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Jeffrey Larson and Stefan M. Wild

Abstract

Significant savings can be gained from terminating the optimization of a computa-

tionally expensive function well before traditional criteria, such as a maximum budget

of evaluations, are satisfied. Early termination is especially desirable for noisy functions,

where a solver could potentially proceed indefinitely while seeing changes insignificant

relative to the noise. In this paper we consider general termination tests that can be

used in conjunction with any solver’s built-in termination criteria. We propose pa-

rameterized families of termination tests, analyze their properties, and illustrate how

they can employ an estimate of the function’s noise level. Using a set of benchmark

problems with both stochastic and deterministic noise, we compare the tests and their

sensitivities to parameters in terms of both accuracy and efficiency. Recommendations

are made for using the proposed tests in practice.

1 Introduction and Motivation

The optimization of real-world, computationally expensive functions invariably leads to

the difficult question of when an optimization procedure should be terminated. Algorithm

developers and the mathematical optimization community at large typically assume that the

optimization is terminated when either a measure of criticality (gradient norm, mesh size,

etc.) is satisfied or a user’s computational budget (number of evaluations, wall clock time,

etc.) is exhausted. This assumption is made largely for convenience and for generalizability

across many problem domains, since the latter condition allows a user to assert full control

over the optimization.

For a large class of problems, however, the user may not have a well-defined computa-

tional budget and instead demand a termination test t solving

min
t

Computational expense(t)

s.t. Acceptable accuracy of the solution(t),
(1)

with the criticality measure of the solver employed typically chosen with the accuracy

constraint in mind. Examples of such accuracy-based criticality tests are discussed in detail

by Gill, Murray, and Wright [9, Section 8.2.3].
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Fig. 1: Noisy trajectory of function values for an expensive nuclear physics problem.

The main difficulties arising from this approach are a result of (1) possibly being poorly

formulated. The computational expense could be unbounded because an a priori user-

defined accuracy is unrealistic for the problem/solver pair or, worse still, unknown. Fur-

thermore, a user may have difficulty translating the criticality measures provided by a solver,

which are generally based on assumptions of smoothness and infinite-precision calculations,

into practical metrics on the solution accuracy.

In Fig. 1 we illustrate the challenges in this area with an example from nuclear physics,

similar to the minimization problems considered in [16]. Each of the function values shown

is obtained from running a deterministic simulation for one minute on a 640-core cluster.

Stopping the optimization sooner than 200 function evaluations not only would return a

solution faster but also would free the cluster for other applications and/or result in a

savings in energy, an increasingly crucial factor in high-performance computing.

If we assume that the optimization shown in Fig. 1 has not been terminated by a

solver’s criticality measures or a user’s computational budget, the question is then whether

termination should occur for other reasons. For example, if only the first three digits of the

simulation output were computed stably, one may want to terminate the optimization sooner

(perhaps even before the data from this figure were generated) than if computational noise

corrupted only the eighth digit of the output. Alternatively, the behavior shown could mean

the solver in question has stagnated (because of noise, errors in the simulation, a limitation

of the solver, etc.), and hence examining the solution and/or restarting the optimization

could be a more effective use of the remaining computational budget. Wright [23] refers

to this stalled progress as perseveration and notes that there is “no fully general way to

define ‘insufficient progress.’ ” Even so, it may be advantageous to use knowledge of the

uncertainty or accuracy of a given function evaluation when making such a decision.

In the remainder of this paper we explore these issues and propose termination criteria
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that can be easily incorporated on top of a user’s solver of choice. In [8], Fletcher summarizes

the challenges at hand (in the case of round-off errors alone):

Some consideration has to be given to the effects of round-off near the solu-

tion, and to terminate when it is judged that these effects are preventing further

progress. It is difficult to be certain what strategy is best in this respect.

Moreover, Gill, Murray, and Wright [9] stress that

no set of termination criteria is suitable for all optimization problems and

all methods.

This sentiment is shared by Powell [19] who says

it is believed that it is impossible to choose such a convergence criterion

which is effective for the most general function . . . so a compromise has to be

made between stopping the iterative procedure too soon and calculating f an

unnecessarily large number of times.

Consequently, we will consider tests that allow for the use of estimates of the noise particular

to a problem. Furthermore, our criteria are not intended as substitutes for a computational

budget or a solver’s built-in criticality tests, which we consider to be important safeguards.

Likewise, the termination problem can be viewed as a real-time control problem depending

on complete knowledge of the solver’s decisions, but we resist this urge for purposes of

portability and applicability.

We provide background on previous work and introduce notation in Section 2. The

families of stopping tests we propose in Section 3 do not provide guarantees on the quality

of the solution, although doing so may be the role of a solver’s built-in criteria. Instead, the

proposed tests are parameterized in order to quantify a user’s trade-off between the benefit

of achieving additional decrease and the cost of additional evaluations, while requiring a

minimal amount of information from the solver. Equally important, our results in Section 4

comparing the quality of these families of stopping tests focus on local optimization. While

our results can be incorporated in a local subroutine of any global search algorithm, the tests

proposed in Section 3 are unable to distinguish between exploration and refinement phases

in their current form. We summarize our results in Section 5 and provide recommendations

when implementing these tests.

2 Background

Our preliminary discussion is limited to optimization methods that do not explicitly require

derivative information. While our work can be extended to incorporate noisy gradient

information, the derivatives of noisy functions are typically even noisier than the function.

Derivative-free optimization methods are often favored for their perceived ability to

handle noisy functions. Although asymptotic convergence of these methods is generally

proved assuming a smooth function, adjustments are frequently made to accommodate
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noise. For example, in the case of stochastic noise, replications of function evaluations can

be used to modify existing methods (e.g., [4] modifying UOBYQA [20], [5, 1] modifying

DIRECT [13], and [22] modifying Nelder-Mead (see, e.g., [3])). However, stopping criteria

for these methods involve limited knowledge of the noise and indicate the wide variety of

stopping tests used in practice. In [1], optimization is stopped when adjacent points are

within 10−4 of each other, whereas [5] allows stopping when the best function value has

not been improved after some number of consecutive iterations. To limit the number of

stochastic replications, the authors of [4] and [22] adjust the maximum number of allowed

replications at a particular point based on the variance of the noise.

Deterministic noise is far less understood than its stochastic counterpart [18]. Not

surprising, even less knowledge of the magnitude of noise is used for problems with deter-

ministic objectives. When low-amplitude noise is present, Kelley [15] proposes a restart

technique for Nelder-Mead but terminates when sufficiently small differences exist in the

simplicial function values, independent of the magnitude of the noise. Implicit filtering [14]

has numerous termination possibilities (small function value differences on a stencil, a small

change in the best function value from one iteration to the next, etc.) but none that are

explicitly related by the author to the magnitude of the noise. A similar implicit relation-

ship to noise can be seen in [10], where treed Gaussian process models for optimization

are terminated when a maximum improvement statistic is sufficiently small. The authors

of SNOBFIT [12] suggest stopping when the best point has not changed for a number of

consecutive SNOBFIT calls.

Our work more closely follows that of Gill et. al [9], where an entire section (8.2) is

devoted to properties of the computed solution. The authors there recommend terminating

Nelder-Mead–like algorithms when the maximum difference between function values on

the simplex is less than a demanded accuracy weighted by the best function value on the

simplex.

The only other direct relationship between stopping criteria and a magnitude of noise

that we are aware of are in [18, Section 9] and [11]. In [18], a stochastic model of the

noise is used to estimate the noise level of a function value f(x) by difference table-based

approximations of the standard deviation (Var {f(x)})1/2. Results are validated for deter-

ministic f . As an example application, the authors terminate a Nelder-Mead method on

an ODE-based problem when consecutive decreases are less than a factor of the noise level.

The authors of [11] perturb bound-constrained problems so the incumbent iterate is the

exact solution to this new problem. An algorithm can then be terminated when the size of

this perturbation first decreases below the error in the problem.

Before proceeding, we define the notation employed throughout. We let R+ denote

the nonnegative reals and N denote the natural numbers. We let {x1, · · · , xm} ⊂ Rn and

{f1, · · · , fm} ∈ R be a sequence of points and corresponding function values produced

by a local minimization solver, and we collect the data from the first i evaluations in

Fi = {(x1, f1), . . . , (xi, fi)}. The best function value in the first i evaluations is given by

f∗i = min
1≤j≤i

{fj}, with x∗i denoting the point corresponding to f∗i . Accordingly, the sequence

{f∗i } is nonincreasing. Unless otherwise stated, ‖·‖ denotes the standard Euclidean distance.
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We let ε̂ir be an estimate of the relative noise at fi. This estimate may come from

experience, numerical analysis of the underlying processes in computing fi, or appropriate

scaling (by |fi|) of the noise-level estimates from the method proposed in [18]. In the case of

stochastic noise, ε̂ir can be viewed as the standard deviation of fi relative to the magnitude

of fi.

Favorable properties of a termination test include scale and shift invariance, so that the

test would terminate after the same number of evaluations for any affine transformation of

the objective function. We use the following proposition to aid in the subsequent analysis

of scale and shift invariance.

Proposition 2.1 The quantity ε̂ir is scale invariant in f , and the product ε̂ir |fi| is shift

invariant in f .

3 Stopping Tests

In this section we define families of termination tests and provide motivation for their use.

Each family can be defined through an extended-value function φ mapping to R ∪ {+∞}.
The associated termination test stops after i∗ evaluations, where i∗ is the solution to the

hitting problem

min
i
{i : φ (Fi; νFi , η) ≤ 0} . (2)

Members of a family of tests are determined by different values of the parameter vector

(νFi , η), with νFi and η denoting parameters that are (possibly) dependent on Fi and

independent of Fi, respectively. Since φ quantifies the progress of an algorithm (through

the history of function values and points), each family of tests is designed to determine

when continuing with the present course is likely wasteful as measured by the parameters

in (νFi , η).

It is often useful to consider how a test will change if the underlying function undergoes

an affine change. We will say that a test is scale invariant if

φ (Fi; νFi , η) = φ (αFi; ναFi , η) ∀α > 0,

where αFi ≡ {(x1, αf1), . . . , (xi, αfi)}. Similarly, we will call a test shift invariant if

φ (Fi; νFi , η) = φ (Fi + β; νFi+β, η) ∀β,

where Fi+β ≡ {(x1, f1+β), . . . , (xi, fi+β)}. Similar affine changes to {x1, . . . , xi} could be

considered but are not central to the present discussion, and hence all notions of invariance

here are relative to the function f .

Similarly, it is useful to consider whether φ is monotone in some of its parameters.

Monotonicity of φ is desirable because it results in the same form of monotonicity for the

corresponding number of evaluations i∗. For example, if φ is monotonically increasing in a

scalar parameter η, then increasing η results in a more conservative test because the solution

to (2) is at least as large. As a consequence, if φ is monotonically increasing in η and the
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test φ(·; ·, η1) is always satisfied on a set of problems, it is not necessary to consider η > η1
values on that set of problems.

We now define several families of termination tests and discuss their properties and

underlying motivation. All of these tests assume no knowledge of the inner workings of the

algorithm they are terminating, but such knowledge might lead to appropriate modifica-

tions. For example, if the method uses a simplex, rather than stopping when the last κ

function evaluations are within a factor of the noise, one could stop when the last κ simplex

vertices are within a factor of the noise (essentially a modification of the proposed rule in

[9]).

3.1 f ∗i
′ test

φ1 (Fi; νFi , κ, µ) ≡
{f∗i−κ+1−f∗i

κ − µ |f∗i | νFi if i ≥ κ,
∞ else,

with νFi , µ ∈ R+, κ ∈ N. (3)

This family of tests is designed to stop when the average relative change in f∗ over the last

κ evaluations is less than µ νFi . The integer κ can be thought of as a backward difference

parameter for estimating the change in the best function value with respect to the number

of evaluations.

We note that φ1 is monotonically decreasing in µ since, for fixed κ, Fi, and νFi ,

µ1 ≤ µ2 =⇒ φ1 (Fi; νFi , κ, µ1) ≥ φ1 (Fi; νFi , κ, µ2) .

φ1 is also monotonically decreasing in νFi but is not monotone in κ. Members of this family

are scale invariant provided that νFi is, and shift invariant provided that |f∗i | νFi is.

We consider two special cases. When νFi = 1 (or any constant), we obtain tests that

are scale invariant but not shift invariant and stop if the average relative change in the

best function value drops below µ. If νFi = ε̂ir , the tests are scale and shift invariant by

Proposition 2.1 and stop an algorithm if the average relative change becomes less than a

factor µ times the relative noise.

3.2 Max-Difference-f test

φ2 (Fi; νFi , κ, µ) ≡

 max
i−κ+1≤j≤i

|fj − f∗i | − µ |f∗i | νFi if i ≥ κ,

∞ else,
with νFi , µ ∈ R+, κ ∈ N.

(4)

This family of tests stops when κ consecutive function values are within µ |f∗i | νFi of f∗i .

One can show that φ2 is monotonically decreasing in both µ and νFi and monotonically

increasing in κ since

κ1 ≤ κ2 =⇒ max
i−κ1≤j≤i

|fj − f∗i | ≤ max
i−κ2≤j≤i

|fj − f∗i | .

We also note that if φ2 is modified so that fj is replaced by f∗j , we obtain a test equivalent

to φ1 (Fi; νFi , κ, κµ). Members of this family are scale invariant provided that νFi is, and

shift invariant provided that |f∗i | νFi is.
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We examine two special cases. If νFi = 1 (or any constant), φ2 is scale invariant but

not shift invariant; this family φ2(Fi; 1, κ, µ) terminates when the last κ function values

differ by less than a factor µ relative to the best function value so far. If νFi = ε̂ir , the

resulting tests are scale and shift invariant (by Proposition 2.1) and terminate when the

relative change in the last κ function values is less than a factor µ of the noise.

3.3 Max-Distance-x test

φ3 (Fi;κ, µ) ≡

 max
i−κ+1≤j,k≤i

‖xj − xk‖ − µ if i ≥ κ

∞ else,
with µ ∈ R+, κ ∈ N. (5)

This family stops when κ consecutive x-values are within a distance µ of each other and is

analyzed with φ4 below.

3.4 Max-Distance-x∗i test

φ4 (Fi;κ, µ) ≡

 max
i−κ+1≤j≤i

∥∥∥x∗j − x∗i ∥∥∥− µ if i ≥ κ,

∞ else,
with µ ∈ R+, κ ∈ N. (6)

This family stops when κ consecutive x∗i -values are within a distance µ of each other. In

general, members of both of the families defined by φ3 and φ4 are not scale (shift) invariant

unless the procedure generating {xi}i is scale (shift) invariant in f . Both φ3 and φ4 are

monotonically decreasing in µ and monotonically increasing in κ. We examined a test using

max
i−κ+1≤j≤i

‖xj − x∗i ‖ but found the performance to be similar to that of φ3.

3.5 Max-Budget test

φ5 (Fi;κ) ≡
{

0 if i ≥ κ,
∞ else,

with κ ∈ N. (7)

As a point of reference, we include the family corresponding to stopping after a budget of

κ evaluations. This commonly used test is trivially scale and shift invariant.

3.6 Tests based on estimates of the noise

The families of tests introduced above have been broadly parameterized to capture a wide

range of behaviors. We now provide motivation for using an estimate of the noise in some

of tests.

Using νFi = ε̂ir in the special cases of φ1 and φ2 has the benefit of the resulting tests

being both scale and shift invariant. Furthermore, the first term in the definition of φ1
and φ2 is strongly correlated with the magnitude of the noise. This feature is illustrated

in Fig. 2, which demonstrates running a Nelder-Mead method on a 10-dimensional convex

quadratic for levels of stochastic relative noise differing by an order of magnitude. Fig. 2

(left) shows the first term of φ1,
f∗i−κ+1−f∗i

κ , plotted as a function of the number of evaluations
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Fig. 2: First terms in φ1 (left, with κ = 100) and φ2 (right, with κ = 10) (on a log10
scale) when minimizing a 10-dimensional convex quadratic with stochastic relative noise of

different magnitudes. The asymptotes of the quantities shown tend to be separated by the

differences in magnitudes of the noise.

i. Here we see that the quantity generally flattens out at increments separated by the same

order of magnitude as the seven noise levels. This correlation is even more evident in Fig. 2

(right) when the first term of φ2, max
i−κ+1≤j≤i

|fj − f∗i |, is considered.

Consequently, in the numerical tests in Section 4, we restrict our attention to tests based

on φ1 and φ2 for which νFi = ε̂ir . We note that a larger κ is required in Fig. 2 (left) to

prevent the first term in φ1 from prematurely taking a zero value; dependence on parameters

like κ is discussed further in Section 4. We examined plots similar to those in Fig. 2 for the

first terms of φ3 and φ4 but found no such relationship with the noise level. As a result, we

have chosen to not include constants of the form νFi in the definitions of φ3 and φ4.

3.7 Relationship to loss functions

Ideally, an algorithm should stop when the cost of performing additional function evalua-

tions outweighs additional improvements in the function value. When such a trade-off can

be quantified, this problem becomes one of optimal stopping [21]. Results in the literature

typically focus on cases when the distribution of the stochastic improvement is known. We

briefly illustrate a connection to a simple loss function employed in optimal stopping with

our tests.

We focus on the case when the cost of an additional evaluation is constant. This can

be viewed as treating the computational expense per function evaluation as constant, but

the cost and the tests proposed here could be suitably modified as an algorithm enters a

subdomain where the cost of an evaluation changes. Given a sequence {fj}, the loss function

L(i, c) = min
1≤j≤i

{fj}+ c · i (8)
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Fig. 3: Number of evaluations i∗ for a termination test based on (3) that is parameterized by

c. The plots show remarkably similar behavior to the number of evaluations that minimize

L(·, c) in (8).

provides a measure of the success of stopping after i evaluations when the cost per eval-

uation (relative to f∗) is c. This loss function appears in the optimal stopping literature

as the house-selling problem [2], where {fj} are assumed to be independent and identically

distributed random variables.

Fig. 3 shows the minimizer of L(·, c) for a variety of c values on a sequence {fj}3000j=1 output

by a direct search solver on a nonlinear function with deterministic (left) and stochastic

(right) noise. We compare this minimizer with the number of evaluations i∗ defined by (2)

for the family φ1 when c is used as a linear multiplier for the parameter µ. Fig. 3 shows a

strong correlation between the behavior of argmin
i
L(i, c) and the termination test defined

by φ1 using an estimate of the noise and an appropriate choice of the parameters (µ, κ).

This illustrates how varying the parameters in the proposed families can be closely related

to the cost of performing an evaluation.

4 Numerical Experiments

We now demonstrate the merits of the proposed tests and explore the effect of changing

the associated parameter values by considering outputs generated by a set of derivative-free

optimization solvers on a collection of noisy test problems.

We consider the collection of unconstrained least-squares problems used in [17], with

each function taking the form

f(x) = 1 + (1 + σg(x))

m∑
i=1

F si (x)2, (9)

where each F s is a smooth, deterministic function and σ � 1 is a positive scalar used to

control the amplitude of the noise being added to fs(x) =
∑m

i=1 F
s
i (x)2. We begin our
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study by considering stochastic noise, so that g(x) represents independent and identically

distributed (iid) random variables with variance Var {g(x)} = 1. As a result, the relative

noise of these test functions is simply σ and, hence, independent of x. A constant was added

in (9) so that the relative noise is consistently defined; such shifts are commonly performed

in accuracy measures (see, e.g., [6]).

To examine the tests on a diverse set of local methods, we consider sequences {fj}
produced by different derivative-free optimization solvers. Since the relative merits of these

solvers is not the focus of this study, we do not explicitly list these solvers, but we note

that they come from a variety of classes, including model-based methods, implementations

of Nelder-Mead, pattern search methods, and methods that cross these classes.

To more accurately study the effect of our tests, we have made the built-in termination

criteria of these solvers as ambitious as possible in an attempt to remove their influence.

Hence, we ran each solver until either it crashed (e.g., for a numerical reason, such as the

simplex sides being dropped sufficiently below machine precision) or a maximum budget of

5,000 function evaluations was achieved. This budget of evaluations is significantly larger

than the one considered in [17], and we consider it to be more than sufficient for the

problems in this set, which range in dimension from n = 2 to n = 12. We denote the

maximum number of function evaluations (either 5,000, or fewer if the solver crashed) by

imax.

We then have a set of 318 nonnegative sequences {fj}imax
j=1 , which constitute our set of

problems P. We use these problems to examine the performance of a set of tests T , defined

as members of the families proposed in Section 3. For a test t ∈ T and problem p ∈ P, we

denote i∗p,t to be the number of function values after which test t would stop on problem p.

If the test is not satisfied before the maximum number of evaluations imax of problem p, we

let i∗p,t = imax to mirror what would be done in practice.

4.1 Accuracy profiles for the φ1 family

Termination criteria that are too easily satisfied have limited practicality since they could

stop with a function value far from the minimum. We will measure this ability by considering

the relative difference between f∗i∗p,t and f∗imax
,

ep,t =


∞ if i∗p,t = imax,
f∗
i∗p,t
−f∗imax

f∗
i∗p,t

if i∗p,t < imax.
(10)

We note that, with the exception of the case i∗p,t = imax, (10) is the relative error re(α, β) =
|α−β|

max(|α|,|β|) but exploiting the fact that the sequence {fj} is monotone and strictly positive.

It follows that ep,t ∈ [0, 1] ∪ {∞}. The exception i∗p,t = imax is made in order to focus on

problems where the test terminated short of the maximum budget imax.

For this study, we consider the termination by test t to have occurred with acceptable

accuracy on problem p if ep,t is within a small multiple of the relative noise for problem p.
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Fig. 4: Accuracy profiles for members of the φ1 family on problems (9) with two different

magnitudes of (known) stochastic relative noise σ. In the top plots, κ is held fixed and the

shown members have different µ values. In the bottom plots, µ is held fixed and the shown

members have different κ values.

For each test t considered, we plot the cumulative distribution function

ωt(a) =
1

|P| |{p ∈ P : ep,t ≤ a}| , a ∈ [0, 1],

where | · | denotes the cardinality of a set. A test successfully terminates within the level

of the noise on the collection of problems P if its accuracy profile has large values of ωt(cσ)

for constants c ≥ 1 of modest size. On the other hand, as we discuss next, smaller values of

ωt(cσ) are desired for c � 1 since otherwise it is possible that a test should have stopped

sooner.

In Fig. 4 we consider stochastic problems of the form (9) with two different levels of

relative noise, σ = 10−3 (left) and σ = 10−7 (right). We focus on the family of tests given

by φ1 in (3), with the relative noise σ being known exactly. The top plots of Fig. 4 study

the effects of varying the parameter µ, while the bottom plots study the effects of varying

the parameter κ. The vertical lines in Fig. 4 denote a = σ as a point of reference.
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The left asymptote of ωt shows the fraction of problems on which the test stopped after

it reached the minimum value f∗imax
, while the right asymptote is the fraction of problems

for which the test was satisfied with i∗p,t < imax. Values ep,t ≈ 1 correspond to cases when

test t stopped with a function value well above f∗imax
; these values indicate that the test is

too easily satisfied on problem p.

For the top two plots in Fig. 4, we see the φ1 family for various values of µ with κ fixed

to 20 times the dimension n of each problem. We note that even though φ1 is monotone

in µ, the accuracy profiles ωt can cross because the relative error measure ep,t does not

preserve the monotonicity. Fig. 4 shows that as the tests get less conservative (as µ grows),

a number of problems are terminated well before the relative error is on the order of the

noise. On the other hand, not much is gained by setting µ less than 10−1 or 10−2.
The bottom two plots in Fig. 4 show φ1 family members for fixed µ = 10−2 and various

values of κ, which can be thought of as a backward difference parameter. Little improvement

is seen for κ > 20n, but a marked decrease in accuracy occurs when κ < 10n. Many problems

are stopping with a large relative error, in part because f∗j can remain unchanged for many

consecutive j. For example, the lower left plot shows that for noise affecting the third digit,

on all 318 problems f∗j remained unchanged for 3n consecutive evaluations before j = imax

was reached.

4.2 Performance profiles for the φ1 family

While accuracy profiles can quantify when a test stops too soon, they may not reveal

which tests require excessive function evaluations to achieve high accuracies. For example,

the maximum budget test φ5 trivially achieves ideal accuracy but can make many more

evaluations than are required to get sufficient accuracy.

We use performance profiles [7] to compare different stopping rules in terms of both

accuracy and the number of function evaluations required. A performance profile requires

a convergence test as well as a performance measure rp,t for each problem p ∈ P and test

t ∈ T . We use the number of evaluations i∗p,t as our performance measure and a convergence

test requiring that the solution obtained is within a factor τ of the final one,

f∗i∗p,t − f
∗
imax
≤ τ |f∗i∗p,t | ε̂ir . (11)

The convergence test has the effect of setting the performance measure i∗p,t =∞ whenever

the original i∗p,t does not satisfy (11). The performance ratio

rp,t =


i∗p,t

min
{
i∗
p,t̃

:t̃∈T , (11) satisfied for (p,t̃)
} if (11) is satisfied for (p, t)

∞ else

measures the relative performance on problem p of test t when compared with the other

tests in T .

The performance profile

ρt(α) =
| {p ∈ P : rp,t ≤ α} |

|P|
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Fig. 5: Performance profiles for the most accurate φ1 tests on problems (9) with two different

magnitudes of (known) stochastic relative noise σ. Note that the α-axis has been truncated

for each plot; φ5 eventually terminates all of the problems and thus has a profile that will

reach the value 1; all other tests change by less than .01.

then represents the fraction of problems where test t satisfied the accuracy requirement (11)

with a number of evaluations within a factor α of the best-performing, sufficiently accurate

test. Larger values of ρt(α) are hence better, with ρt(1) being the fraction of problems

where t has successfully terminated first among all tests in T and limα→∞ ρt(α) being the

fraction of problems for which t satisfied (11).

Fig. 5 shows the performance profiles for the most accurate φ1 family members for a

convergence level τ = 1 in (11) and two levels of noise σ. We include φ5(·; imax) in T as

a point of reference to indicate an upper bound on the fraction of problems that all other

tests may not have terminated with i∗p,t < imax; this strategy also ensures that at least one

test in T will satisfy (11) for any τ ≥ 0.

These performance profiles illustrate that some members of the φ1 family of tests require

a fraction of the full imax evaluations. This is the case especially for larger magnitudes of

noise, where less accurate solutions are demanded, and this advantage can be extended if τ

is increased in (11). As τ decreases, more conservative tests become more appealing because

the convergence test (11) is more difficult to satisfy. Likewise, as the noise decreases, (11)

demands more accurate solutions, and it becomes necessary to perform imax evaluations on

a larger share of the problems. Although we have examined performance profiles for various

τ , we fix τ = 1 for the remainder of the paper.

These performance profiles also demonstrate how more liberal stopping rules can be

more successful than the accuracy profiles reveal. For example, in Fig. 4, φ1(·; ·, 20n, 0) and

φ1(·; ·, 20n, 10−2) looked nearly identical in terms of their accuracy, but in Fig. 5 we see a

marked difference in the performance measures. The right asymptotes of their performance

profiles are nearly identical, a reflection of their accuracy profiles at a = σ, but the rest of the

profiles show that φ1(·; ·, 20n, 10−2) uses considerably fewer function evaluations to satisfy
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Fig. 6: Accuracy (top) and performance (bottom) profiles for the φ2 family on problems

(9) with two different magnitudes of stochastic relative noise σ as κ and µ are varied.

this accuracy requirement. Because of this high accuracy and performance, we consider

φ1(·; ·, 20n, 10−2) to be the best stopping rule in its family.

4.3 Accuracy and performance plots for the φ2 family

Having outlined our procedure for determining what constitutes good members of the φ1
family, we can now quickly do so for the family based on φ2 in (4).

The accuracy profiles in the upper left plot of Fig. 6 show that the φ2(·; ·, 10n, 1) test was

satisfied on less than 5% of the problems, and so µ ≤ 1 has little relevance for this family.

In our experience, decreasing κ did not alleviate this problem for small µ. In general, φ2
tends to be much more sensitive to the value κ than are tests based on φ1. We also see that

φ2 is more accurate at smaller values of κ than φ1 was; κ = 3n is now a more competitive

parameter choice. This trade-off in accuracy comes at the cost of the φ2 tests being more

conservative and, hence, satisfied on fewer of the problems.

We again use performance profiles to measure whether tests are overly conservative. As

indicated by the larger range for α in the bottom two plots of Fig. 6, the φ2 family of tests are
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Fig. 7: Accuracy (top) and performance (bottom) profiles for the best tests on problems

(9) with two different magnitudes of stochastic relative noise σ. The horizontal axes on the

performance profiles are truncated for clarity; φ5 eventually achieves a value of 1; all other

tests change by less than .03.

more difficult to satisfy overall, and the number of function evaluations required compares

slightly less favorably with imax than for the φ1 family. We also see that φ2(·; ·, 3n, 10) tends

to be the most liberal test, in part because it requires fewer consecutive evaluations than the

other members shown as indicated by the value of κ, but that φ2(·; ·, 10n, 10) requires just

a small increase in the function values while solving a greater fraction of problems overall.

Based on our computational experience, we consider φ2(·; ·, 10n, 10) to be the best test in

this family for these problems.

4.4 Across-family comparisons

We performed similar comparisons for the members of the φ3 and φ4 families, but the

analysis is identical to what has been presented above. For the benchmark problems P, we

found φ3(·; 3n, 10−9) and φ4(·; 20n, 0) to be the best among their respective families.

Having identified the best members of each family of tests, we compare them head-to-
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head in Fig. 7. The top two plots of Fig. 7 demonstrate that when the four tests considered

stop with fewer than imax evaluations, they all tend to have obtained a solution within the

level of the noise, φ3 being the slight loser of the group because of the .05 jump past a = σ.

The φ1(·; ·, 20n, ·) test tends to be the most successful in this metric, because it terminates

on a larger fraction of problems while still being accurate.

On the other hand, the lower two plots of Fig. 7 show that the test based on φ2 generally

requires fewer evaluations to be satisfied. The tests based on φ3 and φ4 both tend to require

more evaluations and satisfy the convergence test on a smaller fraction of the problems.

4.5 Deterministic noise

We now consider how these tests perform in the presence of deterministic noise by using

functions of the form (9), with a deterministic g. To model deterministic noise, we use the

same g combining high-frequency and lower-frequency nonsmooth oscillations as used in [17],

with g : Rn → [−1, 1] defined by the cubic Chebyshev polynomial g(x) = ξ(x)(4ξ(x)2− 3)),

where

ξ(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2).

Using the technique in [18], we consistently estimated the relative noise in the 318 resulting

problems to be of the order 0.6σ, provided that the sampling distance is appropriately

chosen.

The accuracy profiles in Fig. 8 show a mild decrease in accuracy for the best tests

compared with stochastic noise in Fig. 7. As a result, we see that on just over 10% (20%) of

the problems, the test based on φ1 (φ2) now terminates while not satisfying the convergence

test (11) with τ = 1 when σ = 10−3. An improvement upon these tests is discussed in the

next section.

5 Conclusions

In this paper we have considered parameterized families of termination tests that require

solely a history of evaluations (points and function values) from an optimization solver. Our

analysis and experiments show how values for these parameters can be changed to reflect a

user’s view of the expense of an additional function evaluation and the accuracy demanded,

the two characteristics that form the basis for (1).

Our study of stochastic noise confirmed that tests based on x values do not perform as

well as tests based on function values when the accuracy of the final function value is the

primary metric.

We found that our tests based on function values (φ1 and φ2) can be sensitive to how

far back in the history these values are examined, as described by the parameter κ. This

result is important since previous work generally focused on successive decreases [17] or

values on a simplex or stencil [9]. The choice of κ must balance the competing demands of

terminating prematurely and identifying potentially irreparable stagnation.
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Fig. 8: Accuracy (top) and performance (bottom) profiles for the best tests on problems

(9) with two different magnitudes of deterministic noise. The horizontal axes on the perfor-

mance profiles are truncated for clarity; φ5 eventually achieves a value of 1; all other tests

change by less than .03.

In our study of stochastic noise we encountered a nontrivial number of problems where

a solver found no change in f∗ for 300 or 400 evaluations but then found change in the first

digit of the solution. Hence we recommend a baseline value of κ = 20n, with a corresponding

µ less than or equal to 0.1 for φ1. Good performance for φ2 can still be seen for κ less than

10n, but this test is more sensitive to µ values. For µ � 10, φ2 tests are rarely satisfied,

whereas for µ� 10, termination can occur with an inaccurate solution.

We have also seen that fewer problems are terminated before the budget constraint as

noise (measured by σ) becomes small. In these cases, however, a solver’s built-in termination

criteria should be satisfied more easily.

In general, we found that the tests based on φ1 and φ2 were also able to stop considerably

short of the maximum budget on the deterministic problems examined but that this result

was obtained at the cost of lower accuracy. We therefore recommend that these tests be

made more conservative for deterministic noise and again allow the solver’s built-in tests to

stop a run when necessary. The effect is shown in Fig. 9, where we see that tests based on
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Fig. 9: Performance profiles for more conservative tests on problems (9) with two different

magnitudes of deterministic noise. The horizontal axes on the performance profiles are

truncated for clarity; φ5 eventually achieves a value of 1; all other tests change by less than

.03.

φ1 and φ2 perform better when κ is increased by 10n. In practice, one would also need an

estimate of the relative noise ε̂ir , but our results of φ1 and φ2 varying the linear multiplier

of the noise, µ, show that the test remain relatively stable if ε̂ir is estimated within an order

of magnitude.

Our last comments underscore that we do not consider the termination of noisy opti-

mization problems to be a solved problem. To the contrary, there is no free lunch: any test

that seeks to save expensive evaluations will always sacrifice something in terms of accuracy,

and any test pursuing accuracy in general will pay through function values. Accepting this

trade-off, and choosing a test with the appropriate balance specific to a problem in hand,

is often the best one can hope for.
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[7] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance pro-

files. Math. Programming 91, 201–213 (2002). DOI 10.1007/s101070100263

[8] Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons, New

York (1987)

[9] Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London

(1981)

[10] Gramacy, R.B., Taddy, M.A.: Categorical inputs, sensitivity analysis, optimization

and importance tempering with tgp version 2, an R package for treed Gaussian process

models. J. Statistical Software 33(6), 1–48 (2010). DOI 10.1198/jcgs.2010.192jss

[11] Gratton, S., Mouffe, M., Toint, P.: Stopping rules and backward error analysis for

bound-constrained optimization. Numerische Mathematik pp. 1–25 (2011). DOI 10.

1007/s00211-011-0376-1

[12] Huyer, W., Neumaier, A.: SNOBFIT – Stable noisy optimization by branch and fit.

ACM Trans. Math. Softw. 35, 9:1–9:25 (2008). DOI 10.1145/1377612.1377613

[13] Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the

Lipschitz constant. J. Optimization Theory and Applications 79, 157–181 (1993).

DOI 10.1007/BF00941892

19



[14] Kelley, C.T.: Users Guide for imfil version 1. Available at www4.ncsu.edu/~ctk/

imfil.html

[15] Kelley, C.T.: Detection and remediation of stagnation in the Nelder-Mead algorithm

using a sufficient decrease condition. SIAM J. Optimization 10(1), 43–55 (1999). DOI

10.1137/S1052623497315203
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