifies the location with the station record, and “patched” indicates that missing observations are either filled in
with temporally interpolated station data or redistribution of weekend totals across the two or three days as appropri-
ate. By definition the PPD contains only “perfect” records—as a result of patching—for the time the station was in
operation. The PPD data cover the period 1889—present. The AWAP data were created by using a topographically
aware technique that combines empirical interpolation with function fitting to map in situ and satellite observations of
rainfall, surface air temperature, and vapor pressure [22]. The AWAP dataset is available online, with fields available
for the period 1900—present on a 0.05°x 0.05°latitude-longitude grid (=5 km spacing). These fields were used to
compute timeseries of rainfall at locations corresponding to the PPD stations. In broad terms, one would expect the
PPD data to reflect more accurately the time progression between days with and without rainfall.

Table 3 contains a summary of the 14 PPD station locations used in this study, along with results of the analysis
discussed in Section 4.2. These stations were chosen because they had long observational records with relatively few
missing observations; the intent is to minimize the influence of patching on our results, and thus they are the closest
to uninterrupted daily rainfall station records available for Australia. Note that there are no “wet tropical” stations in
the record as there are insufficient data for long uninterrupted records.

PPD and AWAP timeseries data from three representative locations—Bourke, Brisbane, and Hobart—are shown
in Figures 1(a)-1(c) and 1(d)-1(f), respectively.

In our analysis, PPD and AWAP data were coarse-grained into a binary alphabet by assigning a ’1’ (’0’) to
observed nonzero (zero) rainfall. This partition is unlikely to be a generating partition, but it has precedent [4] and
is certainly a meteorologically relevant observation convention because the binary dynamics of the succession of wet
and dry days of wide interest to meteorologists and water resource researchers.
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Table 3: Description of and Results for PPD Stations

PPD Results AWAP Results
Station ID No | Latitude | Longitude | L* hy, E | L hy, E
Bourke 48013 | -30.09° 145.94° 12 | 0.5082 | 0.2000 | 12 | 0.6166 | 0.3150
Broken Hill 47037 | -31.89° 141.99° 12 | 03991 | 0.3312 | 12 | 0.5721 | 0.3014
Hobart 94029 | -42.89° 147.33° 13 | 0.9022 | 0.4473 | 12 | 0.8545 | 0.2850
Melbourne 86071 | -37.87° 144.97° 13 | 0.8781 | 0.4543 | 12 | 0.8456 | 0.3288
Perth 9034 -31.96° 115.87° 12 | 0.7247 | 0.4558 | 12 | 0.7274 | 0.5127
Sydney (Obs. Hill) | 66062 | -33.86° 151.21° 13 | 0.8489 | 0.4653 | 12 | 0.8234 | 0.3228
Charters Towers 34002 | -20.08° 146.26° 12 | 0.5318 | 0.3402 | 12 | 0.5950 | 0.3943
Adelaide 23000 | -34.93° 138.59° 13 | 0.7709 | 0.5312 | 12 | 0.7725 | 0.4149
Brisbane 40214 | -27.48° 153.03° 13 | 0.7807 | 0.4846 | 12 | 0.7831 | 0.3916
Toowoomba 41103 | -27.58° 151.93° 12 | 0.7641 | 0.2770 | 12 | 0.8106 | 0.3622
Dubbo 65012 | -32.24° 148.61° 12 | 0.6748 | 0.2397 | 12 | 0.7686 | 0.3011
Coonabarabran 64008 | -31.27° 149.27° 12 | 0.6832 | 0.2339 | 12 | 0.7961 | 0.3196
Newcastle 61055 | -32.92° 151.80° 13 | 0.8423 | 0.4499 | 12 | 0.8626 | 0.2955
Wilcannia 46043 | -31.56° 143.37° 12 | 04695 | 0.1742 | 12 | 0.5666 | 0.2666
Observed Daily Precipitation Observed Daily Precipitation Observed Daily Precipitation
PPD: Bourke (ID 48013) 1900-2000 PPD: Brisbane RO (ID 40214) 1900-2000 PPD: Hobart Ellerslie Road (ID 94029) 1900-2000
g 50— %:15“ i ] g:
| ‘ ‘ 50 I I
l ' ‘ | (AR
(@) (b) (©
Daily Precipitation Daily Precipitation Daily Precipitation
AWAP 3.0: Bourke (1900-2000) AWAP 3.0: Brisbane (1900-2000) 150 A‘WAP 3.0: Hoha‘n. Ellerslie Rd‘(IEW-ZBOO) :
g 50 :;:100 §: 50
o i ‘ ‘ i i
(d) © ®

Figure 1: Sample daily precipitation timeseries 1900-2000: PPD station data from (a) Bourke, (b) Brisbane, and (c) Hobart; AWAP 3.0 data from

(d) Bourke, (e) Brisbane, and (f) Hobart.
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Figure 2: Quantiles for word counts for L-words: PPD station data from (a) Bourke, (b) Brisbane, and (c) Hobart; AWAP 3.0 data from (d) Bourke,
(e) Brisbane, and (f) Hobart.

For the period 1889-1999, there are . = 40541 daily observations. For a binary alphabet, words with L > 16
should not be considered because there are not sufficient data to ensure that every L-word might potentially be ob-
served. Figure 2 displays quantiles of word counts of varying length for PPD and AWAP data. Each curve corresponds
a fraction f of the 2L possible L-words; for example, the (%) curve corresponds to the {8, 16, 32}th highest counts
encountered words for L = {8, 9, 10}. Word counts decline with increasing L, with half of the words seen only once or
not at all for in the PPD (AWAP) L-values of {11, 14, 15} ({12, 13, 14}) for Bourke, Brisbane, and Hobart, respectively.
The word quantile curves present a dilemma: Is a given word unobserved because the system’s governing dynamics
exclude it, or is its absence a consequence of sample size? We present word statistics up to L = 15, but will treat
statistics for words with L > L* as defined by (6) with skepticism.

4.2. Symbolic Dynamics of Australian Daily Precipitation

Table 3 includes values of L* computed by using its definition (6) and substituting the instantateous entropy rate
hy, (L) for hy; the reader should keep these “cutoff”” values in mind when viewing Figures 3 and 4, placing confidence
only in statistics with L < L* — 1. We have included the higher L values in these plots to illustrate the key pitfall
associated with block entropy analysis: misplaced faith in word statistics lacking underlying sample support. In the
PPD data, all of the coastal stations except Perth have L* = 13, while Perth and the inland stations have L* = 12;
this is due to the differences in entropy rates between these groups of stations, with the inland stations having less
inherently random (and thus more temporally dependent) occurrence values. The AWAP data all have L* = 12; for
the coastal stations, this disparity with the PPD may largely be due to the shorter—by eleven years—sample size.

Figure 3 shows the entropy growth curves H(L), entropy rates /,(L), and finite-L excess entropies for PPD and
AWAP timeseries data. PPD station data show stratification associated with inland/coastal location and distance to
the coast, with clustering of outback stations showing the lowest block entropies, inland stations occuping a broad
midrange, and coastal stations having the highest values (Figure 3(a)); this stratification is duplicated in the instanta-
neous entropy rates /(L) (Figure 3(b)). There is slight overlap between the coastal and inland station clusters, with
Perth having slightly lower block entropy and entropy rate than does Toowoomba. Excess entropy estimates for the
PPD data (Figure 3(c)) show clustering at low values for the outback stations, but the inland and coastal clusters are
disrupted. Hobart shows the lowest non-outback values of E(L) for L < 11, but the values rise rapidly between L = 11
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Figure 3: Entropy growth curves for L-words: (a) block entropy H(L), (b) entropy rate h,(L), and (c) excess entropy estimate E(L) for PPD data;
and (d) block entropy H(L), (e) entropy rate h,(L), and (f) excess entropy estimate E(L) for AWAP 3.0 data.

and L = 12; the reliability of higher values is questionable because of finite sequence length effects. For much of the
range of L, Perth has the highest excess entropy, and thus precipitation occurrence at this location has the most “mem-
ory.” Block entropies computed from AWAP data (Figure 3(d)) show a “low” cluster comprising the outback stations
and Charters Towers and a “high” cluster of the remaining stations. Entropy growth curves for outback (non-outback)
locations are generally shifted upward (downward) and their ranges narrowed with respect to their PPD counterparts.
H(L) curves for Perth and Charters Towers show the best agreement between the PPD and AWAP data. The shifts in
the AWAP block entropy curves is caused largely by a narrowing in the range of 4,(L) (Figure 3(e)); instantaneous
entropy rates for Charters Towers and Perth track their PPD counterparts well. AWAP excess entropies (Figure 3(f))
are shifted downward and broadened with respect to the PPD E(L) curve.

The h,(L) curves are nearly straight lines (Figures 3(b) and 3(e)), which imply low values of the second discrete
derivative A2’H(L) (e.g., Figure 4(a) for the PPD). Semilog plots of the predictability gain |A?H(L)| for the PPD and
AWAP data are shown in Figures 4(b) and 4(c), respectively. For both datasets, the predictability gain shows a wide
range of values for L < 4, which narrows dramatically for 4 < L < 8, and is narrowest at L = 10. For L > 10,
stations are clustered as with H(L). The PPD outback stations have the lowest values, the inland stations cluster in the
midrange, and the coastal stations cluster at the high end, with the inland and coastal clusters overlapping. The AWAP
data show a similar clustering, though the range of values is much narrower, with the outback cluster shifted upward.
In both datasets, Perth shows the highest predictability gain for much of the L-range; and the “bump” at L = 6 implies
analysis using blocks of this length, as opposed to L = 5, is significantly more informative than going from L = 6 to
L="17.

Table 3 contains lower- and upper-bound estimates of E h,, respectively. Broadly put, both randomness and
memory are substantially overestimated in the AWAP data for the outback stations. For the inland non-outback
stations the AWAP data produce overestimates in /,and E with respect to the PPD. For coastal locations, generally
AWAP data is associated with mild underestimates in /,and substantial underestimates in E; the underestimates in
memory may be a consequence of interpolation error.

In sum, the entropy rates of convergence indicate a long, fairly uniform random regime low L. The PPD station
data fall into clusters determined by these statistics’ values, the AWAP data less so. Shortly before the word length
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Figure 4: Predictability gain versus word size L: (a) AZH(L) for PPD stations; and semilog plots of |A>H(L)| for (b) PPD stations, and (c) AWAP
3.0 data.

cutoff values L* are reached, there is some weakening of the system’s inherent randomness, which is exchanged for
a corresponding growth in memory. The slow—but continuing—changes in A, with respect to L rule out Rth order
Markov processes, where R = L. It is hard to disentangle early finite-sample-size effects from a genuine aquisition of
skill without a more substantial uncertainty analysis of H(L).

5. Conclusions and Future Work

We have developed a symbolic dynamics analysis system for studying word complexity and entropy rates of
convergence for coarse-grained timeseries data and have applied it to observed and analyzed, long-term Australian
daily rainfall records. We have found that the randomness observed that is used to justify Markov-chain modeling of
precipitation occurrence may not be in the assumed asymptotic linear block entropy regime one would want present
to justify this approach. Our results are, however preliminary; the progression is away from what appears to be a
linear “random” block entropy regime commences immediately before finite-sample-size effects emerge. More work
is required to attach rigorous uncertainty estimates to our estimates of the entropy rate 4, and the excess entropy E.
In our work here, we refrained from trying to hunt for finite-order Markov models by fitting the data to the formula
for E presented in Table 2 because we want greater confidence in the entropy growth curve itself first.

The fact that the technique clusters station records by their climatic properties is compelling. We believe block
entropy analysis may provide a useful organizing priciple for clustering of climate data and are eager to apply this
technique to a wider variety of station records, reanalysis datasets, and climate model integration outputs. We look
forward to seeing plots of large numbers of records in an E—/,plane to see if our suspicions are well-founded.

A comprehensive uncertainty quantification framework will comprise symbol-based tests for stationarity (for ex-
ample, use of the Kullback-Leibler divergence to quantify nonstationarity as information gain when the PMF for a
sample from one time period is used to model the PMF of a different time window); Monte Carlo tests for robust-
ness to “bit-flipping,” which will quantify likely effects of misidentified precipitation occurrences known to exist in
Australian station records [23]; and integrated correlation time-based estimates for likely errors in emperical PMFs
and their resulting block entropies [20]. Once this framework is in place, we can return to the question of dynamics
classification and deploy this system on much larger datasets.
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