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Abstract 

Improved sampling of diverse environments and advances in the development and 

application of next-generation sequencing technologies is accelerating the rate at which 

new metagenomes are produced. Over the past few years, the major challenge associated 

with metagenomics has shifted from generating to analyzing sequences. Metagenomic 

analysis includes the identification, and functional and evolutionary analysis of the 

genomic sequences of a community of organisms. There are many challenges involved in 

the analysis of these data sets including sparse metadata, a high volume of sequence data, 

genomic heterogeneity and incomplete sequences. Due to the nature of metagenomic 

data, analysis is very complex and requires new approaches and significant compute 

resources. Recently, several computational systems and tools have been developed and 

applied to analyze their functional and phylogenetic composition. 

The metagenomics RAST server (MG-RAST) is a high-throughput system that has been 

built to provide high-performance computing to researchers interested in analyzing 

metagenomic data. Automated functional assignments of sequences in the metagenome 

are generated by comparing both protein and nucleotide databases. Phylogenetic and 

functional summaries of the metagenomes are constructed, and statistical tools for 

comparative metagenomics are provided. MG-RAST provides a collaborative 

environment that allows for user privacy and management. In MG-RAST, all users retain 

full control of their data, and everything is available for download in a variety of formats. 

This service has removed one of the primary bottlenecks in metagenome sequence 

analysis, the availability of high-performance computing for annotating data. 
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1. Introduction 

Studying uncultivable microorganisms has been a major obstacle to understanding natural 

microbial populations within the context of their environment. Metagenomics is 

expanding quickly as next-generation sequencing approaches become more widespread 

and applied to an increasing number of environments. It has bypassed the need for 

cloning and has enabled a new approach to comparative metagenomics (Ronaghi et al., 

1996; Ronaghi et al., 1998; Margulies et al., 2005). Now sequence abundance can be 

used to contextualize datasets for driving pattern recognition and uncovering unique 

properties within natural microbial communities.  

Regardless of the sequencing approach used to generate data, the first steps in analysis of 

any metagenome involve comparative analysis against various ribosomal and protein and 

nucleotide databases.  These comparisons have a large computational cost but provide the 

basic data types for many subsequent analyses, including phylogenetic comparisons, 

functional annotations, binning of sequences, phylogenomic profiling, and metabolic 

reconstructions and modeling. Analysis of single metagenomes can provide a greater 

understanding of a microbial community, but the comparison of multiple metagenomes 

provides greater insight.  

Sequence data, however, must be accompanied by enough contextual information 

(metadata), such as sample characteristics, to make individual investigations reproducible 

and enable valid interpretation (Field et al., 2009). Community-driven minimum 

information checklists (Taylor et al, 2007), common ontologies (Smith et al, 2007) and 

formats (Jones et al, 2007; Sansone et al, 2008) have major roles to play. Therefore, data 
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describing such information as a sample’s environment, sample origin, isolation, and 

treatment are an important resource to link to sequence data in order to enable meaningful 

comparative analysis. The Genomics Standards Consortium (GSC) has defined the 

Minimum Information About a (Meta)Genome Sequence (MIGS/MIMS) (Kottmann et 

al., 2008), which describes core descriptors of environmental context (habitat). 

MIGS/MIMS extends the minimum information provided by the International Nucleotide 

Sequence Database Collaboration (INSDC) (Cochrane et al., 2010). 

Recently, several computational systems and tools have been developed and applied to 

analyze their functional and phylogenetic composition. One such system, MG-RAST 

(Meyer et al., 2008), is available over the web to researchers, and access is not limited to 

specific groups or data types. This system has a scalable compute backend that has 

allowed to the analysis of over 10,000 metagenomes (as of January 2011) thus far. 

2. Metagenomic Analysis 

Metagenomic analysis is not straightforward. The data is much more complex than what 

has previously been seen in genomics. Metagenomic sequence data has lower sequence 

redundancy, lower sequence quality, short read lengths, increased polymorphisms and 

relative abundance (simple vs. complex communities).  In addition to these inherent 

issues and the evolution of sequencing technologies and chemistries, the size of the data 

is changing. The scientific community has already seen the size of these data sets quickly 

move from Megabase pairs (Mbps) to Gigabasepairs (Gbps) and now Terabases, which 

require significant compute resources. 

Given sufficient compute resources, there are several different approaches that can be 

taken with raw sequence reads.  The analysis “path” and the tools you choose can 
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influence your results. There is no “one size fits all” tool or best practice established for 

analysis metagenomic data sets. Various approaches have strengths and weaknesses and 

are constantly evolving.  

However, the major metagenomic analysis pipelines such as MG-RAST, IMG/M 

(Markowitz et al., 2008), and CAMERA (Sun et al., 2011), provide compelling analysis 

strategies and features as well as distinct implementations of common operations. The 

MG-RAST server is the most widely used tool for the analysis of shotgun metagenomics 

and provides a basis for sequence analysis of large, complex data sets. Over 4,000 users 

have submitted data sets and several hundred users work on the system each day.  

The MG-RAST system accepts shotgun metagenomic DNA sequence data in different 

formats and from a variety of platforms, providing initial quality control and 

normalization of the data. The pipeline also accepts assembled sequences in fasta format. 

Sequence data may be compressed by one of several common computer programs to 

speed upload. Users may choose to upload raw unassembled reads or assembled contigs. 

The system also provides a GSC compliant metadata editor to enter relevant information 

about a sample. This information is then incorporated into the analysis and querying 

capabilities. The server provides several methods to access different data types, including 

phylogenetic and metabolic reconstructions, and the ability to compare the metabolism 

and annotations of one or more metagenomes and genomes. In addition, the server offers 

browsing of data and a comprehensive search capability. Access to the data is password 

protected, and all data generated by the automated pipeline is available for download and 

analysis in variety of common formats. One of the more widely used features is the 

ability to share data prior to publication, leading to networks of shared data sets. 
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2.1 MetaData 

It is apparent that the full potential of comparative metagenome analysis can be achieved 

only in the context of the metadata (information describing the sample). The selection of 

samples based on rich metadata is crucial for understanding large-scale patterns when 

multiple metagenomes are compared. The GSC has proposed a minimal set of data, 

called the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) that 

should be collected with every metagenome sequence. Although this is an evolving 

standard, the MG-RAST server is MIGS/MIMS-compliant. Metadata is requested from 

the user at the time of sequence submission to MG-RAST. Metadata can be added to at 

any point after submission and a minimal set is required for sharing or publishing 

(making public). This data is stored with the user's data and is made available to them.  

2.2 Preprocessing 

Preprocessing of sequence reads before analysis (assembly, gene prediction, and 

annotation) is an overlooked aspect of metagenomic analysis. Preprocessing includes 

steps in filtering data for vectors, host contaminants and quality trimming. Mistakes in 

any of these steps can have significant downstream affect on analyses (Koonin et al., 

2007).  MG-RAST employs a normalization step, generating unique internal IDs, and 

removing duplicate sequences. Users can select filtering for contaminants. It also 

includes a runtime-efficient method for obtaining a quality estimate for each sample and 

removal of sequencing artifacts.  

2.4 Identifying Genes 
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Sequence length is an important factor in determining an approach to gene calling. 

Shorter reads lengths pose an obvious and significant challenge. The most commonly 

used method for identifying genes in metagenomic reads are via similarity searches using 

metagenomic sequences against databases of known proteins.  BLAST (Altschul et al., 

1997) has become too costly in terms of computation. Faster alternatives like BLAT 

(Kent, 2002), doing assembly and feature prediction greatly reduce the computational 

burden of comparing all pairs of short reads. MG-RAST relies on BLAT to perform 

sequence similarity searches as it provides significant speed-ups over BLAST, offers very 

similar results and looses little sensitivity in our tests. 

MG-RAST screens for potential protein encoding genes (PEGs) via a BLAT search 

against the MG-RAST nonredundant database. This strategy will reveal already known 

genes that are present in the metagenome. A drawback to using this approach as a sole 

means to identify genes is that many genes are most probably not present in the databases 

due to the bias towards culturable organisms.  Therefore MG-RAST performs feature 

prediction using FragGeneScan (Rho et al., 2010), before running similarity searches. 

FragGeneScan predicts coding regions in sequences that are greater than or equal to 

80bp.  

In parallel with feature prediction and BLAT similarity searches against the protein 

database, the sequence data is also compared to other databases by using the appropriate 

algorithms and significance selection criteria. These databases include several ribosomal 

databases, including GREENGENES (DeSantis et al., 2006), RDP-II (Cole et al., 2007), 

and Silva (Pruesse et al., 2007). The search criteria are specific for each database. For 

example, using Sblat against the rDNA databases enables users to screen for ribosomal 
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RNA genes, but much more stringent selection criteria are used to identify candidate 

RNA genes than for identifying protein-encoding genes (by default, the similarity must 

exceed 50 bp in length and have an expect value less than 1 × 10-5). Lastly, these 

matches to the MG-RAST database and ribosomal databases are used to compute the 

derived data. A phylogenomic reconstruction of the sample is computed by using both the 

phylogenetic information contained in the non-redundant database and the similarities to 

the ribosomal RNA databases. Functional classifications of the PEGs are computed by 

projecting against protein functional annotations based on these similarity searches. 

These annotations become the raw input to an automatically generated initial metabolic 

reconstruction of the sample, as well as subsequent metabolic model for the sample by 

providing suggestions for metabolic fluxes and flows, reactions, and enzymes. 

While the existing version relied on sequence comparison to the non-redundant database 

provided by the SEED (Overbeek et al., 2005) and SEED subsystems solely, the new 

version is based on a database emanating from the Genomics Standards Consortiums M5 

platform. This non-redundant database provides a non-redundant integration of many 

databases (e.g INSD,  SEED, IMG, KEGG (Kanehisa et al., 2004), EGGNOGs (Jensen et 

al., 2008)), thus allowing supporting multiple different views on the data with one 

similarity search.  

2.5 Multiple supported classification schemes. 

A number of competing naming schemes to described functional classification of genes 

and proteins exist. While the use of consistent SEED subsystem based annotations 

provides many advantages other databases provide different functional hierarchies (e.g. 

SEED subsystems, IMG, COG/NOGs) or ontologies (GO (Barrell et al., 2009)). Enabled 
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by this protein database, we provide the ability to “on-the-fly” switch between different 

annotation resources.  Allowing users to view their data through mapping to different 

classification schemes allowing them to tease out differences or similarities between 

metagenomic data sets not visible otherwise. 

The user interface for MG-RAST was designed to provide easy navigation and use of 

comparative tools. There are multiple views for browsing and analysis of the data, as well 

as a means to download all result tables and the sequences for every subset displayed. 

Users are also enabled to modify the displayed results by modifying search parameters 

used to compute the functional, metabolic, and phylogenetic reconstruction. This allows 

more stringent match criteria (e.g., expectation value, score, overall percent identity, 

length of match, and number of mismatches); and, by restricting the matches, the derived 

data is dynamically changed. The default parameters have been chosen by empirical 

testing and represent a tradeoff between accuracy and specificity. 

2.6 Annotations 

Users can view and search their annotated metagenome based on annotation source (see 

description of MG-RAST database) through various avenues. Metagenome Overview 

provides a summary of the sequence and annotation statistics against the various 

databases. More details are presented in the Sequence Profiles, which display the 

metabolic and phylogenetic distributions in a given sample. Views are in the form of 

charts and tables and data is downloadable for each profile. Like all analyses in MG-

RAST, the user can modify inclusion parameters and export results. Each metabolic or 

phylogenetic/phylogenomic profile can also be viewed singularly or compared with other 

metagenomes using a circular tree comparison tool.  
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2.7 Comparative Metagenomics 

Considering that comparative analysis is the core driver for discovery-based biology, 

MG-RAST enables more than just views of the analysis results of a given metagenome, 

the system supports comparative analysis.  Therefore, comparative metagenomics tools 

are central to the utility of the MG-RAST platform. Several tools have been developed 

and integrated into the MG-RAST framework, allowing users to compare a metagenome 

to either (1) other metagenomes, (2) individual genomes, or (3) both metagenomes and 

genomes. 

2.7.1 Comparative Heat Maps 

Metabolic: PEGs identified to have functions belonging to a SEED subsytem(s) and 

KEGG pathways are mapped to that subsystem/pathway. When these functional roles are 

linked to specific genes across metagenomes and a populated subsystem emerges.  The 

utility of this organization is extended by subsystem connections that allow linkage of 

genes between subsystems. 

Each subsystem present in a sample is scored by counting the number of sequences that 

are similar to a protein in each subsystem. This score is divided by the total number of 

sequences from the sample that are similar to any protein in a subsystem, to give a 

fraction of sequences in subsystems that are in a given subsystem. This approach allows 

comparisons between samples that have different numbers of sequences. Since the 

fractions tend to be small, the scores can be factored for display purposes. Moreover, the 

display can be limited or expanded to include various levels in the subsystem hierarchy, 

to specific areas of metabolism, or other subsystem groups, as chosen by the user. 



 11 

Phylogenetic: The taxonomic heat map works in an analogous fashion but highlights the 

different taxonomic profiles in each sample, as determined by the phylogenetic or 

phylogenomic approaches selected by the end user (e.g., 16S comparisons, 

phylogenomics from BLAT results). Again, samples may be grouped in a nonquantitative 

fashion to rapidly highlight particular phylogenetic groups that predominate in different 

samples. 

2.7.2 Principal component analysis 

Many comparative analyses use multivariate statistics when several metagenomic 

datasets are involved, or when several types of factors are thought to affect the observed 

compositions of the communities.  MG-RAST has incorporated a R-based PCA 

(Principle Component Analysis) to its suite of comparative tools. 

2.7.3 Recruitment Plot 

The recruitment plot tool is set up to provide a selected sequenced microbial genome as a 

scaffold to map metagenome-derived sequences to.  As in the heat map, sequences that 

have been annotated from a metagenome are used as the queries.  The initial view 

provides a ranked list of microbial genomes that contain the most number of matched 

sequences from the metagenome.  This gives an indication of the relative representations 

in terms of genomic content found within the metagenome. 

2.8 Metabolic Reconstructions and Models 

Metagenomics also has the potential provide insights into the critical biochemical 

mechanisms in each environment. Models in the MG-RAST are based on the initially 

assembled metabolic reconstructions. The functional roles from the reconstruction are 

then mapped to reactions in the SEED and KEGG biochemistry databases, and this 
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mapping is used  to assemble a reaction list for the model. Models are based on a steady 

state and undergo flux balance analysis. 

3. Results and Discussion 

Improved sampling of diverse environments, combined with advances in the 

development and application of next-generation sequencing technologies, is accelerating 

the pace at which new metagenomes are generated.  In fact, the amount of sequence data 

being produced will quickly outpace the ability of scientists to analyze it. Analysis of 

metagenomic data needs to incorporate scalable computing resources. 

The process of building MG-RAST is the result of several years of planning and 

engineering. The system provides integration of metagenome data, microbial genomics, 

and manually curated annotations. The metagenomics analysis pipeline was designed to 

allow for interactive analysis and the system as a whole has been built by using an 

extensible format allowing the integration of new datasets and algorithms without a need 

for recomputation of existing results. The system has been restructured to be scalable. 

This means MG-RAST uses cloud computing, which decouples it from a particular 

dataset and allows vast compute resources, to conduct the analysis. 

The MG-RAST server handles both assembled and unassembled data. Each approach has 

advantages that should be considered when comparing metagenomes. For example, a 

case where sequences should be assembled is when comparisons between samples is 

being calculated, as the assembly process loses the frequency information critical for 

determining differences between samples. In contrast, assembled sequences tend to be 

longer and therefore more likely to accurately identify gene function or phylogenetic 

source from binning (McHardy et al., 2007). 
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The analytical methods integrated into MG-RAST provide core annotations and analysis 

tools to compare and contrast sets of metagenomes (Edwards et al., 2006; Fierer et al., 

2007; Mou et al., 2008). The approach underlying the subsystems-based functional 

analysis of metagenomes has been validated with 90 different samples from nine major 

biomes. The analysis demonstrated that the biomes could clearly be separated by their 

functional composition (Dinsdale et al., 2008). All of the metagenomes present in that 

study are included in the publicly available datasets visible on the MG-RAST server. 

Although the service contains core functionality for the annotation and analysis of 

metagenomes, many of the techniques traditionally used for genome analysis either do 

not work with metagenomes or show significant performance degradation (Krause et al., 

2006).  Therefore, new analytical methods are needed to fully understand metagenomics 

data. The most obvious problem is with the large number of unknown sequences in any 

sample. Others and we are developing new binning, clustering, and coding region 

prediction tools to handle these unknown sequences, and effective tools will be 

incorporated into the pipeline when available. Another problem is that the rapid pace with 

which sequence data is being generated outpaces increases in computational speed, and 

therefore improvements in common search algorithms are required to ensure that 

sequence space can be accurately and efficiently searched. 

4. Internet Resources 

MG-RAST (http://metagenomics.anl.gov) 
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Figure legends 

Figure 1. Sequences are compared to the MG-RAST protein database that provides a non-

redundant integration of many databases (INSDC, SEED, IMG, KEGG, and EGGNOGs), 
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supporting many complementary views into the data with one similarity search.  Show 

are functional distribution based on COG annotations. 

Figure 2. An example of a comparative view in MG-RAST. A circular tree representing 

phylogenetic profiles from four samples is compared. Each node can be expanded to get 

detailed information about the distribution for each sample. Color shading of the family 

names indicates class membership.  


