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Prasanna Balaprakash, Stefan M. Wild, and Boyana Norris

Abstract

Automatic performance tuning of computationally intensive kernels in scientific ap-

plications is a promising approach to achieving good performance on different computing

architectures while preserving the kernel implementation’s readability and portability.

A major bottleneck in automatic performance tuning is the computation time required

to test the large number of possible code variants, which grows exponentially with the

number of tuning parameters. Consequently, the design, development, and analysis of

effective search techniques capable of finding high-performing parameter configurations

quickly have gained significant attention in recent years. An important element needed

for this research is a collection of test problems that allow performance engineering and

mathematical optimization researchers to conduct rigorous algorithmic developments

and experimental studies. In this paper, we describe a set of extensible and portable

search problems in automatic performance tuning (SPAPT) whose goal is to aid in the

development and improvement of search strategies and performance-improving transfor-

mations. SPAPT contains representative implementations from a number of lower-level,

serial performance tuning tasks in scientific applications. We present an illustrative

experimental study on a number of problems from the test suite. We discuss some

important issues such as modeling, search space characteristics, and performance ob-

jectives.

1 Introduction

The landscape of scientific application programming is undergoing rapid changes as a result

of increasingly complex computing architectures and the quest for high-performance on

these architectures. Chasing performance gains through manual tuning becomes a complex

and time-consuming process that is neither scalable not portable. Automatic performance

tuning or autotuning is a promising and viable approach to address the limitations of manual

tuning. Autotuning involves three major phases: identifying code optimization techniques

that are relevant to the given code and architecture, assigning a range of parameter values

using hardware expertise and application-specific knowledge, and searching the parameter

space to find the best-performing parameter configuration for the given architecture. In

recent years, this has emerged as an effective approach to tune scientific kernels for both

serial and multicore processors [1, 2, 3, 4, 5, 6].
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A major bottleneck in large-scale autotuning is the prohibitively large computation time

required when searching for high-performing parameter configurations in a large search

space. Hence, popular search algorithms such as random search, Nelder-Mead, simulated

annealing, and genetic algorithms are used to examine a small subset of possible configu-

rations. In our recent work [7], we showed that the search problem arising in autotuning

can be formulated as a mathematical optimization problem and illustrated the potential

for mathematical optimization algorithms to find high-performing tuning parameters in a

short computation time.

The primary obstacle for the mathematical optimization community to contribute al-

gorithms for performance tuning is the high startup cost associated with developing math-

ematical formulations of performance problems and subsequently transforming, compiling,

and running the corresponding codes. In fact, recent successes of performance tuning in

mathematical optimization have focused on obtaining parameters for other optimization

algorithms (e.g., [8]).

On the other hand, a rich history in mathematical optimization of sets of benchmark

problems exists. Examples include the Moré-Garbow-Hillstrom problems for unconstrained

optimization [9]; the more general CUTEr set [10] (a subset of which was used as the inputs

in [8]); and the smooth, noisy, and nonsmooth problems in [11]. These benchmarks are

attractive for several reasons, including (1) providing a rigorous definition of a set of easily

obtained problems; (2) absolving algorithm developers from controversial decisions related

to problem formulation, scaling, and input parameter decisions; (3) mitigating particularly

unusual behavior (e.g., seen on only a single problem), and (4) defining a self-contained,

fixed set to avoid criticisms of only including problems that show favorable aspects of an

algorithm. In addition to these characteristics, an ideal set would be large enough to

yield diverse problems (rather than containing a single problem) but not too large to be

prohibitively expensive, which would prevent one from running the benchmark set in its

entirety.

As evidenced by their citation counts, these benchmark sets are used extensively by

the optimization community. The usual benchmarking caveats apply: performance of an

optimization algorithm on the set is not a guarantee that it will perform similarly on all

other problems, and hence one should avoid both “overfitting” and making extrapolations

far beyond the set. However, results on the benchmark sets can still provide valuable

feedback to developers on the algorithmic features expected to be most important, and are

a first step in developing, for example, specialized algorithms for classes of performance-

tuning problems.

In this paper, we present a benchmark set of extensible and portable search problems in

automatic performance tuning (SPAPT). It comprises representative problems from a num-

ber of lower-level, serial performance tuning tasks in scientific applications. In particular, we

focus on kernels in scientific codes. We implement problems in a format that can be readily

processed by Orio [12, 13], a recently developed performance-tuning software framework.

By making Orio explicitly part of the set and defining specific optimization problems, our

first goal is to attract the mathematical optimization community to help advance the field
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of performance tuning. With the benchmark set, our second goal is to enable performance

engineering and mathematical optimization researchers to conduct rigorous algorithmic de-

velopments and experimental studies on search algorithms in autotuning.

The rest of the paper is organized as follows. In Section 2 we review related works on

benchmark sets for autotuning. In Section 3 we give a high-level overview of SPAPT. We

briefly give an account on each class of kernels, application context, and tunable parame-

ters. In Section 4, using an illustrative experimental study on a number of problems from

the benchmark, we discuss some important issues related to modeling, optimization, and

performance objectives.

2 Related Work

Balaprakash et al. [7], Kisuki et al. [14], Qasem et al. [15], Seymour et al. [16], Shin et al.

[17], and Tiwari et al. [5] used a number of linear algebra kernels for autotuning. Pouchet

[18] adopted a collection of reference implementations, which comprises linear algebra ker-

nels, solvers, stencils, and data mining codes. These codes have pragma delimiters for

OpenMP and loop bounds for autotuning with a polyhedral model. Norris et al. [13] and

Hartono et al. [12] used a collection of linear algebra kernels, solvers, and stencils. These are

parameterized codes that were used to test the effectiveness of Orio, an annotation-based

autotuning framework. In all these works, the kernels are often parameterized to illustrate

the effectiveness of autotuning but there is limited empirical analysis of the search algo-

rithms applied to kernels with a large number of parameters that have wide ranges of input

sizes. Recently, Kaiser et al. [19] proposed the TORCH testbed, a set of reference kernels

to enable software and hardware co-design. These kernels are broadly classified into linear

algebra, grid, spectral, particle, Monte Carlo, graphs, and sort kernels. The authors discuss

possible code optimization strategies that can be applied to these kernels. Nevertheless,

parameterization and search problem specifications are not part of the testbed.

We note that Kaiser et al. [19] argue that a number of existing benchmarks can be

seen as reference implementations of one or more kernels from TORCH. Examples include

EEMBC [20], HPC Challenge [21], ParBoil [22], SPEC [23], NAS Parallel benchmarks [24],

PARSEC [25], Rodinia [26], LINPACK [27], STREAM [28], STAMP [29], SPLASH [30],

and pChase [31]. Although in principle these benchmarks can be parameterized and used

for autotuning, none of them are developed specifically for evaluating the effectiveness of

search algorithms in autotuning. Hence, there is a noticeable void in the literature of

benchmark sets of well-formulated search problems in autotuning. The SPAPT set that we

propose in this paper is based on [12, 13, 18], which comprises representative examples from

autotuning in scientific applications. Moreover, SPAPT has several kernels from [19], and

the search problems in SPAPT may be viewed as instances of some TORCH kernels adapted

as search problems in autotuning.
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Table 1: Collection of benchmark kernels.

Transformations

Kernel Operation ni nb |D|
linear algebra kernels

ATAX matrix transpose & vector multiplication 13 UJ, CT, RT, LPM 6 SR, AC, LV, OMP 1.65e+14

DGEMV scalar, vector & matrix multiplication 38 UJ, CT, RT, LPM 11 SR, AC, LV, OMP 2.73e+30

FDTD4d2d finite-difference time-domain kernel 25 UJ, CT, RT, LPM 5 SR, AC, LV, OMP 7.06e+24

GEMVER vector multiplication & matrix addition 18 UJ, CT, RT, LPM 6 SR, AC, LV, OMP 7.26e+17

GESUMMV scalar, vector, & matrix multiplication 8 UJ, CT, RT, LPM 3 SR, LV, OMP 1.56e+08

HMC Hessian matrix computation kernel 7 UJ, CT, RT, LPM 8 SR, AC, LV, OMP 1.01e+08

MM matrix multiplication 10 UJ, CT, RT, LPM 4 SR, AC, LV, OMP 1.83e+12

MVT matrix vector product & transpose 6 UJ, CT, RT, LPM 6 SR, AC, LV, OMP 1.38e+08

Tensor tensor matrix multiplication 17 UJ, CT, RT, LPM 3 SR, LV, OMP 5.49e+16

TRMM triangular matrix operations 20 UJ, CT, RT, LPM 5 SR, LV, OMP 5.33e+19

linear algebra solvers

BiCG sub kernel of BiCGStab linear solver 9 UJ, CT, RT, LPM 4 SR, AC, LV, OMP 9.33e+09

LU LU decomposition 9 UJ, CT, RT, LPM 5 SR, AC, LV, OMP 1.86e+10

stencil codes

ADI matrix subtraction, multiplication, & division 16 UJ, CT, RT, LPM 4 SR, AC, LV, OMP 6.05e+15

Jacobi-1d 1-D Jacobi computation 8 UJ, CT, RT, LPM 3 SR, LV, OMP 1.55e+08

Seidel matrix factorization 12 UJ, CT, RT, LPM 3 SR, LV, OMP 6.86e+11

Stencil3d 3-D stencil computation 24 UJ, CT, RT, LPM 5 SR, AC, LV, OMP 2.35e+23

data mining

COR correlation computation 16 UJ, CT, RT, LPM 4 SR, AC, LV, OMP 6.05e+15

COV covariance computation 20 UJ, CT, RT, LPM 5 SR, AC, LV, OMP 5.33e+19

3 Benchmark Set

In this section we provide a high-level overview of the set of benchmarks and the chosen

tuning directives. We then discuss their implementations using Orio.

3.1 Reference kernels and search problems

We use the term kernels to refer to (deeply) nested loops that arise frequently in a number

of scientific application codes. Because they contribute significantly to the overall execution

time, tuning these kernels can result in significant overall application performance improve-

ments [32]. A range of transformations can be applied leading to better utilization of the

memory hierarchy and aiding in exploiting shared memory parallelism on multicore archi-

tectures. The SPAPT benchmark that we propose in this paper comprises 18 such kernels.

These kernels are grouped into four groups as in [18]: linear algebra computation kernels,

linear algebra solver kernels, stencil code kernels, and data-mining kernels.

Linear algebra computation kernels. These kernels involve a set of mathematical com-
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putations performed on scalars, vectors, and matrices. Because of the wide range of

applications that adopt these kernels, autotuning these kernels is a popular topic of

research and development. In this group we have ten kernels that involve elementary

linear algebra operations such as vector/matrix/tensor multiplications and transposes.

See Table 1 for a summary of the operations involved.

Linear algebra solver kernels. Linear algebra solvers find solutions to a system of linear

equations. In this group, we have kernels from the BiCGStab linear solver (BiCG); LU,

which decomposes a matrix into a product of lower and upper triangular matrices.

Stencil code kernels. Stencil codes follow a regular pattern to access and update array

elements. They are commonly used in solving implicit and explicit partial differ-

ential equations [3]. In this group, we have four kernels from ADI pre conditioners

(ADI), Jacobi 1-D (Jacobi-1d), Seidel stencil (Seidel), and 3-D stencils computations

(Stencil3d).

Data mining kernels. In this group, we have two kernels: correlation (COR) and covari-

ance (COV) computations. They involve finding statistical relationships among a num-

ber of random variables, which is central to many statistical packages. The reference

implementations are obtained from [18].

We take a search problem in SPAPT to mean a specific combination of a kernel, an

input size, a set of tunable decision parameters, a feasible set of possible parameter values,

and a default/initial configuration of these parameters for use by search algorithms. When

combined with a specific architecture and a single performance objective f , both discussed

further in Section 4, this search problem is equivalent to the mathematical optimization

problem
min
x

f(x)

x = (xB, xI) ∈ Ω,

such that xBj
∈ {0, 1}, j = 1, . . . , nb,

xIj ∈ {lj , · · · , uj}, j = 1, . . . , ni,

(1)

where B and I denote a partitioning of the parameter vector x into nb binary and ni integer

scalars, respectively. Details on modeling and formulating problems such as (1) are given

in [7]. The feasible set D for a given problem is defined by bound constraints and a set of

more general, algebraic constraints denoted in (1) by Ω. Note that these constraints are

typically independent of unsuccessful code evaluations due to transformation, compilation,

and run-time errors.

From each tunable kernel, we generate four search problems: three problems by varying

the input size (N , 2N , and 4N) and the fourth by fixing the value of all binary parameters

to 0 (so that only integer decision parameters are considered) with an input size of N . Note

that the input size is not limited to single-dimensional or square inputs; for non-square or

multi-dimensional inputs, instead of N , we have {N1, N2, N3, . . .}.
We define the initial configuration of a problem as that obtained by setting each integer

variable to its lower bound and each binary variable to 0 (false). In addition to the goals
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discussed in Section 1, these problems enable us to study the impact of input size on

performance tuning and to analyze the smoothness in the search space (e.g., binary decisions

such as enabling or disabling OpenMP create discontinuities in the search space).

Table 1 gives a high-level overview of the kernels and tuning transformations considered

for each kernel. Whenever applicable, we adopt the following general purpose parameter-

ized tuning directives: loop unroll/jamming (UJ), cache tiling (CT), register tiling (RT), loop

permutation (LPM), scalar replacement (SR), array copy optimization (AC), loop vectoriza-

tion (LV), and multicore parallelization using OpenMP (OMP). The Orio implementations

of these transformations are described in [33, 12].

3.2 Orio-specific implementations

Orio [12, 13] is a recently developed extensible and portable software framework for empirical

performance tuning. It takes an Orio-annotated C or Fortran implementation of a problem

as input, generates multiple transformed code variants of the annotated code, empirically

evaluates the performance of the generated codes, and selects the best-performing code

variant using some popular heuristic search algorithms. Orio annotations consist of semantic

comments that encode the computation. A separate tuning specification contains various

parameterized performance-tuning directives and sizes of inputs to consider. In addition to

the general-purpose tuning directives such as UJ, CT, RT, LPM, SR, AC, LV, and OMP, Orio

supports a number of architecture-specific optimizations (e.g., generating calls to SIMD

intrinsics on Intel and Blue Gene/P architectures). We refer the reader to [12, 13] for a

detailed account on annotation parsing and code generation schemes in Orio.

SPAPT is intended to be used for evaluating the search approaches in any autotuning

system. By integrating it with Orio we provide an immediate demonstration of its use and

enable future use by other autotuning packages as interfaces to them are added during Orio

development (Orio already interfaces to a number of third-party transformation and search

tools and will continue to add more).

From an optimization perspective, for a given search problem, one needs to know the

tunable parameters, possible values for each parameter, and a starting parameter config-

uration. A concrete annotation example is shown in Figure 1. Note that for brevity, we

skip other important regions of the annotation such as the tuning directives, kernel, and

compiler options in the annotation. The example shows tunable performance parameters

for CT, AC, UJ, SR, LV, and OMP, their possible values together with the constraints on CT

and UJ, and the input size. In Table 1, the column |D| shows, for each kernel, the number

of feasible decision points, which ranges between 1.01e + 08 and 2.73e + 30.

SPAPT is made available for download with Orio at

trac.mcs.anl.gov/projects/performance/wiki/Orio. Readers can also browse the bench-

mark set at

trac.mcs.anl.gov/projects/performance/browser/orio/testsuite/SPAPT.v.01.
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4 Illustrative experiments

In this section, we conduct an illustrative experimental study on several problems from the

benchmark set. We use the results of this study to discuss some of the characteristics of

problems in SPAPT that are highly relevant for autotuning.

Experiments are carried out on dedicated nodes of the Fusion cluster at Argonne Na-

tional Laboratory. Each node of Fusion contains two Intel Nehalem series quad-core 2.53

GHz processors with 36GB of memory running the stock Linux kernel version 2.6.18 pro-

vided by RedHat.

Table 2: Estimated mean and standard deviation of the run-time for 35 runs at the initial

parameter configuration.

prob µ̂init σ̂init

ATAX 0.0052 2.05e-05

BiCG 0.0040 5.68e-06

COR 0.0009 1.62e-06

DGEMV 0.0100 5.33e-06

GEMVER 0.0328 3.71e-04

GESUMMV 0.0259 4.54e-05

Jacobi 0.0004 1.45e-06

MM 0.0211 3.58e-06

MVT 0.0017 7.18e-06

4.1 Performance objectives

When a code is transformed and compiled with respect to a given parameter configuration,

typically it has to be run on the target machine a number of times to overcome variations

resulting from factors such as daemon jobs and cold caches. Hence, modeling decisions

related to the performance objective can play a significant role in the tuning process.

As a default, we consider minimizing the runtime for each problem. Many performance

measures can serve as an optimization objective in (1), including

f(x) =
1

m

m∑

i=1

ri(x),

f(x) = mediani=1,...,mri(x),

f(x) = min
i=1,...,m

ri(x),

f(x) = r3(x),

where {r1(x), . . . , rm(x)} denote a sequence of runtime realizations for parameter values x,

and these objectives denote the mean, median, minimum, and third realized time, respec-

tively. In SPAPT we intentionally do not specify a fixed form of the objective, because it
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can depend heavily on the architecture and the particular performance metric (e.g., run-

time, FLOPS, or power). Next we discuss various considerations related to performance

objectives given m = 35 consecutive replications.

The sample mean runtime is often used to approximate uniform system conditions be-

cause it can asymptotically reduce nondeterministic variations in the runs. In Table 2, we

show the sample mean µ̂init and standard deviation σ̂init of the runtime for 35 runs at the

initial parameter configuration for some problems with input size N . The mean is stable to

three or four significant digits considering the relative noise (σ̂init/
√
35µ̂init).

Performance objectives other than the mean, including those given above and quantile-

based measures, can be adopted based on the ultimate goals of the performance tuning

process. Figure 2 shows a comparison of mean, median, minimum, and third runtime

values of 5, 000 random parameter configurations x in |D|. Note that all x are sorted with

respect to mean. In a problem based on the ATAX kernel, we observe that median, min, and

third runtime are close to each other. The reason is that they are not sensitive to outliers

and cold cache effects. Hence, they can be used as an alternative to the mean when one

knows that outliers and/or cold cache effects are rare phenomena in the production runs.

However, we have a few exceptions to this general trend in problems such as those based

on the DGEMV kernels (see Figure 3, where all the performance objectives are similar to each

other).

In a number of problems, we found that the median of 35 runs was systematically lower

because of the cold cache effect. This is shown in Figure 4, where the execution times of

the first few runs are always longer than that of the other runs. Note that the performance

objective of third runtime value is explicitly designed to take this into account. In the rest

of this section, we use mean runtime as the performance objective.

4.2 Performance objective density

In Figure 5, we show histograms of the objective values obtained on 5,000 random param-

eter configurations on different problems from the benchmark set. We observe that for

problems based on the DGEMV and GESUMMV kernels the number of high-performing param-

eter configurations is low compared with that for the BiCG and COR kernels. We expect

that a simple random search can find high-performing configurations for problems based on

BiCG and COR, for which there are many high-performing parameter configurations, whereas

problems based on the DGEMV and GESUMMV kernels might require sophisticated search algo-

rithms. Given the large search space, these results should be treated with caution because

of the small number of random configurations considered for the experiments. These are

indicative results and should not taken as a direct measure for assessing the difficulty of

solving a search problem in the benchmark.

4.3 Parameter formulations

A possible approach to solving search problems in autotuning is to treat integer parameters

as real valued ones and to use advanced numerical optimization algorithms. However, the
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presence of binary parameters makes this approach less promising. Hence, from a numerical

optimization standpoint, it is interesting to analyze distribution of the objective values when

binary parameters are set to some default values. In Figure 6, we compare the results of

first and fourth problems based on the BiCG kernel. Recall that a fourth problem for each

kernel is obtained from the first problem by setting the binary parameters to 0. The results

show that switching off the binary parameters leads to high-performing configurations: the

range 0.002 to 0.007 of Figure 6(b) belong to the first bin of the histogram in Figure 6(a),

which constitutes only 5%. However, the best parameter configuration with an objective

value of 0.00012 is not feasible in the fourth problem because it has two binary parameters

set to 1.

4.4 Input size

Another factor that plays a crucial role in autotuning is the size of the arrays involved in

the computation. In most cases, tuning has to be performed for a number of different input

sizes because the best parameter configuration obtained for one input size is not necessarily

the best for a different input size. In some cases, however, parameter configurations can be

generalized. This situation is illustrated in Figure 7, which shows the correlation between

the objectives for different instance sizes. In problems based on the ATAX kernel (see Figure

7(a)), a large number of high-performing parameter configurations for input size N becomes

less effective for input size 4N . This occurs because transformations targeting different levels

of the memory hierarchy would not produce the same effect on a computation that can fit

in registers or L1 as they would on an instance that does not fit in any level in cache.

Nevertheless, the results from problems based on the BiCG kernel (see Figure 7(b)) show

that high-performing parameter configurations are generalizable to some extent for certain

types of computations.

5 Conclusions and Future Directions

Motivated by a lack of benchmark set of search problems in autotuning, we developed SPAPT,

a collection of representative kernels from scientific applications that are good candidates

for autotuning. Each search problem comprises parameterized tuning directives, values

for each parameter, input sizes, and an initial configuration for search algorithms. We

implemented all these problems in an annotation-based language that can be processed by

Orio, a recently developed performance tuning software framework. We conducted some

illustrative experiments to show performance impacts of problem characteristics such as

choice of performance objectives, noise, cold cache effects, binary parameters, and input

sizes.

SPAPT has the potential to improve the state of the art in autotuning. On the one hand,

it can help the autotuning community conduct systematic experimental studies, which will

help the development and evaluation of transformation approaches. On the other hand,

our easily accessible, portable Orio implementation of the benchmark suite can attract
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mathematical optimization researchers to develop search algorithms without knowing the

fine details of compiler optimization and performance tuning.

In addition to the limitations of any of the benchmarks described in Section 1, SPAPT

has the following ones. The benchmark deals only with serial problems and does not provide

any parallel problems. As a starting point, we focused on some of the widely used scientific

kernels in the autotuning literature. A possible bias in the benchmark set is that a large

number of problems deal with linear algebra related computations.

We plan to continue to extend the application space and numerical and scientific problem

domain coverage of the benchmark set. In particular, we will define search problems using

additional kernels from TORCH. We will use SPAPT to understand the search problem

characteristics, to benchmark the existing search algorithms for autotuning, and to develop

new search techniques. We are also planning to analyze the impact of different architectures

on the SPAPT problems. In future, we also intend to build a database of tabulated execution

times to facilitate benchmarking search algorithms.
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def performance_params

{

# Cache tiling

param T1_I[] = [1,16,32,64,128,256,512];

param T1_J[] = [1,16,32,64,128,256,512];

param T2_I[] = [1,64,128,256,512,1024,2048];

param T2_J[] = [1,64,128,256,512,1024,2048];

# Array-copy

param ACOPY_A[] = [False,True];

# Unroll-jam

param U_I[] = range(1,31);

param U_J[] = range(1,31);

# Scalar replacement

param SCREP[] = [False,True];

# Loop Vectorization

param VEC[] = [False,True];

# Parallelization

param OMP[] = [False,True];

# Constraints

constraint tileI = ((T2_I == 1)

or (T2_I % T1_I == 0));

constraint tileJ = ((T2_J == 1)

or (T2_J % T1_J == 0));

constraint reg_capacity = (2*U_I*U_J +

2*U_I + 2*U_J <= 130);

}

let SIZE = 1000;

def input_params

{

param MSIZE = SIZE;

param NSIZE = SIZE;

param M = SIZE;

param N = SIZE;

}

/*@ end @*/

Figure 1: Parameter specification and constraint example in Orio.
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Figure 2: Comparison of performance objectives in a SPAPT problem based on the ATAX

kernel.
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kernel.
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Figure 5: Histograms of objective values from 5,000 random code variants in D.
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Figure 6: Impact of binary parameters: histograms of objective values from 5,000 random

code variants in D.
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