Noname manuscript No.
(will be inserted by the editor)

Mapping Communication Layouts to Network Hardware
Characteristics on Massive-Scale Blue Gene Systems

Pavan Balaji' - Rinku Gupta' - Abhinav Vishnu? . Pete Beckman®

Abstract For parallel applications running on high-end computing
systems, which processes of an application get launched on which pro-
cessing cores is typically determined at application launch time with-
out any information about the application characteristics. As high-
end computing systems continue to grow in scale, however, this ap-
proach is becoming increasingly infeasible for achieving the best per-
formance. For example, for systems such as IBM Blue Gene and Cray
XT that rely on flat 3D torus networks, process communication often
involves network sharing, even for highly scalable applications. This
causes the overall application performance to depend heavily on how
processes are mapped on the network. In this paper, we first analyze
the impact of different process mappings on application performance
on a massive Blue Gene/P system. Then, we match this analysis with
application communication patterns that we allow applications to de-
scribe prior to being launched. The underlying process management
system can use this combined information in conjunction with the
hardware characteristics of the system to determine the best mapping
for the application. Our experiments study the performance of different
communication patterns, including 2D and 3D nearest-neighbor com-
munication and structured Cartesian grid communication. Our stud-
ies, that scale up to 131,072 cores of the largest BG/P system in the
United States (using 80% of the total system size), demonstrate that
different process mappings can show significant difference in overall
performance, especially on scale. For example, we show that this dif-
ference can be as much as 30% for P3DFFT and up to twofold for
HALO. Through our proposed model, however, such differences in
performance can be avoided so that the best possible performance is
always achieved.

1 Introduction

The massive-scale systems being deployed throughout the
world will utilize a large amount of shared hardware in-
cluding shared caches, memory, and network infrastructure.
For example, systems such as the IBM Blue Gene (BG) [1]

This work was supported in part by the National Science Foundation
Grant #0702182 and by Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357.

'Mathematics and Computer Science Division, Argonne
National Laboratory

E-mail: {balaji, rgupta} @mcs.anl.gov

’High Performance Computing Group, Pacific Northwest
National Laboratory E-mail: abhinav.vishnu@pnl.gov
3Argonne Leadership Computing Facility, Argonne Na-
tional Laboratory E-mail: beckman@mcs.anl.gov

and Cray XT [2] have started utilizing flat 3D torus net-
works where each node connects directly to its six neigh-
bors. Therefore, unless each node communicates with only
its physically nearest neighbors, it will be forced to share
network links with other communication. Unless the physi-
cal placement of application processes matches the commu-
nication characteristics of the application, such sharing can
result in significant communication contention and perfor-
mance loss.

Communication libraries such as the Message Passing
Interface (MPI) optimize application communication and
process mapping at runtime using virtual topology function-
ality (such as Cartesian topologies or graph topologies). The
idea of such functionality is that the application can specify
the layout of the data it wants to process, and the runtime
system can reorder process ranks while matching the data
layout to the network hardware topology. A number of ap-
plications do not take full advantage of such functionality,
however, mainly because it is not descriptive enough. That
is, it does not allow the application to specify its exact com-
munication pattern within the data layout.

For example, computational kernels such as partial dif-
ferential equation solvers [3], molecular dynamics simula-
tions [4], climate/ocean-modeling systems [5], and ray-tracing
applications with domain-based parallelism [6] all use Carte-
sian grids of different dimensions and structure (2D, 3D, un-
structured). Depending on the application and what it is try-
ing to solve, however, the communication pattern might be
completely different. For instance, partial differential equa-
tion solvers and climate/ocean-modeling systems perform
nearest-neighbor communication along the edges or diago-
nals or both. Fast Fourier transforms (FFTs), on the other
hand, communicate with all processes in each dimension.
Ray-tracing applications with domain-based parallelism com-
municate with processes along their diagonals. With the cur-
rent model of communication libraries, the application can
specify that it want its processes to be laid out as a 2D or 3D

Cartesian grid, but it cannot specify that it will communicate
with its neighbors along the edges, or neighbors along the
diagonals, or all processes in its row/column, or any other
communication pattern.

Thus, in practice, many applications try to manually
map processes to the network topology. While this is a rea-
sonable approach for small to medium scale topologies, it
is not a feasible solution for massive-scale systems with
hundreds of thousands of processors. The important aspect
is that application developers know their applications com-
munication pattern while the application is being launched.
But, there currently exists no good way to provide this in-
formation to the process management system in order to
optimize the process layout while taking network hardware
characteristics into account.

In previous work [7, 8], we noticed the variance of com-
munication performance with process mapping, and we stud-
ied the network congestion characteristics of flat torus net-
works that cause this behavior. In this paper, we extend that
research by first performing a detailed analysis of the map-
ping of logical process layouts on the physical network topol-
ogy. Then, we take advantage of this analysis to allow the
application to describe its communication pattern, estimate
the expected network contention through a simple first-order
approximation model, and use this estimate to identify the
right mapping to use. Moreover, we study the performance
benefits such a model would provide, using evaluations with
various micro-benchmarks and real application kernels in-
cluding P3DFFT [9] and the HALO ocean-modeling ker-
nel [10]. Our experiments, which scale up to 131,072 cores
of the largest BG/P system in the United States (using 80%
of the total system size), demonstrate that different process
mappings can show significant difference in overall perfor-
mance, especially on large-scale systems. For example, we
show that this difference can be as much as 30% for P3DFFT
and up to twofold for HALO. Through our proposed model,
however, such differences in performance can be avoided,
so that the best possible performance is always achieved.

2 Complexity in Process Mapping

In this section, we describe the complexity of process map-
ping on large-scale systems. Specifically, in Section 2.1, we
describe the application viewpoint of application processes
and their logical layout. In Section 2.2, we tie such logical
mapping to the physical system topology for 3D torus-based
systems.

2.1 Application Logical Process Layout

Most communication libraries, including MPI, do not ex-
pose the physical layout of the underlying system to the
application in order to improve portability across different
systems. Thus, applications form logical topologies of the

processes available to match the problem they are trying
to solve (often depending on the data layout correspond-
ing to the application science). For example, if we consider
ocean/climate modeling and other computational fluid dy-
namics applications, the data representation is often a 2D
plane, 3D volume, or even a multidimensional unstructured
grid [11]. Thus, these applications form logical grids of the
available processes, with each process having a part of the
overall data. The computation on the local data, however,
depends on the partially evaluated results from neighboring
processes on the logical process grid formed by the applica-
tion.

In other computational kernels such as FFTs [12,9], the
interaction is based on the Cartesian dimension. Processes
are divided into a logical multidimensional grid (e.g., 2D
grid). Each process initially has data corresponding to one
dimension of the data grid. Once all processes are done
computing their parts, the entire data grid is transposed, re-
sulting in each process locally getting a different dimension
of the data grid. Thus, a process interacts only with other
processes in each dimension it is a part of. For example, in
a 2D grid, each process interacts only with v/ N processes
in each of the two dimensions.

Similarly, in ray-tracing applications with domain-based
parallelism [6], while working on one particular ray, each
process interacts only with other processes that share data
corresponding to that ray. This is several times a diagonal
group of processes in a 2D logical grid.

The common aspect in these and many other applica-
tions is that all of them rely on a logical layout of the pro-
cesses without any information about the physical place-
ment or mapping of the actual processes.

2.2 Process Mapping for BG/P

Optimal mapping of logical communication patterns onto
the actual physical topology of the system is an intricate
task. As the complexity of the communication patterns and
system topology increases, this task becomes even more
challenging. This section describes the mapping complex-
ity for applications with different logical process layouts
while being mapped onto a 3D physical system grid. The
complexity is similar for other layouts such as Cartesian
dimension-based communication and diagonal communica-
tion patterns, but these are not discussed here.
One-dimensional communication is one of the simpler
patterns among nearest-neighbor communication patterns—
every process communicates with its two logically neigh-
boring processes. Consider mapping such an application hav-
ing 512 processes onto 512 nodes connected in a 8 x 8 X
8 3D physical grid topology. Such a grid will have 8 nodes
along each of the X, Y, and Z axes. The process manage-
ment framework on BG/P allows application processes to
be mapped onto the system in different ways, as represented

> >

(b) c
Fig. 1 2D Mapping for Nearest-Neighbor Communication: (a) Logical Mapping, (b) XYZ Physical Megpging, (c) YXZ Physical Mapping

by the mapping string; for example, with an XYZ mapping,
processes are mapped to nodes along X-axis first, followed
by Y-axis and Z-axis respectively. Thus, for a 1D logical
nearest-neighbor communication, most of the application
processes will get mapped next to each other in a sequen-
tial order.

Two-dimensional and three-dimensional communication
patterns are more challenging to map optimally. Every pro-
cess communicates with up to 8 (in 2D mapping) and 26
(in 3D mapping) logically neighboring processes.' Figure 1
illustrates such process mapping for 2D nearest-neighbor
communication, while Figure 2 shows 3D mapping. Fig-
ure 2(a) shows a portion of the 3D logical grid as viewed
by the application. Figures 2(b) and 2(c) show the process
mapping of this logical grid on to a 8 x 16 x 8 physical grid
with XYZ and XZY mappings, respectively. As can be seen
from these figures, communicating groups of processes can
get dispersed throughout the physical network, resulting in
increased communication overlap between process groups
and performance degradation. More important, the disper-
sal of processes depends heavily on the process mapping
(e.g., an XYZ mapping in these figures shows a different,
and slightly smaller, dispersal as compared with the YXZ
mapping), which causes different mappings to have differ-
ent performance characteristics.

Based on these observations, from the system perspec-
tive we can conclude that the physical layout of the appli-
cation processes (and thus the communication overhead) is
highly dependent on the mapping type and the dimensions
of the physical grid/torus.

While in theory any mapping of processes to cores is
possible, different systems have different restrictions on what
mappings they allow. For example, the IBM Blue Gene/P

system allows different combinations of process mappings
along the X, Y, Z dimensions of the 3D torus. We note
that for simplicity of description we have discussed process
mappings only along the X, Y, Z dimensions of the 3D torus.
However, BG/P systems consist of four cores per compute
node, which can be considered to be a fourth dimension rep-
resented as “T.” Thus, an application can be mapped by us-
ing various mappings such as TXYZ, XYZT, and TYXZ.?
Other mappings that do not form a symmetric ordering of
ranks in one of these orders are not supported. Thus, the
“best performance” we can achieve is artificially restricted
by this requirement.

Table 1 Argonne BG/P System Torus Dimensions

Nodes Dimensions
512 8x8x8
1024 8x8x 16
2048 8x8x32
4096 8x16x32
8192 8x32x32

16384 16x32%x32

32768 32x32x%x32

Further complicating this issue, applications on the BG/P
system run on a subset of nodes defined by a “partition.”
Two different partitions can have the same number of cores
while having completely different dimension sizes. For ex-
ample, partitions of both 8 x16x32 and 16x16x 16 dimen-
sions can be used for a 4,096-process job. The dimensions of
different partition sizes of the torus on the BG/P system can
be configured by the system administrator and would de-
termine how much network sharing, and consequently con-
tention, each mapping would cause for any given partition

! Some applications treat diagonally intersecting processes as
neighbors as well (star stencils), while some applications treat only
processes intersecting along the edges as neighbors (box stencils).

2 TXYZ indicates that Message Passing Interface processes are or-
dered with priority given first to cores of a node, followed by nodes on
the X-axis, Y-axis, and Z-axis, respectively.

(b)
Fig. 2 3D Mapping: (a) Logical Mapping, (b) XYZ Physical Mapping, (c) XZY Physical Mapping

shape. Table 1 shows the dimensions of the torus for varying
system sizes for the Argonne BG/P system.

3 Communication Contention Model

In this section, we describe our methodology for analyzing
different communication patterns of applications and map-
ping them optimally.

The basic idea of our approach is to (1) understand the
communication pattern of the application by allowing the
application to describe it, (2) understand the physical plat-
form network topology and the routing algorithm behavior
on the platform, and (3) map these two categories of infor-
mation to calculate the network contention for the given ap-
plication pattern on the available network. The contention
analysis model, as its output, predicts an optimal mapping
that would give the best performance for a given applica-
tion on a given platform. We have chosen the IBM BG/P
system as an example platform for this paper. This informa-
tion, consisting of application pattern and its optimal map-
ping, can then be integrated in the IBM BG/P job launching
system. Applications can then specify their application pat-
tern during job submission time, and the optimal mapping
can be automatically and transparently picked up by the run-
time system while launching the application.

Our current analysis is specific to symmetric communi-
cation patterns where all processes are involved in similar
communication. Instances of such symmetric communica-
tion include 1D, 2D, and 3D nearest-neighbor communica-
tion patterns, which we analyze in this section.

3.1 Routing on Blue Gene/P

Our contention analysis model relies on the routing algo-
rithm used by BG/P. Specifically, for small messages, BG/P
uses a static routing algorithm in a dimension-wise order

(©)

(e.g., first along the X-axis, then the Y-axis, and finally the
Z-axis). For large messages, BG/P uses a destination-based
adaptive routing algorithm. To avoid livelocks, however, it
always picks one of the minimum distance routes. In other
words, at each hop, the adaptive routing algorithm considers
only the outgoing links that reduce the hop count to the des-
tination node. Among the outgoing links being considered,
it selects the one with the least amount of other ongoing
traffic.

As a first-order approximation, we assume that the data
packets in a large message are split equally on all possible
paths at each hop. This approximation allows us to estimate
the amount of data traffic on each hop caused by the com-
munication between any pair of processes.

We, currently, consider only symmetric communication
patterns in our research. We note that every partition on
the BG/P is fully symmetric and forms a torus on all di-
mensions. This symmetry allows us to model the contention
caused by a single process for its communication with all its
peers, and simply extend it to all the processes in the entire
system.

3.2 Example Contention Analysis

To analyze the optimal topology for a given physical parti-
tion layout and application, our model needs to understand
the contention that may arise because of shared network
links during the application communication. We explain the
logic used in our model through an example.

Consider a 128 x 128 2D process grid (16,384 cores).
On BG/P, this will require 4,096 quad-core nodes. The par-
tition dimensions for 4,096 nodes on the Argonne BG/P are
8 x 16 x 32 along the X-, Y-, and Z-axis, respectively.

Let us analyze the TXYZ mapping of processes, with
a row-major mapping of the 2D 128 x 128 processor log-
ical grid. Each row of 128 processors of the logical grid

will occupy the four rows of the X-axis (8 nodes; i.e., 32
cores lie along the X-axis). Now consider a node commu-
nicating with its eight nearest neighbors. Its neighbors on
either side of it, on the same row, will lie either on the same
physical node or on a neighboring node (since all cores of
a node are allocated before the next node), thereby incur-
ring minimal communication overhead (no link contention).
The three neighbors on the row above it will lie on nodes
on the same X-axis at a distance of four hops (since one
row of the 2D grid spans four rows of the physical torus)
from its node. Thus, each link along these four hops will be
used three times by this communicating center node. Each
of these links along the four hops will be used by other sets
of nearest-neighbor communicating nodes as well, in both
directions bringing its average contention count to 24.3

In a TZXY mapping, on the other hand, the Z-axis has
32 nodes (i.e., 128 processors along its axis). Thus, a single
row of the 2D grid can map along a single Z-axis plane. An-
alyzing this reveals that for every node, the neighbors above
or below a process are mapped to a single node, one hop
away. On average, the bidirectional contention count for ev-
ery link is 6. Similarly an XYZT mapping would have an av-
erage bidirectional contention count for every link of about
10.5. Thus, contention seen by the TZXY mapping is the
least, while that seen by TXYZ is the highest. This analysis
is substantiated by the results presented in Section 4. Note
that for completely symmetric communication patterns such
as nearest neighbor, it is sufficient to evaluate the contention
caused by one process.

We performed similar analyses for other communica-
tion patterns such as dimension-wise communication (used
by 3DFFT libraries) and diagonal communication (used by
ray-tracing applications). However, descriptions for those
have been omitted because of space restrictions.

Contention counts will vary with the type of mapping,
type of communication, partition size of the system, logical
grid size of the application and order (row major, column
major, etc.) in which logical grid rows are mapped onto the
partition cores. In the rest of the paper, because of lack of
space, we do not analyze contention count further. Rather,
we demonstrate the results obtained from our experiments
on the BG/P system.

4 Experiments and Analysis

In this section, we discuss the impact of various mappings
on different micro-benchmarks and applications. Our exper-
iments also demonstrate the performance achieved by the
model described in Section 3 (called ‘Contention Detection
Model’ and represented by “CDL” in the charts), which is
automatically and transparently picked by the runtime sys-
tem when launching the application.

3 “Contention count” can be considered to be an indication of how
many communication streams are going over a link at the same time.

4.1 Microbenchmark-Based Evaluation

We first evaluate 2D and 3D logical nearest-neighbor com-
munication. Both experiments use star stencils, so each pro-
cess has (3¢ — 1) neighbors, where d is the logical process
grid dimensionality.

2D Nearest-Neighbor Communication: In this experiment,
each process does point-to-point communication exchang-
ing some data with its logical neighbors. In real application
kernels, this data would typically correspond to the ghost
cells that form the bordering data points between the two
processes. Figure 3(a) shows the communication performance
for a system size of 16,384 processes, and Figure 3(b) shows
the same for a system size of 65,536 processes.

From the figure, we see that the difference in perfor-
mance between the various mappings increases with both
message size (as shown in each subfigure) and system size
(comparing the two subfigures). In fact, for a system size
of 65,536 cores and a message size of 1 MB, we notice al-
most a sevenfold difference in performance between the dif-
ferent mappings. This behavior is expected; as the message
size increases, each network link is used for longer periods
of time, increasing the possibility of congestion and perfor-
mance degradation. Similarly, as the system size increases,
the number of communication flows increases proportion-
ally with the number of pairs of processes available, that is,
O(N?), where N is the number of processes in the system.
But the number of network links increases only as O(N); this
situation leads to more congestion and performance degra-
dation. The results in Figure 3(a) also show that CDL model
can determine which layout has the least contention (in this
case TZXY) and automatically pick that for the user. These
results are similar to those reported in Section 3.
3D Nearest-Neighbor Communication: This experiment
is similar to the 2D nearest-neighbor experiment except that
processes are logically laid out in three dimensions. Thus,
each process has 26 logically nearest neighbors with which
it performs point-to-point communication. Because of space
restrictions, we simply point out, as can be seen in Fig-
ure 4(a) and Figure 4(b), that the overall trend is similar
to that of the 2D nearest-neighbor benchmark: (1) there is a
significant performance difference between different map-
pings, (2) the performance difference increases with mes-
sage size and system size, and (3) the CDL model allows
the system to automatically pick the best mapping. In fact,
for 65,536 processes and a message size of 1 MB, we notice
an order-of-magnitude difference in performance.

4.2 Evaluation of Application Kernels

Next, we use two application kernels, P3DFFT and Halo,
to analyze the impact of process mapping on overall perfor-
mance.

160,000 800,000
» 140,000 ——TXYZ - 16K Procs , 700,000 ——TXYZ - 64K Procs
B 120000 | TZXY - 16K Procs T 600000 | TZXY - 64K Procs
Q ! Q '
§ 100,000 TYZX - 16K Procs é 500,000 TYZX - 64K Procs
o - o -
£ 50000 =<=XYZT - 16K Procs 8 400,000 =<XYZT - 64K Procs
£ CDL - 16K Procs £ CDL - 64K Procs
£ 60,000 £ 300,000
g 40000 5 g 200,000
= 20,000 % = 100,000
0 —a—a—a—a—a— et -:)“' = 0 o i L e
TN T e e IR EXYEENFEELE TN TN IRRUEKY¥EIZIEEEE
Message Size Message Size
. . (a) (b)
Fig. 3 2D Communication Benchmark Performance: (a) 16K Cores, (b) 64K Cores
2,500,000 3,000,000
~-TXYZ - 16K Procs ~-TXYZ - 64K Procs
» 2,000,000 2,500,000
g %% -8-TZXY - 16K Procs 3 -8-TZXY - 64K Procs
S 1 c00000 TYZX - 16K Procs § 2,000,000 TYZX - 64K Procs
o 1,500 o)
g —=<XYZT - 16K Procs g 1,500,000 —=XYZT - 64K Procs
E 1,000,000 CDL - 16K Procs g CDL - 64K Procs
< £ 1.000,000
g 500000 2 500000
= =
0 PN amemtrere 0 -—a—s—s—s—s—s—s——a—a—a—a———-t—a——v
TNYe ey I RBYENESEEEEEES TNTCeSIRREEEYSEgEE S8
T -eoeq g T TN T ed8s T
Message Size Message Size
. o (a) (b)
Fig. 4 3D Communication Benchmark Performance: (a) 16K Cores, (b) 64K Cores
1,200 60
1000 —-TXYZ 50 ——TXYZ
, -&-TZXY -B-TZXY
S 00 TYzX B 40 TYZX
3 —=XYZT 3 —<XYZT
© 600 cDL @ 30 cDL
g 400 g 2 —
S = *
200 10
0 0
N X X X X X X X
= ~ N < © © N <
w — @ ©
Number of Processors Number of Processors
. (a) (b)
Fig. 5 (a) P3DFFT Performance: (a) 512 to 8K Cores, (b) Greater than 8K Cores
1.40 2.00
1.20 —-TXYZ 1.80 —-TXYZ
o 100 -=TZXY N 1.60 -=-TZXY
2 - TYZX g @ TYZX
S S 120
g 080 —<=XYZT 3 —=XYZT
» cDL » 1.00 cDL
£ 060 £
® 2 0.80
£ 040 £ 060
0.40
0.20 0.20
0.00 e—s—s—e—e—o—nnon-on- oo e 0.00 B—e—e—f—f— it st sy
N e RIREYYRESEIFELLE N e REREXYSEIFEELL
Message Size - Message Size -

a
Fig. 6 Halo Application on (a) 3512 Cores, (b) 128K Cores

(b)

0.014

0012 |=*TXYZ
-B-TZXY

8 0010
5 TYZX
§ 0.008 —==XYZT
£ 0008 CDL
g A '
e S~ e -

0.002

0.000
© «©
€83 & QT EETE

Number of Processors

16K
32K
64K
128K

Time in seconds

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
040 I
0.20

0.00
©w © o 3
- ® ©

——=TXYZ

-&-TZXY
TYZX

=<=XYZT
CDL

ry //";_{\\,3 PN

© N X X X X X X X
L < = N + © © N3
o -~ ™ ©

<«
N
-~ N

Number of Processors

128K

a b
Fig. 7 Halo Application Trends cgn)Varying System Size: (a) 8 KB Message Size, (b) | MB Message Si(ze)

P3DFFT Library: FFT [13] is an efficient algorithm to
compute the discrete Fourier transform (DFT) and its in-
verse. FFT, as applied to a three-dimensional volume of
space, is typically referred to as 3DFFT. The goal of 3DFFT
is essentially to perform 1D Fourier transform on each of the
three dimensions of the 3D data mesh. Most parallel 3DFFT
implementations rely on a sequential version of IDFFT (that
performs the transform on one dimension at a time) and then
transpose the data grid when needed. Multiple implementa-
tions of parallel 3D FFT are available today. P3DFFT [14,
15] is a popular implementation of 3DFFT used in vari-
ous application domains, including digital speech and signal
processing, solving partial differential equations, molecular
dynamics simulations, and Monte Carlo simulations.
Figure 5 shows the performance of P3DFFT with in-
creasing system size for different process mappings. For
viewability, we split the data into two graphs—Figure 5(a)
shows the performance for small system sizes (up to 8,192
cores), while Figure 5(b) shows the performance for large
system sizes (more than 8,192 cores). As shown in the fig-
ures, for small systems, process mapping has no significant
impact. When the system size increases beyond 8,192 cores,
however, we do notice a performance difference between
the different mappings. In fact, this difference is as high as
25% for 65,536 cores, which makes the Contention Detec-
tion Model’s (CDL) benefits substantial for large-scale sys-
tems.
The Halo Application Kernel: The NRL Layered Ocean
Model (NLOM) [16] simulates semi-enclosed seas, major
ocean basins, and global ocean. The current implementa-
tion of the model uses a tiled data-parallel programming
style. Its general nature allows implementations in various
programming models including MPI, OpenMP, Co-Array
Fortran, and shared memory. This makes NLOM a good
candidate for benchmarking both hardware and the asso-
ciated communication software. The Halo benchmark [10]
simulates an NLOM 2-D exchange for an N x N subdo-
main for different values of N. In other words it performs
nearest-neighbor exchanges from a 2D array. Each of these

exchanges is performed by using several algorithms, differ-
ent for each programming technique. When Halo is used on
a smaller number of nodes, the performance is affected pre-
dominantly by the system latency, whereas for larger node
counts the bandwidth becomes a dominating factor [10].

Figure 6 shows the performance of Halo with varying
message size, for different process mappings (system sizes
of 32,768 cores and 131,072 cores). Again, we notice a sig-
nificant improvement in overall performance for the CDL
model, depending on the mapping. For 131,072 cores, we
notice more than twofold difference in performance. Fig-
ure 7 shows the performance of Halo with varying system
sizes (message sizes of 8 KB and 1 MB). We notice three
trends: (1) no single mapping performs the best in all cases,
which is also true for all other results shown in the paper; (2)
the overall performance difference between the best map-
ping and the worst mapping generally increases with system
scale; and (3) the CDL model picks the best mapping in all
cases.

5 Related Work

In the past few years, a lot of research has been devoted
to studying techniques for mapping application topology
(tasks) onto the system’s actual physical topology [17-20]
and to optimizing these techniques [21-23]. Research [24—
27] provides different methods for optimizing problem lay-
out on BG/L. All this research assumes that applications can
describe their communication patterns effectively to the run-
time system; however, this is not currently the case. Most
mapping techniques assume a possible communication pat-
tern based on the data layout and optimize the process lay-
out accordingly.

The NAS Parallel Benchmarks [28] were evaluated with
different mappings such as Gray codes and permutations of
the X, Y, Z coordinates on the BG/L systems spanning up
to 256 processors. While that work is similar to a subset of
research proposed here, it was done only with microbench-
marks and on very small system size. None of the prior work
has shown these effects at the scales we have shown. Our ex-

periments are done on a scale nearly 100 times larger than
the previous papers (80% of the largest BG/P system in the
United States). Since network sharing is going to increase
in future exascale systems, scale of the applications is key
to understanding network saturation behavior.

Work also has been done in the context of STAR-MPI,
which focuses on adaptive techniques for various collec-
tive operations and utilizes the most optimal communica-
tion algorithm [29]. While such tools can help choose the
best communication algorithm for a given system process
mapping, they do not explicitly try to understand the net-
work congestion behavior caused by different mappings;
thus, they are mostly complementary to the work done in
this paper.

6 Concluding Remarks

We analyzed the impact of different process mappings on
application performance on a massive BG/P system. Us-
ing this analysis, we propose a communication description
model/language (CDL) that applications can use to spec-
ify their communication patterns prior to being launched.
We demonstrated the performance benefits the CDL model
can provide, using microbenchmarks and real application
kernels including P3DFFT and the Halo ocean-modeling
kernel. Our experiments, which scaled up to 131,072 cores
of the Blue Gene/P system indicate that different process
mappings can show significant difference in overall perfor-
mance, especially on large-scale systems. Through our CDL
model, however, one can avoid these differences in perfor-
mance, thereby obtaining the best possible performance.

References

1. IBM Blue Gene Team. Overview of the IBM Blue Gene/P project.
IBM J. Res. Dev., 52(1-2):199-220, 2008.

2. Cray Research, Inc. Cray T3D System Architecture Overview,
1993.

3. Argonne National Laboratory.
http://www.mcs.anl.gov/petsc.

4. S.Kumar, C. Huang, G. Almasi, and L. V. Kale. Achieving strong
scaling with NAMD on Blue Gene/L. In IEEE International Par-
allel and Distributed Processing Symposium, 2007.

5. Naval Research Laboratory. Naval Research
Laboratory Layered Ocean Model (NLOM).
http://www.navo.hpc.mil/Navigator/Fall99_Feature.html.

6. C.Rabiti, M. A. Smith, D. Kaushik, W. S. Yang, and G. Palmiotti.
Parallel Method of Characteristics on Unstructured Meshes for
the UNIC Code. In PHYSOR, Interlaken, Switzerland, Sept. 14—
19 2008.

7. P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk. Toward
Message Passing for a Million Processes: Characterizing MPI on
a Massive Scale Blue Gene/P. Special edition of the Springer
Journal of Computer Science on Research and Development (pre-
sented at the International Supercomputing Conference (ISC));
Best Paper Award, 2009.

8. P. Balaji, H. Naik, and N. Desai. Understanding Network Satura-
tion Behavior on Large-Scale Blue Gene/P Systems. In Proceed-
ings of the International Conference on Parallel and Distributed
Systems (ICPADS), Shenzhen, China, Dec. 8-11 2009.

PETSc.

9.

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

D. Pekurovsky. P3DFFT webpage, Feb. 2009.
http://www.sdsc.edu/us/resources/p3dfft/index.php.
A. J. Wallcraft. The Halo Benchmark.

http://www.navo.hpc.mil/Navigator/PDFS/Fall1999.pdf.

P. Fischer, J. Lottes, D. Pointer, and A. Siegel. Petascale Algo-
rithms for Reactor Hydrodynamics. JPCS, 125(1), 2008.

M. Frigo and S. G. Johnson. The Design and Implementation of
FFTW3. Proceedings of the IEEE, pages 216-2331, 2005.

James W. Cooley and John W. Tukey. An Algorithm for

the Machine Calculation of Complex Fourier Series. MCOM,
19(90):297-301, 1964.
San Diego Supercomputing Center. P3DFFT.

http://www.sdsc.edu/us/resources/p3dfft/.

A. Chan, P. Balaji, W. Gropp, and R. Thakur. Communication
Analysis of Parallel 3D FFT for Flat Cartesian Meshes on Large
Blue Gene Systems. In Proceedings of the IEEE/ACM Interna-
tional Conference on High Performance Computing (HiPC), Ban-
galore, India, Dec. 17-20 2008.

A. J. Wallcraft. The NRL Layered Ocean Model Users Guide.
NOARL Report 35, Naval Research Laboratory, Stennis Space
Center, MS, 1991.

J. Traff. Implementing the MPI Process Topology Mechanism. In
SC, pages 1-14, 2002.

J. Hur. An Approach for Torus Embedding. In ICPP, page 301,
Washington, DC, USA, 1999. IEEE Computer Society.

C. Ou and S. Ranka and G. Fox. Fast and Parallel Mapping Algo-
rithms for Irregular Problems. 7JS, 10(2):119-140, 1996.

S. Bokhari. On the Mapping Problem,. TC, 30(3):207-214, 1981.
S. W. Bollinger and S. Midkiff. Heuristic Technique for Proces-
sor and Link Assignment in Multicomputers. 7C, 40(3):325-333,
1991.

N. Mansour, R. Ponnusamy, A. Choudhary, and G. C. Fox. Graph
Contraction for Physical Optimization Methods: A Quality-cost
Tradeoff for Mapping Data on Parallel Computers. In ISC, pages
1-10, New York, NY, USA, 1993. ACM.

T. Chockalingam and S. Arunkumar. Randomized Heuristics for
the Mapping Problem. The Genetic Approach. In Parallel Com-
puting, pages 1157-1165, 1992.

G. Bhagnot, A. Gara, and P. Heidelberger et al. Optimizing Task
Layout on the Blue Gene/L Supercomputer. In IBM J. Res. Dev.,
volume 49, pages 489-500, 2005.

G. Almasi, C. Archer, J. Castanos, et al. Implementing MPI on the
BlueGene/L Supercomputer . In Euro-Par, pages 833-845, 2004.
H. Yu, I. Chung, and J. Moreira. Topology Mapping for Blue
Gene/L Supercomputer. In SC, page 116, New York, NY, USA,
2006. ACM.

T. Agarwal, A. Sharma, A. Laxmikant, and L.V. Kale. Topology-
aware task mapping for reducing communication contention on
large parallel machines. IPDPS, 0:122, 2006.

B. Smith and B. Bode. Performance Effects of Node Mappings
on the IBM BlueGene/L Machine. In Euro-Par, pages 1005-1013,
2005.

A. Faraj, X. Yuan, and D. Lowenthal. STAR-MPI: Self Tuned
Adaptive Routines for MPI Collective Operations. In Proceedings
of the 20th Annual International Conference on Supercomputing
(ICS), pages 199-208, Cairns, Queensland, Australia, 2006.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

