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ABSTRACT

As concurrency increases in leadership-class computing sys-
tems, the large number of concurrent client data and meta-
data accesses can overload parallel file systems and reduce
application I/O performance dramatically. One class of ap-
plications impacted by such issues are trace-based perfor-
mance analysis and debugging tools. These tools strive to
minimize any perturbation to the application being traced—
a goal which is hard to accomplish given the unpredictable
response times of parallel file systems. We present and eval-
uate the forwarding middleware IOFSL which is able to
transparently aggregate and reorganize application 1/O re-
quests. The investigation resulted in novel ways to reduce
the burden on the underlying file system in the cases where
coordination at the application level is not feasible. As a
demonstration case of our technique we present the inte-
gration into the Vampir tools for trace-based performance
analysis. The paper contains results at large scale with a
scalable target application (S3D) and the Vampir monitor-
ing infrastructure on a leadership-class machine using more
than 200,000 processes.

1. INTRODUCTION

The future of high performance computing is expected to
rely upon extreme levels of concurrency. Today’s leading
parallel systems consist of hundreds of thousands of pro-
cessing elements; machines consisting of a million or more
processing elements are predicted in this decade [19]. As
the level of concurrency reaches 100,000 clients and beyond,
new stress points emerge in existing parallel file systems.
The management of write locks becomes an issue—especially
when all processes write to a shared file. In many paral-
lel file systems, metadata accesses to the same directory
are effectively serialized, so one million file create opera-
tions in the same directory become problematic. Moreover,
such a large client-server discrepancy can result in many
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contention-related problems and brings about new issues
with access coordination and concurrency management.

Existing parallel file systems provide unsatisfactory support
for access patterns common in HPC applications. Using in-
dividual files per process/thread cannot be relied upon as
a robust strategy at a scale of 10,000 clients or even less
because of metadata contention. Such workloads may halt
or even crash the whole file system. On the other hand, us-
ing one shared file causes excessive locking at the order of
100,000 clients or less. Concurrency not only affects basic
1/0 functionality; tremendous impacts to I/O performance,
waiting time, and I/O load balance are also the norm. Ad-
ditional complexities result from inhomogeneous I/O sub-
systems, e.g., specialized 1/O nodes next to pure compute
nodes.

Suitable solutions for extreme scale I/O are interesting tech-
nical challenges. They are very difficult to tackle at the ap-
plication level because they require complex solutions which
are usually outside of the application team’s focus. Our ap-
proach relies on the novel 1/O Forwarding and Scalability
Layer (IOFSL) middleware to provide portable and scal-
able file I/O aggregation as well as metadata aggregation
to bridge the gap between extreme scale applications and
the constraints of parallel file systems.

1.1 Peta-Scale Event-Trace Recording
Performance analysis tools in general are a vital part of the
HPC software ecosystem. They provide insight into the
run-time behavior of parallel applications and enable per-
formance assessments of what is adequate and what is in-
sufficient. Furthermore, these tools guide performance op-
timization activities towards the most promising or most
urgent aspects.

Performance analysis tools are vital to application develop-
ment at very large scale. It is insufficient to move a tar-
get application to the highest degree of parallelism after the
performance analysis on a lower scale, because this would
ignore important emerging effects. One example is the very
1/0 behavior addressed in this paper which fundamentally
changes for certain levels of parallelism.

While being essential for the performance optimization pro-



cess for target applications, the performance measurement
tools face the same portability and scalability challenges as
the target applications. Furthermore, the tools are needed
most during the early phase of deployment for investigat-
ing new effects and for adapting applications for maximum
performance.

As a demonstration case of our work, Vampir event-trace
recording at full leadership-class scale was selected which is
able to provide very detailed insight into peta-scale parallel
execution at the cost of large amounts of measurement data
produced. Without the presented integration of IOFSL this
would be impossible due to the previously mentioned limi-
tations.

1.2 Contributions

We present our recent research on scalable event manage-
ment and request processing at the I/O forwarding layer
named “I/O Forwarding Scalability Layer” (IOFSL). Our
contributions include:

1. The design and demonstration of a scalable and portable
event-driven architecture for the I/O forwarding layer.

2. Scalable and portable request processing, coordination,
and aggregation techniques within the I/O forwarding
layer.

3. The application to the portable Vampir performance
analysis tools and demonstration on the leadership-class
Cray XT5 installation Jaguar at ORNL.

The remainder of this paper is organized as follows: We
describe the I/0 requirements of performance analysis tools
in general and the needs of the Vampir toolchain in Section
2. The main design components are outlined in Section 3. In
Section 4, we describe the demonstration of our concepts on
a leadership-class machine. Section 5 presents an overview
of related work. Finally, Section 6 provides the conclusions
and an outlook to future work.

2. THE VAMPIR TOOL-SET

The Vampir tool-set is a sophisticated performance analysis
infrastructure for parallel programs using MPI, OpenMP,
pthreads, CUDA, OpenCL, or combinations of them. It
consists of the Vampir GUI for interactive post-mortem vi-
sualization, the VampirTrace instrumentation and run-time
recording system, and the Open Trace Format (OTF) as the
file format. The Vampir tools rely on event-trace recording
which allows the most detailed analysis of the parallel be-
havior of target applications. In particular, it is more ex-
pressive than profiling techniques by design. As the first
step, it performs automatic instrumentation of the target
application using various techniques. During run time, the
monitoring component collects the instrumented events to-
gether with significant properties. This includes for ex-
ample enter/leave events for user code subroutines, mes-
sage send/receive events, collective communication events,

shared memory synchronization, I/O events, and many more.

The event-trace data is written to a set of OTF files eventu-
ally and is then ready for post-mortem investigation with the
Vampir GUI. Figure 1 gives an overview of VampirTrace’s
data flow. For more details about Vampir, VampirTrace,
and OTF see [24, 18, 17].
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Figure 1: The VampirTrace data flow

When the VampirTrace monitoring component captures the
parallel run-time behavior of the target application, it pays
utmost attention to impose minimal perturbation. On oc-
currence of events of interest, the run-time monitoring com-
ponent stores the event information together with vital prop-
erties (precise time stamp, all event specific properties, per-
formance counter values if configured) to a pre-allocated
memory buffer. The recording is performed independently
for every process/thread into local buffers. Buffers are never
shared to avoid artificial synchronization of the target appli-
cation. This buffer sharing restriction applies to both pro-
cesses and threads executing within the same address space.

The normal program execution is interrupted to write out
all data to a file (through a buffer flush) when the buffer
becomes full. The buffer flush phases are clearly marked
for analysis if recording is continued afterwards, such that
its effect is not mistaken for stray behavior of the target
application. However, having a single flush at the end of
the recording should be preferred whenever possible. In
this scheme, every application process/thread produces a
private output file. The buffer flushes across parallel pro-
cesses/threads can either be asynchronous or synchronized
using a high-watermark heuristic. Unfortunately, due to the
SPMD nature of most parallel software, buffer flushes tend
to happen almost simultaneously.

2.1 1/0 Challenges

The I/0O scheme of VampirTrace leads to occasional heavy
I/0 write phases induced by the event trace collection, which
are independent of the I/O behavior of the target applica-
tion. The data volume is directly proportional to the event
frequency and the degree of parallelism. The former can be
influenced by the configuration of the instrumentation and



the run-time monitoring system, the latter is fixed. A single
event needs approximately 10 to 50 bytes for its encoding in
the buffer. Typically, event frequencies range from 100 to
100,000 per second (with proper settings). A parallel run
with 10,000 processes or threads for 10 minutes results in
data sizes of 6-10° to 3-10"2 bytes (approx. 5.6 GB to 28 TB),
as an example. The trace buffer size should not exceed the
local main memory size minus the memory required by the
target application, otherwise the application behaviour will
be severely distorted. Typical sizes are 10 MB to 1 GB per
process/thread.

During the buffer flush phases, the trace collection induces
three challenges on the I/O subsystem. First, trace col-
lection requires significant amounts of disk space for stor-
ing huge trace files. Second, the nearly simultaneous buffer
flushes of many processes or threads increases I/O band-
width pressure on the I/O subsystem. Finally, the metadata
load for the trace collection I/O patterns is high due to the
creation of many individual files and the allocation of file
system blocks for a large number of I/O operations.

High end parallel file systems for machines with 50,000 to
300,000 CPU cores are usually well equipped to handle the
first one, equipped to handle the second one, but not the
third. Creating one file per process or thread, which usually
corresponds to one file per CPU core or GPGPU card, at
almost coordinated points in time is completely infeasible
with all existing parallel file systems. Parallel file creation
request above 4,000 per second! will affect all other users
and jobs on the machine. This is a very dissatisfying sit-
uation, especially since (non-parallel) desktop file systems
handle such demands gracefully. It is a serious limitation at
a surprisingly low degree of parallelism for scaling up parallel
codes whose I/O behavior is otherwise uncritical.

The current state-of-the-art solution is to avoid the creation
of too many files altogether. For example, the demand for
a full system run of the VampirTrace monitoring infrastruc-
ture (with any target application) on the Jaguar leadership-
class machine at ORNL is to reliably create less than 1,000
files per second.

For any parallel application in general, this can only be pro-
vided by a modified parallelization scheme for the I/O parts.
This necessarily requires internal synchronization and com-
munication between the processes/threads, which may not
always be practical for existing codes. For event trace gener-
ation however, this conflicts with the important goal not to
superimpose additional synchronization on the target appli-
cation. Adequate support from the underlying parallel file
systems is not available and not foreseeable in the near fu-
ture. The I/O forwarding approach presented next provides
a convenient solution which integrates well with the exist-
ing VampirTrace/OTF infrastructure and which promises
to scale much further than today’s highest-end parallel sys-
tems.

3. DESIGN AND IMPLEMENTATION

14,000 per second is the suggested maximum file creation
frequency for Jaguar’s Spider file system at ORNL.
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Figure 2: The principle I/O forwarding approach

In this section, we describe our I/O forwarding middleware
used to address the previously outlined I/O challenges. In
addition, we describe the implementation of our scalable
trace collection tools and the integration of these tools in
VampirTrace.

3.1 IOFSL Overview

The basis for our approach is to interject a new data man-
agement layer in the I/O stack that yields new capabilities
as depicted in Figure 2. IOFSL [26, 3] provides a portable
and scalable version of this I/O forwarding layer for HPC
systems. Here, the I/O forwarding layer aggregates data
from multiple clients at the I/O forwarding server (or multi-
ple servers) and delegates the I/O requests on behalf of the
clients. This I/O management approach is appropriate for
many HPC I/O workloads that exhibit intense I/O demands
at extreme scales, including general massively parallel appli-
cations using checkpoint-restart mechanisms as well as per-
formance analysis and debugging tools. IOFSL can act as a
bridge between application compute nodes and storage sys-
tems that are physically disconnected, as is the case on, e.g.,
IBM Blue Gene systems [31]. This bridge is also an ideal
place to optimize file I/O traffic.

Besides simply rerouting I/O operations, data aggregation
and coalescing capabilities are an important aspect of I/O
forwarding. Parallel file systems yield much higher perfor-
mance provided that read and write accesses are in full mul-
tiples of certain fundamental sizes (e.g., the file system block
size in GPFS or the file stripe size in Lustre). For example,
write accesses that are of insufficient size or alignment may
incur costly performance penalties due to read-modify-write
operations. Other benefits derived from the client reduc-
tion aspect of an I/O forwarding layer include important
optimizations in file locking and other file system resources
that scale with the number of clients. The I/O forwarding
layer is also a convenient place to implement file caching or
prefetching.

Without an I/O forwarding layer, data in a large machine
may proceed from compute node memory to I/O storage
node memory as depicted in Figure 3. The Figure demon-
strates two separate data paths: (a) on the left, the data



from 12 clients proceed to the lower level file system as 12
separate accesses; (b) on the right, a collective I/O intro-
duced at the I/O middle-ware layer performs a 4-to-1 aggre-
gation and the lower level file system receives only 3 separate
accesses. This type of optimization, which is available in the
MPI-IO interface, can provide substantial benefit. However,
incorporating aggregation in the I/O middleware depends on
collective operations for best results, potentially requiring a
reorganization of the I/O related portions of the applica-
tion. This may not always be possible in situations where
performance analysis and debugging tools are involved.

The inclusion of an I/O forwarding layer provides a helpful
coalescing capability, as depicted in Figure 4. The I/O for-
warding layer is able to perform aggregation and coalescing
optimizations without any modifications inside the applica-
tion. In the event that the application is already written
with MPI-IO collective operations, no performance penalty
is incurred. While MPI-10 is able to coalesce data accesses
if collective calls are used, it does not have the ability to
coalesce or aggregate metadata accesses, which is critical at
extreme scale.

With the extra IOFSL layer, additional file system capa-
bilities can be added that provide modified I/O semantics
better suited for HPC. We will present one such capability,
the atomic append, below.

3.2 IOFSL Clients and Servers

IOFSL consists of two primary components: an I/0O forward-
ing client and an I/O forwarding server. These components
and their interactions are illustrated in Fig. 5.

The IOFSL client integrates with the application I/O stack
and is responsible for initiating I/O requests with the IOFSL
server. There are several ways in which an application can
invoke the IOFSL client. IOFSL provides an implementa-
tion of the stateless ZOIDFS API that applications can use
to directly communicate with IOFSL servers. The ZOIDFS
API provides many useful features for HPC applications, in-
cluding portable file handles and list I/O operations. For
applications that would like to use a traditional file I/O
API, there are several tools that integrate the IOFSL client
and translate I/O requests into IOFSL compatible I/O re-
quests. For applications that use MPI-10, a ZOIDFS driver
for ROMIO is available. Applications using the POSIX file
1/O API can use a FUSE client or a sysio [1] client. The
ROMIO, FUSE, and sysio clients for IOFSL require no mod-
ifications of existing POSIX I/O or MPI-IO calls within ap-
plications.
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Figure 3: A typical I/O stack relies on collective I/O
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Figure 4: Aggregation provided by an I/O Forward-
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Figure 5: IOFSL Software Architecture

The role of the IOFSL server is to delegate I/O requests. In-
ternally, the IOFSL server implements many optimizations
to achieve scalable and efficient file I/O from many con-
current IOFSL clients. IOFSL implements an event-driven
architecture that is built on top of asynchronous network,
file, and computation resources. All client operations are
translated into state machines that use these resources to
execute application I/O operations.

TIOFSL provides several drivers for interaction with common
HPC file systems, for example to POSIX-based file systems
using a native driver or a sysio-based driver, to PVFS2 file
systems through a PVFS2 native driver, and to GridFTP
servers [9]. When possible, these file system drivers take ad-
vantage of tunable parameters provided by the file systems,
such as ioctls for tuning specific file or file system config-
urations. The IOFSL server is configured at initialization
through a text-based configuration file which provides the
server with information about the runtime environment and
the IOFSL capabilities to enable.



For communication between the clients and servers, IOFSL
uses the Buffered Message Interface (BMI) library [6]. BMI
is a portable communication layer that was originally used
within the PVFS2 file systems. It provides asynchronous
and list I/O interfaces for network data transfers. Inter-
nally, BMI supports many common HPC networks using
their native APIs. To date, BMI supports native access
to the Portals networks used on the Cray XT platforms,
the IBM Blue Gene/P tree network using ZOID, Myrinet
Express (MX), InfiniBand, and TCP/IP. These network-
specific drivers allow IOFSL to take advantage of the asyn-
chronous, low-latency, and high-throughput characteristics
of common HPC networks through an abstract and portable
interface.

A recent addition to IOFSL provides Remote Procedure Call
(RPC) capabilities for IOFSL clients and servers. This capa-
bility allows servers to register additional operations and for
clients to invoke these operations. Furthermore, this RPC
layer provides a mechanism for inter-server communication.
It is possible for servers to issue RPC requests to remote
servers so that they can work together in a coordinated way
or share data. The RPC layer can function over a loopback
device for local communication (intra-server) or over BMI
for distributed communication (inter-server).

3.3 IOFSL Scalable Logging Tools

To enable uncoordinated, scalable support for log-structured
access patterns, we implemented two optimizations within
IOFSL. First, we provided a server-managed, non-blocking
1/0 capability. Second, we implemented an atomic file ap-
pend capability.

Atomic append allows multiple clients to share the same
output file without any client-side coordination. This file
append capability is a distributed and atomic I/O opera-
tion; clients can append data to a file that is simultaneously
being written to by other I/O forwarding servers. IOFSL
clients do not require prior knowledge of the end-of-file and
are required only to deliver the data to be written into the
file to the server. The server returns the file offset at which
the data was written to the the client. While this capability
is similar to MPI shared file pointers and the O_APPEND
mode provided by the POSIX I/O API, the novelty of our
approach is that it is implemented in our portable I/O for-
warding layer and is limited by file systems that do not pro-
vide adequate support for this mode. For example, support
for O_APPEND is not provided by all file systems, such as
NFS. Since this capability is implemented within IOFSL, it
can be used on any system where IOFSL can run, regardless
of the underlying file system, operating system, or network
constraints of that system.

The IOFSL non-blocking I/O capability provides asynchro-
nous file I/O enhancements to the IOFSL server and client.
This capability transforms blocking IOFSL I/O operations
into non-blocking I/O operations while requiring minimal
changes to the application and no changes to the ZOIDFS
API. When using this capability, a IOFSL server will com-
plete an I/O operation for a client after the server has re-
ceived all necessary data from the client. This behavior al-
lows the IOFSL server to transparently manage asynchronous
1/0 operations initiated by clients. While recent work has

addressed the use of asynchronous I/O at the I/O forward-
ing layer [30], our work focuses on providing a portable,
asynchronous I/0O capability in HPC environments.

The IOFSL atomic append and non-blocking I/O capabil-
ity can be used simultaneously by multiple processes within
a parallel application and for any ZOIDFS write operation
within a specific process. This effectively allows applications
to stream data to the IOFSL servers and allow the IOFSL
servers to manage data storage within a file. Sufficient in-
formation is returned from each of these capabilities so that
users can construct an index of their data accesses within
the file and determine the state of non-blocking operations
after they were submitted to the IOFSL server.

To support both of these new IOFSL features, we added
hooks into the IOFSL server and client to change the IOFSL
server data path when either of these features are initiated
by a user. These hooks allow the IOFSL server to function
normally (bypassing these optimizations) unless the user of
the IOFSL client indicates that an optimization should be
enabled. To enable these features, the user of the IOFSL
client adds hints to the IOFSL I/O request that describe
the optimization. Hints are a generic mechanism that allows
clients and servers to pass additional information or con-
text about a ZOIDF'S operation. The hints are also used to
transport results from the IOFSL server back to the IOFSL
client. This allows the server to pass to the client additional
information about the operation or the enabled optimization
that is not easily represented in the existing ZOIDFS API.
For example, the hint passed back from the server during an
atomic append operation contains the file offset where the
IOFSL server stored the block of data.

Upon receiving a ZOIDFS request with an enabled atomic
append or non-blocking I/O optimization, the IOFSL server
alters the I/O requests’ data path. Normally, the server re-
ceives an IOFSL write request from the client, allocates the
necessary network buffers to receive the data from the client,
issues the file system I/O operation, and then returns the
result of this operation to the IOFSL client. Upon receipt of
a non-blocking I/O request, the server will transfer the re-
quest’s file data to a dedicated memory pool and complete
the client request. Internally, the IOFSL server manages
this memory pool and continues to process pending write
requests stored in the pool. If there is no memory available
in this pool, the server will overide the users non-blocing
I/0O request and fallback to the normal blocking I/O mode.
The non-blocking I/O capability provides a server-side com-
pletion mechanism for IOFSL clients. No request tracking,
testing, or waiting is necessary on the client side with this
optimization, however, it requires the use of the ZOIDFS
commit operation to flush any pending non-blocking 1/0
requests before the application or IOFSL server terminates.
The commit operation will indicate if there were any failures
for the non-blocking I/O operations.

For atomic append operations, the IOFSL server will de-
termine the end of the file and reserve space for a pending
I/0 request at the end of the file. IOFSL tracks the end of
the file in a hash table that is globally accessible between
all the servers. Information stored in this table is keyed
on the file path and IOFSL file handle. To prevent a sin-



gle source of failure and potential bottlenecks, the keys are
hashed and the values for each key are distributed among all
active servers. Access to this table is both distributed and
atomic. The servers execute RPC requests between each
other to access this table (if the information is not locally
available) and update the atomic offset value for a file. Ad-
ditionally, the server can manage this table in a stand-alone
mode. In this mode, the RPC mechanism is bypassed and
the server responds only to local access requests to the hash
table. This mode is useful for situations where the RPC cost
is prohibitive to good file I/O performance or for situations
where globally accessible information is not necessary.
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There are two possible I/O patterns using the atomic ap-
pend capability. The first pattern aggregates and appends
1/0 operations to a file shared by all clients interacting with
a single IOFSL server. This mode allows reductions in the
number of files to be on the order of the number of ac-
tive IOFSL servers. This I/O pattern is depicted in Figure
7. The second 1/O pattern using the atomic append mode
is to perform a distributed, atomic append I/O operation
to a single file shared by all processes and 1/O forwarding
servers. This pattern is depicted in Figure 6. This pattern

requires communication between the IOFSL servers to track
the end-of-file position for the shared file. It is also possi-
ble to build more complex I/O patterns from a combination
of these modes so that the file system can be best utilized.
For example, IOFSL servers could be separated into groups
and each group performs a distributed atomic append oper-
ation to a unique file shared only within the group of IOFSL
servers.

Since both of these features are implemented within IOFSL
and do not rely on specific file system or operating system
features, the optimizations are portable to any system that
can run IOFSL. To date, we have evaluated these features
on Linux clusters and Cray XT systems.

3.4 Integrating IOFSL with OTF

To integrate the I/O Forwarding and Scalability Layer into
the VampirTrace stack, we decided to choose the OTF layer
as a single integration point. Since all I/O happens in this
layer, this permits a portable solution that is also usable
for other applications based on OTF. We chose to use the
ZOIDFS APIs directly instead of transparently intercepting
the existing POSIX I/O calls, because OTF’s file manage-
ment was altered.

The main goal of the modification was write to n OTF event
streams (originating from n processes/threads of the target
application) to m shared files, where m < n, instead of
n private files. Either, m coordinated IOFSL servers write
to a single file or each server uses a separate file to save
coordination costs, see also Figures 6 and 7.

To accomplish this, all ZOIDFS write operations use the
novel atomic-append feature of IOFSL. This allows arbitrary
subsets of event trace streams to share the same file without
any coordination on the OTF side. IOFSL ensures that
blocks from the same source stay in their original order, but
makes no guarantees with respect to global ordering; this
enables additional optimizations.

The coordination of blocks and their positions in the shared
file is done by OTF. Every OTF stream collects the file
positions of its blocks individually in memory. As a final
new step, all OTF streams write a list of file position for the
own blocks together with the shared file ID and their stream
ID. This is sufficient to extract all blocks from this stream in
original order later during reading®. This mapping is stored
in a single shared index file, which is also written via IOFSL
for convenience.

The traditional OTF write scheme uses synchronous I/0O
calls in order to guarantee that all actual I/O activities hap-
pen during the buffer flush phases which is explicitly marked
in the trace itself. IOFSL provides an easy option to use non-
blocking I/0 instead. Thus the I/O calls return much faster
but the actual offloading of trace data may happen after the
buffer flush phase. In cases where 1/O perturbations from
non-blocking I/O can not be tolerated, this feature should
be avoided. For example, if the target application’s I/O is
the subject of the analysis or if the machine’s I/O network
is not separate from the communication network, the non-

*Reading can be done via IOFSL or traditional POSIX 1/0O.



blocking I/O capability may not be appropriate and it’s im-
pact on tracing results should be analyzed. Otherwise, the
non-blocking should be enabled. Enabling or disabling this
feature is controlled via an environment variable.

4. DEMONSTRATION AND DISCUSSION

JaguarPF [5] is a 2.3 Petaflop Cray XT5 Supercomputer de-
ployed at the Leadership Computing Facility (LCF) at Oak
Ridge National Laboratory (ORNL). It consists of 18688
nodes, each node with 2 processor sockets, each socket hex-
core. Meeting the I/O needs of JaguarPF is a Lustre-based
center-wide file system named Spider is deployed [29]. Spider
is designed to provide over 240 GB/s of aggregate through-
put and over 10 petabytes of formatted capacity spread over

three separate file systems. The storage devices are hosted
by 192 Cray service I/O (SIO) nodes.
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Figure 8: Deployment of application processes and
IOFSL servers on JaguarPF

User level access to the I/O nodes or Lustre router nodes,
which would be optimal locations for running IOFSL servers,
is not possible on JaguarPF due to local policies. There-
fore, we allocate additional compute nodes with each appli-
cation launch, spawn IOFSL servers on these extra nodes,
and proxy all application I/O requests through these nodes.
Figure 8 illustrates this deployment strategy.

To achieve this setup, we provide additional functions for
the PBS job script that selects a set of nodes for hosting
the IOFSL servers and determines the network address of
these nodes. In the background, the script then launches one
IOFSL server per node (a 1:12 processor core ratio on the
12-core Jaguar XT5 nodes) using the Cray aprun applica-
tion launcher command. Once all IOFSL servers are active,
a directory of the servers is passed to the application. The
OTF layer then parses the directory and determines which
IOFSL each OTF-enabled process will utilize. The appli-
cation issues I/O requests through the IOFSL client using
either the BMI TCP/IP or Portals drivers.

To utilize tracing at a large scale we instrumented the Petas-
cale application S3D with VampirTrace. S3D is a parallel

direct numerical simulation code developed at Sandia Na-
tional Laboratories [7]. We utilized a problem set that scales
to the full Jaguar system. In its leadership role as a Petas-
cale code, S3D is well understood and has been previously
analyzed with TAU and Vampir on lower scales [16].

Prior to our successful demonstration, the largest scale trace
for VampirTrace was approximately 30,000 processes using
POSIX I/0O. In practice, this level of parallelism is already
difficult due to substantial overhead during file generation.
We use a S3D run with 8640 processes to compare the im-
pact of regular tracing I/O with our forwarding solution. In
our demonstration we utilize the full stack that is involved
in trace generation: application (S3D), VampirTrace, OTF,
IOFSL, the BMI Portals driver for network transfers, and
Lustre as a target filesystem.
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3 50s
Process 0 H H H
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Figure 9: Vampir process timeline for S3D with 8640
processes: (top) POSIX I/O (bottom) IOFSL

Figure 9 shows the effect of using our I/O forwarding solu-
tion to manage the trace I/O during the application execu-
tion (the horizontal time axes are aligned). In the displayed
trace timelines, yellow areas show the interruption of the ap-
plication during a synchronous buffer flush in VampirTrace.
The first buffer flush involves the creation of all output files
and therefore takes a much longer time to complete than
the following ones. Our forwarding solution is able to sig-
nificantly reduce the impact of the file creation during the
first flush, reducing the impact on the application execution
and the overall runtime.

The POSIX version cannot be scaled much further because
of the previously mentioned I/O constraints. The IOFSL
version has been successfully scaled up to 200,448 cores run-
ning S3D using a set of 672 I/O forwarding nodes. In mul-
tiple experiments traces up to 2.4 TiB have been generated.
In a setup with a single buffer flush at the application end, it
took 178 seconds to generate the trace data files with a total
volume of 415 GiB. Besides the actual I/O, this measure-
ment also includes the time for creating the target files, es-
tablishing connections to the forwarding servers, event data
compression, VampirTrace shutdown and MPI finalize, but
not the execution of the VampirTrace post-processing tools.

Validation of the trace files generated using IOFSL was per-
formed with the use of the post-mortem analysis tool Vam-
pir. Vampir is able to read valid trace files and display
detailed graphics of measured events versus a timeline and
various other displays.



Our success in scaling the trace generation revealed new bot-
tlenecks in post-processing. Work is ongoing to improve
the ability of the post-mortem (post-processing) tools to
deal with this new era of multi-terabyte trace files (par-
ticularly at scales above 86,400). Furthermore, we have
noticed new “non I/O” perturbation of the target program
while it is analyzed at scale. One possible cause are inserted
MPI_Allreduce calls, that are used by VampirTrace for syn-
chronizing the buffer thresholds. Also the visualization for
analysis becomes more challenging at the large scales—the
ratio between available pixels and displayed processes in-
creases even further. New ways to highlight performance
anomalies are required to support the user at those scales.
All of this is subject of ongoing research; our solution lays
a foundation for a comprehensive analysis at full scale by
providing a feasible way to persist event data collected from
an instrumented application.

Note to SC’11 Reviewers from Paper Authors:

Additional scaling results showing wallclock
runtimes for S3D in three modes will be
incorporated into the final paper:

(a) without tracing up to full machine,
(b) with tracing through POSIX I/O up to the scales that work,
(¢) with tracing through IOFSL I/O up to full machine.

If the reviewers feel shepherding the paper after the inclusion of
the additional data is helpful, we would welcome that.

5. RELATED WORK

The POSIX I/O standard was designed before the advent of
wide-scale parallelism. As such, it suffers from many funda-
mental characteristics which preclude it from scenarios such
as multiple writers updating the same file—a common need
for parallel I/O oriented activity [14].

Important new I/O research efforts with standards-oriented
activities have recognized this fact and are actively work-
ing on APIs appropriate for extreme scale parallelism [14,
28]. Ome such API is pNFS [13], an extension to NFSv4
designed to overcome NF'S scalability and performance bar-
riers. Like IOFSL, it is based on a stateless protocol. It does
not provide the “n-to-m” client to forwarding-server architec-
ture fundamental to our design, however, and is unable to
coalesce independent accesses to improve performance. We
plan to incorporate a direct connection from IOFSL to pNFS
as an alternative lower layer for platforms using it.

MPI-10 [21] provides a more advanced I/O abstraction than
POSIX, including collective operations and file views, which

enable coordinated and concurrent access without locking [8].

It does not directly provide an “n-to-m” mapping from clients
to output files. OTF’s management of mixed blocks in

shared files would be difficult to implement on top of MPI-
10, because most implementations (including the popular
ROMIO implementation), do not return accurate current
file sizes unless a synchronizing collective is used.

The I/O Delegate Cache System (IODC) [25] is a caching
mechanism for MPI-IO which resolves cache coherence is-
sues and hence alleviates the lock contention of I/O servers.
IOFSL offers similar capabilities, but it sits below MPI-IO
in the I/O software stack, providing a dedicated abstract
device driver enabling unmodified applications to take full
advantage of its optimizations.

The I/O forwarding concept was introduced with the San-
dia Cplant project [27], which used a forwarding framework
based on an extended NF'S protocol. IOFSL extends the tar-
get environment imagined by Cplant to much larger scales
and higher performance through a more sophisticated pro-
tocol permitting additional optimizations.

Functionally, our work is most closely related to current pro-
prietary approaches for I/O forwarding available from IBM
and Cray. IBM’s Control and I/O Daemon (ciod) is the
Blue Gene I/O-forwarding infrastructure [31]. Each process
in the compute node partition forwards I/O requests to the
ciod daemon running on an I/O node. The requests are
handled by I/O proxy processes. Cray XT’s Data Virtual-
ization Service (DVS) is a distributed network service that
provides transparent access to file systems on the service
I/O (SIO) nodes from the compute nodes [10]. In contrast
to ciod and DVS, IOFSL is a portable, open source 1/O for-
warding stack. In addition, IOFSL realizes its performance
through its aggregation and coordination protocol and also
incorporates optional data compression.

Decoupled and Asynchronous Remote Transfers (DART) [11]
and DataStager [2] achieve high-performance transfers on

Cray XT5 using dedicated data staging nodes. Unlike IOFSL,
which is transparent to the applications that use POSIX and

MPI-IO interfaces, DART requires applications to use a cus-

tom API. With this, however, DART provides the building

blocks for higher-level data services such as filtering.

Similarly, Adaptable I/O System (ADIOS) [20] provides ap-
plication-specific performance improvements through pre-
fetch and write-behind strategies based on application-spe-
cific configuration files read at startup; this information also
helps ADIOS to minimize the memory footprint during the
course of the application run. It provides a high-level I/O
API that can be used in place of data formatting libraries
like HDF5 and netCDF to provide much more aggressive
write-behind and log-like reordering of data location within
a data file. This technique requires application modification.
In contrast, IOFSL requires no knowledge of the application
behavior in advance and it is situated at a lower level in the
I/0O software stack.

The SION library [12] intercepts POSIX I/0, not unlike
IOFSL, to emulate a large number of logical independent
files (e.g., one per rank/process/thread) and map them to
a lesser number of physical files (from the file system per-
spective). It requires no server processes but causes un-
foreseeable synchronization to the parallel execution, which



would be critical for VampirTrace. Furthermore, it always
requires modification of the application source code and de-
pends upon MPI for internal coordination, which is infeasi-
ble for monitoring non-MPI parallel applications.

PLFS [4] is a file system translation layer developed for HPC
environments to alleviate scaling problems associated with
large numbers of clients writing to a single file. Like our
solution, they interpose middleware between the client ap-
plication and the underlying file system through the use of
FUSE. Their solution, which is aimed at checkpointing and
similar activities for architectures like LANL’s Roadrunner
(3060 nodes), transparently creates a container structure
consisting of subdirectories for each writer as well as index
information and other metadata for each corresponding data
file. As our solution is focused on supporting hundreds of
thousands of clients or more, we have chosen to aggregate
I/O operations in the middleware thus resulting in fewer
metadata operations in the underlying parallel file system.

IOFSL work extends our earlier ZOID efforts [15]. ZOID is
a Blue Gene-specific function call forwarding infrastructure
that is part of the ZeptoOS project; our I/O forwarding
protocol was first prototyped there. IOFSL is a mature,
portable implementation that integrates with common HPC
file systems and also works on the Cray XT series and Linux
clusters.

6. CONCLUSIONS AND FUTURE WORK

This paper described a new 1/O forwarding layer designed to
provide advanced 1/O request aggregation and reorganiza-
tion. Our scheme is designed to impose minimal restrictions
on the target platform while achieving the fullest benefit of
data aggregation and reorganization. We have demonstrated
that our I/O solution enables software tracing on full-scale
leadership class systems (200,448 cores). A comprehensive
trace-based analysis is now feasible for pattern recognition,
post-processing and visualization systems.

We attribute our improved scalability of bandwidth and
metadata operations to our novel design. Our scheme uti-
lizes I/O forwarding for data as well as metadata aggrega-
tion. We incorporated further optimizations specific to scal-
able logging tools, including a specialized atomic append,
event compression at selectable transfer sizes (e.g., Lustre
stripe width), and various tuning parameters including non-
blocking I/O strategies.

While these results meet our immediate needs and objec-
tives, this effort has led us to consider still further related
lines of inquiry. We would like to pursue more advanced ag-
gregate memory footprint optimizations to yield more avail-
able memory to user applications. While we have addressed
the data collection challenges in this paper and presented
a solution to this problem, we do not address how to ef-
fectively visualize trace data for applications running at ex-
treme scales. This information visualization challenge must
be addressed as our work progresses. We plan to couple the
data collection tools and techniques presented in this pa-
per with recent MPI and I/O visualization tools that focus
on extreme scale HPC event and trace data collections [23,
22]. Furthermore, we plan to optimize the ratio of IOFSL
servers to clients and to provide a more convenient auto-

matic deployment of IOFSL server processes. Finally, we
have plans to pursue data collection for multiple leadership
class machines.
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