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Abstract

Many-task computing is a now well-established
paradigm for implementing loosely coupled applications
on large-scale computing systems.  However, few of
the model’s existing implementations provide efficient,
low-latency support for the execution of tightly coupled
applications as atomic tasks. Thus, a vast array of parallel
applications can not readily be used effectively within
many-task workloads. In this work, we present JETS, a
middleware component that provides high performance
support for many-parallel-task-computing (MPTC). JETS
is based on a highly concurrent approach to parallel task
dispatch and on new capabilities now available in the
MPICH2 MPI implementation and the ZeptoOS Linux
operating system. JETS represents an advancement over
the few known examples of multi-level many-parallel-task
scheduling systems by more efficiently scheduling many
short-duration parallel application invocations; by over-
coming the challenges of coupling the user processes of
each application invocation via the messaging fabric; and
by concurrently managing many application executions in
various stages. We report here on the JETS architecture
and its performance on both synthetic benchmarks and the
NAMD molecular dynamics application.

1 Introduction

Many-task computing (MTC) [12] has emerged as a
powerful framework for the rapid development and execu-
tion of scalable scientific applications on large clusters and
leadership-class supercomputers. MTC provides a simple
framework in which individual sequentially-executing ap-
plication jobs are scheduled en masse on individual cores
(i.e., without intertask communication). These cores com-
municate only through the standard filesystem interfaces,
although optimizations are possible [28]. The model thus
is conducive to the use of scripting, workflow engines, and
other familiar programming models that allow application
developers to efficiently utilize large-scale parallel systems
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with little or no explicit parallel programming.

Since MTC makes no provisions for inter-task commu-
nication during a task’s execution, it limits the flexibility
available to developers who may wish to strike a balance be-
tween the MTC and HPC models. Application developers
may wish to build a composite application which consists
of an ensemble of parallel executions, linked together by a
workflow or parameter sweep. The results of such a run may
be integrated by statistical or optimization-based methods,
such as a Monte Carlo algorithm, a parameter search, or
other methods related to uncertainty quantification. When
such an application faces challenges resulting from the large
number of composite parallel executions, we consider it a
many parallel-task computing (MPTC) problem. Systems
that enable MPTC provide a powerful tool for scientific ap-
plication developers.

A system that supports MPTC is also appealing from a
systems perspective. The many-task computing model as-
sumes that the task scheduling, startup, and shut down cy-
cle is very fast. This rapid task rate is not supported by
the native schedulers and application-launch mechanisms of
today’s supercomputers, but is possible through the devel-
opment of a specialized, single-user scheduler. The inter-
connect fabrics of the largest of the TOP500 systems [24]
constitutes a significant portion of the expense of the sys-
tem. MPTC makes these resources available in a MTC-like
model. Finally, powerful software implementations such as
MPI-IO, which aggregates and optimizes accesses to dis-
tributed and parallel filesystems, are not available to MTC
applications, resulting, by default, in uncoordinated filesys-
tem accesses that are difficult to manage. The use of these
algorithms and implementations could greatly increase data
access rates to available cores.

In this work, we present JETS, which is designed from
the ground up to support large batches of parallel tasks, in
which each task execution consists of tightly coupled pro-
cesses that use MPI for communication. The development
of JETS involved modifications to the MPICH2 [14] pack-
age that are now publicly available. JETS runs on commod-
ity clusters, optionally through SSH tunnels [16], and on
the Blue Gene/P (BG/P) through the use of ZeptoOS func-



tionality. Thus it is applicable to clusters, grids, clouds, and
high-performance systems. JETS is a highly usable system
in the MTC tradition and is primarily concerned with dis-
patching application invocation commands to the available
resources. Additionally, JETS has been integrated with the
Swift workflow language [29] and Coasters [26] scheduler.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work on the topic of MTC. Section 3
contains a motivating case study in MPTC and Section 4
presents an overview of the system architecture. In Sec-
tion 5 we measure system performance and in Section 6
describe planned future work. We conclude in Section 7
with comments on possible new applications built using the
JETS model.

2 Background

Many-task computing represents the intersection of se-
quential batch-oriented computing with extreme-scale com-
putational resources. MTC is attractive to developers be-
cause of its broad portability and support from many toolk-
its. We emphasize that our target systems are single-site
HPC resources; however, much of the foundational work in
the area is based in grid and distributed computing.

Grid computing [9] provided an abundance of computa-
tional resources to scientific groups, necessitating the cre-
ation of a variety of toolkits to automate the use of these
resources for common application patterns such as param-
eter sweeps and workflows. Parameter sweeps, supported
by systems such as Nimrod [2] and APST [3], enable the
user to specify a high-level definition of possible program
inputs to be sampled, and the system generates the result-
ing job specifications and submits them to resources. In
comparison, the JETS mechanism rapidly assembles inde-
pendent available worker nodes into parallel jobs, without
requiring support for such aggregation in the underlying re-
source manager. Further, JETS has been integrated with the
Swift system for the management of jobs and data, and is
not linked to a particular higher-level pattern.

An initial pilot job mechanism was the Condor Glide-
In [10] mechanism that integrated with the full-featured
Condor [22] scheduler. The Condor Glide-In mechanism
essentially places a full Condor installation on the target
site, including remote system calls and checkpoint/restart
functionality. Panda Pilot factory [5] is a recent develop-
ment that provides a pilot job wrapper mechanism that man-
ages the distribution of worker agents as well as the ini-
tial data placement. Neither Glide-Ins nor Panda is capable,
however, of aggregating multiple independent cluster com-
pute nodes to assemble the resources needed for the execu-
tion of parallel MPI jobs.

The Falkon [19] system enabled MTC on Blue Gene/P
resources, but only for single-job executions, and does not

support the MPTC paradigm. On the Blue Gene/P, Falkon
places workers on the system’s compute nodes and commu-
nicates with them through an intermediate scheduler placed
on the system’s I/O nodes. Falkon primarily addresses task
scheduling, although related project work produced DataD-
iffusion [20] to cache data for reuse among compute pro-
cesses. In comparison, the JETS mechanism focuses on the
deployment of MPI applications, which is not addressed by
Falkon.

The SAGA BigJob [13] system enables the use of vari-
ous underlying job submission mechanisms including Con-
dor, Globus [8], and Amazon EC2 cloud allocation. SAGA
places workers on the resources and coordinates with the
BigJob system to place multiprocessor jobs on distributed
resources. In comparison, SAGA is concerned primarily
with questions regarding the distributed infrastructure and
does not address the performance regime of many short-
duration parallel tasks that JETS has achieved. SAGA
has been used to perform replica-exchange simulations (see
Section 3) with NAMD [23] in an investigation that focused
on coupling the replica exchange trajectories.

Similarly, the Integrated Plasma Simulator (IPS [7])
is a dataflow-driven workflow specification system which
wraps parallel MPI simulation applications into component-
oriented Python objects. While originally designed for the
specific needs of the plasma fusion simulation community,
IPS is in fact quite general purpose in nature. Like JETS,
it requests a large allocation of compute nodes as a single
job from the system’s underlying resource manager (such
as PBS) and it manages the launching of individual applica-
tion subtasks within this pool. Being more recent, JETS
improves on two of IPS’s limitations. First, in order to
maintain its understanding of the number of free nodes in
its compute-node pool, IPS must accurately predict how the
underlying resource manager will assign nodes to IPS task
creation requests. In complex systems such as the Cray with
many NUMA and cpu-affinity issues being handled by the
resource manager, this can be very tricky and error-prone
logic to maintain. JETS overcomes this by doing its own
node management with a JETS worker agent on each com-
pute node. Second, IPS depends on the native systems un-
derlying job placement and MPI launching service, such as
mpiexec [14] on simple clusters and ALPS aprun on
Cray systems [1]. This does not provide any straightfor-
ward way to run on systems with more complex job launch-
ing mechanisms, such as the Blue Gene/P. Again, JETS
overcomes this limitations with its worker agents, which
are started with simple scripts running under the native
resource manager. While future Blue Gene systems may
provide similar application launch capabilities to the Cray
ALPS [4], the latency and performance of these capabilities
are unknown, while the JETS architecture would be able to
readily handle almost any imaginable architecture.



I lnltU I—b'stepsml—V +|stepsw|—>
[ o Steps"ﬂ g g
° o
3 3
2 2 2
g [ init K ®
o 5 stepsm stepsm
\—

time

Figure 1. Workflow perspective of replica ex-
change method.

3 Use Case and Requirements

As a canonical example of the motivation for many-
parallel-task computing, we consider a classical task and
data-flow pattern from molecular dynamics. The replica ex-
change method (REM) [21] is a computational method to
enhance statistics about a simulated molecular system by
performing molecular dynamics simulation of the system
at varying temperatures. These simulation trajectories, un-
der varying conditions, are regularly stopped (typically at a
rather high rate), sampled, and compared for exchange con-
ditions. Data exchange may be required at each stopping
point. The simulation is then restarted under the restart file
of neighboring replica to accomplish the state exchange.

The computational workflow is diagrammed in Figure 1.
The initial use case provided by our user group is as fol-
lows. Each set of CPUs is initialized with conditions in-
cluding temperature. Each simulation runs as a NAMD [18]
job of 256 compute cores. There are 64 concurrent simula-
tions running on a total of 16,384 cores. Each simulation
is expected to run for 10-100 simulated timesteps, for ap-
proximately 10-60 seconds of wall time depending on the
configuration. Smaller individual runs produce finer gran-
ularity exchanges, which is desirable. The simulations are
then stopped, and an external application process performs
the replica exchange among the simulation snapshots. The
simulations are then restarted from the snapshots, and the
process repeats until a termination condition is satisfied ap-
proximately 12 hours later. Thus, to keep up with this work-
load, the scheduler would have to launch 6.4 MPI execu-
tions per second, requiring an individual process launch rate
of approximately 1,638 processes per second, for a 12 hour
period. The goal of this work is to present a system that pro-
vides an elegant scripting approach to the application task
management while achieving this level of performance.

This process management and aggregation capability is
not supported by previous systems and is notably difficult

to achieve on our primary production target, the 160,000-
core Blue Gene/P “Intrepid” at Argonne National Labora-
tory. Passing each job into a cluster scheduler is dramati-
cally less efficient than our use of persistent worker agents,
and cluster-specific policies often prevent such models of
many-parallel-task computing by imposing a limit on the
number of jobs in the queue per user, or other inhibiting
constraints. For example, at Argonne, jobs must use a min-
imum of 1,024 nodes, whereas our initial application has an
efficiency-based target of 64 nodes (256 cores). Thus, the
scientists that motivated the REM use case above are cur-
rently running workloads using an inferior simulation ap-
proach due to the lack of MPTC support on the Blue Gene/P.
In order to support the MPTC programming model
and its associated performance requirements, the work de-
scribed here has achieved four primary contributions:

1. New MPICH2 features that enable individual MPI pro-
cesses to be managed by an external scheduler.

2. An associated set of external routines used to control
MPICH?2, comprising the core JETS functionality.

3. Integration of this core JETS functionality with Swift
parallel scripting language through its “Coasters” task
execution provider [25]. This enables the application
task flow to be specified as a high-level script that com-
poses the individual application MPI jobs. Thus it may
be used on any of the resources supported by Swift
Coasters, including clusters, grids, clouds, and HPC
systems.

4. A stand-alone tool (jets) which provides maximum
performance for scripts that execute many small MPI
task sets. This allows users to run very simple batches
of MPI tasks without a Swift workflow using a simple
task list.

4 Design

JETS is based on the basic MTC paradigm that enables
users to rapidly submit large batches of ordinary command-
line program executions to large resources. JETS assumes
that the user can launch a worker script on the remote re-
sources. The worker script requests work from a centralized
dispatcher, which can assign work to given resources by us-
ing multiple scheduler components called handlers. Each
handler has a specific input file format, which is basically a
list of literal command lines.

Attaining high performance from the centralized JETS
scheduler is critical. Additionally, deploying and using
JETS could quickly become complex, since JETS involves
multiple distributed resources as well as the management of
user and system external processes. Thus, JETS observes
the following principles:



1. Use simple, reusable threading abstractions. This task
is accomplished through the use of existing concurrent
data structures.

2. Separate service pipeline processes through simple in-
terfaces. In JETS, socket management, handler pro-
cessing, and external process management connect
through obvious mechanisms and are each arbitrarily
concurrent.

3. Support ready composition and decomposition. JETS
components are easily composed into frameworks ap-
propriate for different environments (e.g. for Swift,
standalone usage, or use within other frameworks such
as IPS). The components can also be decomposed for
separate usage (e.g. the JETS worker agent can serve
as a useful component of a benchmarking test frame-
work).

4. Assume disconnection is likely. The JETS service and
workers can operate independently and are individu-
ally diagnosable.

JETS integrates the technologies described in the follow-
ing subsections. Although JETS may be used as a stand-
alone system, its core features are available in Swift.

4.1 Swift/Coasters

An original design goal of JETS was to bring first-class
support for MPI programs into the Swift system. Swift [26]
is a highly concurrent programming model for deploying
workflows to grids and clusters. Swift was originally devel-
oped for grid resources and is essentially a high-level lan-
guage to build workflows for the Commodity Grid (CoG)
Kit [25]. To support fast task scheduling, Swift uses as
associated provider, called Coasters, that runs as a net-
work of external services, including a CoasterService and
worker scripts. Swift communicates with the CoasterSer-
vice to schedule jobs and data movement to the distributed
resources. The Swift/Coasters system can run directly on
an HPC resource, launching sequential MTC tasks at high
rates and employing filesystem access optimizations.

Swift/Coasters operations is diagrammed in Figure 2.
First, the SwiftScript is compiled (D to the workflow lan-
guage Karajan, which contains a complete library of exe-
cution and data movement operations. Tasks resulting from
this workflow are processed by well-studied, configurable
scheduling algorithms and processed by underlying service
providers including local execution, PBS, SGE, Globus,
Cobalt [6], or the Coasters provider. The Coasters provider
consists of a connection to the CoasterService, which itself
is deployed as a task (2. The CoasterService in turn uses

SwiftScript
° [ file[3] = compute(file[2]); ... ]
% Grid commands ®‘ Compilation (swift)
@ [ <execute><compute><file “f.2”> ... ]
® . @ Service start (gsub, ...)
5 CoasterService A/
,g [ Task queue: task (compute), ... ]
®

Allocation (gsub, ...)
Compute sites

Job start
Worker nodes  y @ (message)

Worker script
[ compute ]

[ compute ]

Figure 2. Swift/Coasters architecture.

task submission to deploy one or more allocations of work-
ers, in blocks of varying sizes and durations 3). The Coast-
erService schedules user tasks inside these blocks of avail-
able computation time and rapidly launches them via RPC-
like communication over a TCP/IP socket (4). Data transfer
operations may also be performed over this connection, re-
moving the need for a separate data transfer mechanism.
On the BG/P, the CoasterService may be placed on a lo-
gin node, communicating with its workers over the internal
BG/P network.

4.2 MPI Process Management: Hydra

The ability to run MPI programs in JETS is built on fa-
cilities offered by the MPI implementation. The MPICH2
implementation of the MPI standard, used in this work, em-
ploys a process manager that is responsible for launching
the individual user processes in coordination with user in-
put and and existing scheduler such as the local operating
system or a distributed scheduler such as PBS [11].

The default process manager in MPICH2 is currently
Hydra [?]. The MPICH2 process manager is responsi-
ble for launching the user processes on the requested re-
sources through a bootstrap control interface using an avail-
able bootstrapping mechanism such as ssh. Hydra was
modified by this work by adding a bootstrap mechanism,
called bootstrap-none, that employs no existing external
scheduler: it simply reports proxy commands to its output
and performs its ordinary network services. Thus, any other
controlling process may use this specification to bring up
the Hydra network and launch the MPI application. This
works on any system that provides sockets, including the



ZeptoOS system described below.
4.3 ZeptoOS

JETS relies on the ability to dynamically bind MPI pro-
cesses together using the sockets abstraction provided by
POSIX-like operating systems. While TCP/IP sockets are
a typical mechanism for MPI job coupling on commodity
clusters, on the Blue Gene/P these APIs are not provided by
default. The ability to perform sockets-based MPI messag-
ing on the BG/P is made possible through the use of func-
tionality provided by ZeptoOS. This Linux-based compute
node operating system replaces the default IBM Compute
Node Kernel (CNK) and enables the user processes to com-
municate over the BG/P torus interconnect using an ether-
net network device. This virtual network is then used by the
MPI programs launched by JETS.

4.4 JETS

JETS is designed to orchestrate the previously described
systems into a simple framework for MPTC. JETS provides
the following features:

1. Speed: JETS is designed to outperform process
launchers like ssh while enabling security (e.g., an
OpenSSH tunneling). JETS uses compute sites as
they become available and quickly combines them into
MPI-capable groups.

2. Local storage: JETS can cache libraries and tools
(such as the MPICH2 proxy binary) and even user
data on node-local storage, which boosts startup per-
formance and thus utilization for ensembles of short
jobs.

3. Fault tolerance: JETS automatically disregards work-
ers that fail or hang, minimizing their impact on the
overall system.

4. Flexibility: JETS enables fast submission of jobs
to worker nodes unreachable by systems such as
OpenSSH (e.g., the Blue Gene/P compute nodes), and
enables the use of smaller MPI sizes than allowed by
some site policies.

The essential concept in JETS is to transform an MPI
job specification into a set of MPICH2 proxy job specifica-
tions by communicating with a background mpiexec pro-
cess and rapidly submitting those proxy jobs to the worker
scripts for execution. Performance benefits are obtained
through the local, concurrent execution of the mpiexec
processes and the use of the worker agents. Hundreds of
mpiexec processes do not place a noticeable load on the
submit site. Additional performance benefits are gained

through the deployment of the proxy executable, the user
executable, and related libraries in local storage on the com-
pute sites. JETS contains features to automate these file
transfers. JETS features are available through Coasters; in
this work, we consider the design and performance charac-
teristics of the new JETS functionality in stand-alone form,
which can operate without Swift/Coasters.

MPI commands

© [ MPI: 16 namd2 ... ] @
)
-*é JETS scripts JETS engine
Qo
(;;) l cgsub ... l[ proxy (namd2) on hosts... ]
@ @ Background
(oeJy | D
l Proxy
start
_ Allocation Job start
Compute sites
Worker nodes vy A @
Worker script

Figure 3. JETS architecture.

Stand-alone JETS operation is diagrammed in Figure 3.
The input to JETS is a simple text file containing command
lines to be executed and MPI-specific information such as
the number of nodes on which to run (I). The user launches
the worker scripts with provided allocation scripts, which
use an external system such as ssh or Cobalt (2). Once run-
ning, each worker is persistent, capable of executing many
tasks as a pilot job. Workers report readiness to the JETS
engine. When the engine has obtained notification from
the requisite number of workers for the next user job in
the user list, it launches the mpiexec binary in the back-
ground, provides it with the host information from the ready
workers, and obtains proxy startup information 3). The
mpiexec process continues running in the background.
The proxy jobs are issued to their respective workers @),
and the proxies connect to the mpiexec process to nego-
tiate the MPI job start (5). The MPI application processes
can locate each other to begin MPI communication (6). On
job completion, the mpiexec process and its proxies ter-
minate. The mpiexec output is checked for errors, and the
workers request additional work, resuming the cycle.

Since the essential JETS functionality is to break MPI
executions into composite single-process jobs, JETS func-
tionality was readily made available in Coasters and thus to
Swift workflow applications. Although not diagrammed for



lack of space, running MPI jobs in Swift through the JETS
framework is performed by combining the task generation
and worker management aspects of the Swift/Coasters ar-
chitecture with the mpiexec process management of the
JETS architecture. In the following section, we report on
the performance of the stand-alone JETS system to avoid
the measurement complexity in a full workflow.

5 Performance Results

In this section, we present performance results obtained
by running JETS in a cluster setting, in a high-performance
setting, in a faulty environment, and for use by the NAMD
application.

5.1 Sequential Tasks

First, we demonstrate the basic task rate at which JETS
can submit individual sequential tasks to a computing re-
source. In this series of tests JETS was configured to run on
Surveyor, an IBM Blue Gene/P system at Argonne National
Laboratory. Each task consisted of an external process that
did no work; thus, only the cost of the process startup itself
is considered. First, we measured the rate at which the BG/P
compute node can launch processes without JETS (no com-
munication), using all four available cores. This is shown
as the “ideal” measurement. Then, JETS is used to submit
jobs to allocations of increasing size.

As shown in Figure 4, JETS scales well, achieving over
7,000 job launches per second on the full rack of Surveyor,
which consists of 1,024 compute nodes containing 4,096
cores. This result indicates that JETS will be very ca-
pable of submitting jobs generated by the more complex
MPICH2-based mechanism described previously for MPI-
based workloads.
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Figure 4. JETS results, sequential tasks.

5.2 MPI Communication Performance

Next, we measure the messaging performance penalty
due to the use of the sockets-based MPICH2 communica-
tion mechanism used by the system. On the Blue Gene/P,
the vendor-provided communication library is expected to
be faster than the socket abstraction used by our MPICH2
library. As described above, the use of the ZeptoOS-based
messaging abstraction is expected to increase message la-
tency and reduce transmission bandwidth. In this test, a
simple “ping-pong” MPI test was run on two nodes, each of
which alternates between calls to MPI blocking send and
receive functions. The buffer was filled once with ran-
dom data of the given size and sent back and forth the
given number of times. The runtime was measured using
MPI_Wtime. The program was compiled and run in each
of two modes: ‘“native” mode, which was compiled with
bgx1c and uses the default system kernel and settings; and
“MPICH/sockets” mode, which uses the MPICH2 library
running on the Zepto sockets layer.

As shown in Figure 5, using MPICH2 as we do results in
much higher latency for small messages and slightly slower
bandwidth for large messages. This is primarily due to the
use of TCP by the ZeptoOS mechanism. While this perfor-
mance penalty may be problematic for some applications,
it must be weighed against the flexibility and functionality
offered by ZeptoOS features, and the fault recoverability of-
fered by TCP-based APIs. Possible network enhancements
are considered below in Section 6, and the reliability char-
acteristics are demonstrated below in Section 5.5.
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Figure 5. MPI messaging performance.

5.3 MPI Task Launch Performance:
Cluster Setting

In our next series of tests JETS was configured to run
on Breadboard, a network of x86-based compute servers at
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Figure 6. MPI/JETS results, cluster setting.

Argonne National Laboratory. In this test, a simple MPI ap-
plication was constructed for benchmarking purposes that
starts up, performs an MPI barrier on all processes, waits
for a given time, performs a second MPI barrier, and exits.
The number of MPI processes in each invocation of this ap-
plication is independent of the size of the whole allocation.
In this test, each data point represents the utilization ob-
tained by running a large batch of application invocations
of varying sizes (shown as n-proc) inside an allocation of
the size given on the x-axis. Each job wait duration was 1
second. System utilization is reported as

e duration x jobs X n
utilization =

(1

allocation X time

The workload was run in each of two modes: a “shell
script” mode, which simply calls mpiexec repeatedly, and
a mode in which JETS was used. The shell script mode
is capable of only using the entire allocation, whereas the
JETS mode may be run at smaller, varying sizes. As shown
in Figure 6, JETS can achieve approximately 90% system
utilization for the extremely short (single-second) tasks sub-
mitted. This greatly exceeds the utilization available in an
mpiexec-based shell script and indicates that the perfor-
mance is capable of scaling to larger resources.

5.4 MPI Task Launch Performance:
Blue Gene/P Setting

JETS was again configured to run on Surveyor. The user
application in this case is the same application used in the
cluster setting but was run for a 10-second duration. Each
node here contains 4 cores. We only place one MPI pro-
cess per core as additional processes per core are managed
locally by the Hydra proxy and are not performance chal-
lenges visible to JETS.

JETS scripts are used to enable compatibility with Zep-
toOS and high performance at this system scale. We used
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Figure 7. MPI/JETS results, BG/P setting.

the ZeptoOS local RAM-based file system to store the ap-
plication binary, the Hydra proxy, and requisite libraries in
this local store. The script sets LD_LIBRARY_PATH to sup-
press any lookups to GPFS, which are much more time-
consuming than local lookups. The scripts also add an en-
try to /etc/hosts to enable the Hydra proxy to find the
JETS service on the login node. The ZeptoOS IP-over-torus
feature was enabled to provide each node with an IP ad-
dress obtainable through i fconfig. This address is con-
nectable by all peer nodes in the allocation, and was used
by the JETS components to connect the Hydra processes.

We ran the same application used in Section 5.3 with a
10 second duration. MPI executions were constructed from
nodes in the allocation without regard for their relative net-
work positions; the default JETS behavior is to group nodes
in first come, first serve order.

Results are shown in Figure 7. Each line shown repre-
sents one component task size, 4, 8, or 64-processor tasks.
These task sizes were chosen to highlight JETS perfor-
mance characteristics. Each size task was run on allocation
sizes of 256, 512, and 1,024 nodes, and only one core per
node was used. The number of tasks in the batch was se-
lected such that each node processed 20 10-second tasks.
As shown in the figure, 4-processor tasks at this duration
are sustainable up to about 512 nodes after which there is
a significant degradation from the utilization achieved by
the 8-processor tasks, this is due to the load on the central
JETS scheduler becoming excessive. 64-process tasks are
individually slower to start, which results in lower utiliza-
tion in small allocations. However, this penalty becomes
smaller as the task size becomes a smaller fraction of the
available nodes.
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5.5 Task Management: Faulty Setting

In this series of tests, we demonstrate that JETS is capa-
ble of maintaining high utilization on the remaining useful
compute nodes of a faulty allocation in which worker script
processes terminate early due to system hardware or soft-
ware failure. In this case, JETS was run again on Surveyor.
The sequential application from Section 5.1 was used again.
A fault injection script was run on the submit site that termi-
nated worker scripts, one at a time, at random, at regular 10
second intervals. Due to skew among the application tasks,
this could result in a worker being terminated during or be-
tween application task executions. The worker and user task
start and stop times were recorded, which allowed the total
system load and worker count to be obtained and plotted
over time.

Results are shown in Figure 8. The number of worker
nodes in operation are shown as “nodes available”; the num-
ber steadily decreases from the original level of 32 workers
down to zero over a period of about 320 seconds. The num-
ber of running application jobs is plotted as “running jobs”.
Initially, the jobs execute in lockstep, resulting in large uti-
lization dips which become smaller over time. These large
dips are due to congestion on the JETS scheduler when mul-
tiple nodes become available for work simultaneously. The
dips become less dramatic as skew reduces the number of
simultaneous work requests. After the 100 second mark, the
number of running jobs is bounded by the number of nodes
available. The number of running jobs stays very close to
the number of nodes available, indicating that JETS main-
tains a very high utilization rate on the available nodes.
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Figure 9. NAMD wall time distribution.

5.6 Application: NAMD

In this series of tests, we report utilization results ob-
served when running a bag-of-tasks batch of NAMD execu-
tions, with settings similar to that of the replica exchange
method. JETS was configured to run on Surveyor. The
NAMD application was configured to run one process per
node. A batch of 32 NAMD runs comparable to those used
in an REM run was provided to us by a NAMD user. We
duplicated those cases and ordered them in a round-robin
fashion. For each allocation size from 256 to 1,024, we
created a batch that would require 6 executions per node
on average. Each run simulated an NMA [17] system of
44,992 atoms for 10 timesteps, which runs in NAMD for
approximately 100 seconds on 4 BG/P processors.

Application I/O is as follows. The application reads 5
files totaling 14.8 MB of input and writes 3 files totaling
2.2 MB of output, in addition to about 11 KB on standard
output. The I/O time is contained in the application wall
time. The NAMD application performed I/O directly to the
PVES filesystem available on Surveyor. Standard output
was directed back to the mpiexec process. In the JETS
framework, standard output is directed from the application
to the Hydra proxy, over the network to the mpiexec pro-
cess, into the JETS process, and then into a file. For the
largest run, this produced 16 MB of output over 11 minutes,
which was not enough to cause congestion.

The full rack (1,024-node) batch consisted of 1,536 4-
processor jobs. The run time distribution for these jobs is
shown in Figure 9. While the majority of the tasks fall be-
tween 100 and 120 seconds, many tasks exceed this, run-
ning up to 160 seconds. The utilization results, shown in
Figure 10, shows that utilization is near 90%. Load level for
the full rack batch, computed as the number of busy cores
at each point in time, is shown in Figure 11. For a longer
run, utilization could be higher as the effect of the ramp-up
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and long-tail effects are amortized.

6 Future Work

At the time of this writing, JETS has only been recently
developed, and while the performance measures presented
here are preliminary, they are already very encouraging.
However, many improvements and extensions to JETS are
planned, including the following.

In order to simplify its implementation and focus on al-
gorithms, the initial JETS version uses MPI over standard
TCP sockets. In order to take better advantage of the native
high performance interconnect fabric on petascale systems
such as Blue Gene/P and Cray XE, we plan to enhance JETS
with support for vendor-provided MPI over the native com-
munication fabric libraries (such as Blue Gene DCMF and
Cray GNI).

While JETS currently operates at high speed in part be-
cause it uses a simple FIFO queuing approach, we plan to

explore the addition of priority-based scheduling and back-
fill, and to measure scheduler performance on workloads of
varying size tasks. (At the same time, such workloads sel-
dom occur in typical MPTC applications, and are thus of
low priority to current user applications).

We plan to add the “multiple-job-size spectrum” alloca-
tor of the Coasters mechanism to JETS to enable it to re-
quest resources from the underlying system scheduler in a
“spectrum” of various node counts, to enable it to obtain re-
sources quickly in the face of unknown queue compositions
and system load conditions.

Fruitful experiments can be conducted using MPI-IO
from JETS-initiated MPTC workloads, and optimizations
can be envisioned for supporting the passing of MPI-IO-
written and -read datasets within an MPTC data flow. Simi-
larly, such high-performance data passing schemes can also
be evaluated using Global Arrays [15] or distributed hash
tables [27].

7 Conclusion

The ensemble study, consisting of the composition of
large numbers of many-processor MPI executions, is an in-
creasingly popular paradigm that is poorly supported by ex-
isting systems. In this work, we described a new lightweight
mechanism to manage the scheduling of large numbers of
MPI application executions. Our work is focused on gaining
high utilization rates for applications on large-scale HPC re-
sources. We addressed the coordination of large numbers
of CPUs, the management of many MPICH2 startup pro-
cesses, the rapid distribution of job specifications to work-
ers, and the construction of application scripts through inte-
gration with the Swift language and runtime system.

From a performance perspective, we demonstrated that
the JETS task scheduler can launch jobs at a rate exceed-
ing that of previous many-task schedulers. Additionally, we
provided new mechanisms for the deployment of MPI ap-
plications into many-tasks systems; in particular, the new
MPICH?2 functionality could be reused by other groups in-
terested in novel strategies to launch MPI applications.

We expect that JETS and related systems will emerge as
powerful tools in important areas, including rapid prototyp-
ing of batches of existing codes and large ensemble stud-
ies based on loosely coupled MPI runs. Our system pro-
motes the rapid development of large runs of existing codes
through its simple model and optional scripting language
interface. The system provides a shell script-like model but
offers much better performance and management capabili-
ties. New applications could be designed around the JETS
model. These applications would benefit from the ability
of the JETS to manage multiple scheduler allocations in a
high-performance, fault-tolerant way, and the software de-
velopment benefits from using the high-level Swift model.
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