
Globus XIO Pipe Open Driver: Enabling GridFTP to
Leverage Standard Unix Tools

Rajkumar Kettimuthu1. Steven Link2. John Bresnahan1. Michael Link1. Ian Foster1,3

1Computation Institute

Argonne National Lab & U.Chicago

Chicago, IL 60637

2Department of Computer Science

Northern Illinois University

DeKalb, IL 60115

3Department of Computer Science

University of Chicago

Chicago, IL 60637

ABSTRACT
Scientific research of all disciplines unavoidably creates
substantially large volumes of data throughout the process
of discovery, analysis and conclusion. Given the necessity
for data sharing and data relocation, members of the
scientific community are often faced with a productivity
loss which correlates with the time cost incurred during
the data transfer process. GridFTP protocol was
developed to improve this situation by addressing the
performance, reliability and security limitations of
standard FTP and other commonly used data movement
tools such as SCP. The Globus implementation of
GridFTP is widely used to rapidly and reliably move data
between geographically distributed systems.
Traditionally, GridFTP performs well for datasets
containing large files. When the data is partitioned into
many small files, it suffers from lower transfer rates.
Though the pipelining and concurrency solution in
GridFTP provides improved transfer rates for lots of small
files datasets, these solutions cannot be applied in
environments that have strict firewall rules. In such
scenarios, tarring up the files in a dataset on the fly will
help. In certain scenarios, compression is desired, in other
cases, a checksum of the files after they are written to
disk, is desired. There are robust system tools in Unix that
perform these tasks (tar, compress, checksum, etc.). In
this paper, we present the Globus XIO Pipe Open Driver
(Popen) that enables GridFTP to leverage the standard
Unix tools to perform certain tasks. We show how this
driver is used in GridFTP to provide a number of useful
features. We demonstrate the effectiveness of this
functionality through an experimental study.

CATEGORIES
H.3.4 Systems and Software

GENERAL TERMS
Pipe, Checksum, Bulk Data Movement, Data Transfer, Tar
Stream

1. INTRODUCTION
Global scale science that can meet today’s global
challenges requires the ability to share and use an ever-
increasing range and volume of data from geographically

distributed sources. Rapid increases in the raw capacity of
the science networks makes it feasible to move large
volumes of data across wide area networks. In practice,
rapid, efficient, and robust wide area end-to-end transport
is technically challenging. Globus GridFTP [1]
implements the GridFTP extensions [2] to the File
Transfer Protocol (FTP) [3], which provide support for
parallel data movement, failure detection, and other
features. Globus GridFTP is widely deployed and used on
well-connected Grid [4,5] environments such as those of
the TeraGrid [6] because of its ability to scale to network
speeds. However, when the data is partitioned into many
small files instead of fewer large files, it suffers from
lower transfer rates. The latency between the serialized
transfer requests of each file directly lowers achieved
throughput. Pipelining [7] allows many transfer requests
to be sent to the server before any one completes. It hides
the latency of each transfer request by sending the
requests while a data transfer is in progress. The
concurrency [8,9] solution addresses this by opening up
multiple transfer sessions and transferring multiple files
concurrently. However, both pipelining and concurrency
cannot be applied in environments that have strict firewall
rules. In such scenarios, tarring up the files in a dataset on
the fly will help improve the performance. There are
scenarios where it makes sense to compress a file before
transfer. In many cases, users want to verify the integrity
of the data by doing a checksum after the data has been
written to disk. There are robust tools available to perform
these tasks and it makes sense for GridFTP to utilize these
tools. In this paper, we present the Globus XIO [10] Pipe
Open Driver (Popen) that enables GridFTP to leverage the
standard Unix tools to perform certain tasks. We show
how this driver is used in GridFTP to provide a number of
useful features, such as SSH-based security for GridFTP,
on-the-fly tarring and untarring of files. We demonstrate
the effectiveness of this functionality through an
experimental study comparing the performance of on-the
fly tarring and untarring of files, alongside pipelining and
concurrency. Additionally, we compare the performance
of checksum via Popen with that of the legacy checksum
feature in GridFTP. The rest of the paper is organized as
follows: Section 2 provides background on GridFTP and
Globus XIO. Section 3 describes the Globus XIO pipe
open driver. In section 4, we describe the use cases of

Popen driver including SSH GridFTP, on-the-fly tar and
checksum. Section 5 provides the experimental results
and we summarize in Section 6.

2. BACKGROUND
In this section we provide details on GridFTP and the
Globus eXtensible Input/Output (XIO) framework.

2.1 GridFTP
The GridFTP protocol is a backward-compatible
extension of the legacy RFC959 FTP protocol. It
maintains the same command/response semantics
introduced by RFC959. It also maintains the two-channel
protocol semantics. One channel is for control messaging
(the control channel) such as requesting what files to
transfer and the other is for streaming the data payload
(the data channel). Once a client successfully forms a
control channel with a server, it can begin sending
commands to the server. In order to transfer a file, the
client must first establish a data channel. This task
involves sending the server a series of commands on the
control channel describing attributes of the desired data
channel. Once these commands are successfully sent, a
client can request a file transfer. At this point a separate
data channel connection is formed using all of the agreed-
upon attributes, and the requested file is sent across it.
In standard FTP, the data channel can be used to transfer
only a single file. Subsequent transfers must repeat the
data channel setup process. GridFTP modifies this part of
the protocol to allow many files to be transferred across a
single data channel. This enhancement is known as data
channel caching. GridFTP also introduces other
enhancements to improve performance over the standard
FTP mode. For example, parallelism and striping allow
data to be sent over several independent data connections
and reassembled on the destination. These enhancements
require the use of the extended block mode (MODE E) of
GridFTP. In this mode, data channels must go from
sender to receiver. GridFTP servers are typically
configured to listen on one port for the control channel,
and to use a configurable port range for data channel
connections. Firewalls have to be configured accordingly.
Globus GridFTP is widely used to move large volumes of
data over the wide area network. The XIO-based Globus
GridFTP framework makes it easy to plug in other
transport protocols. The Data Storage Interface (DSI) [11]
allows for easier integration with various storage systems.
It supports non-TCP [12] based protocols such as UDT
[13,14] and RDMA [15]. It also provides advanced
capabilities such as multilinking [16] and transfer
resource management [17].

2.2 Globus XIO
XIO is an extensible and flexible I/O library written for
use with the Globus Toolkit. XIO is written in the C

programming language and provides us with one API that
currently supports many different wire protocols. All
implementations of these protocols are encapsulated as
drivers that are modular.

GridFTP uses the XIO interface for network and disk I/O
operations. The XIO framework presents a single,
standard open/close, read/write interface to many
different protocol implementations. The protocol
implementations, called drivers, are responsible for
manipulating and transporting the user’s data. Drivers are
grouped into a stack. When an I/O operation is requested,
the XIO framework passes the operation request down the
driver stack. An XIO driver can be thought of as a
modular protocol interpreter that can be plugged into an
I/O stack without concern about the application using it.
This modular abstraction is what allowed us to achieve
our success here without disturbing the application’s
tested code base and without forcing endpoints to run new
and unfamiliar code.

Figure 1. Typical Application Interaction
with Varous Devices

Figure 2. Application Interaction with
Various Devices via Globus XIO

3. GLOBUS XIO POPEN DRIVER
Combining multiple tools to accomplish complex tasks
with ease is not a new concept. In a typewritten piece of
paper, Doug McIlroy described pipes in 1964, long before
the advent of Unix. Unix pipes are commonly used to
construct powerful Unix command lines by combining
Unix commands. Pipes are a Unix feature which allows

you to connect several commands together in one line and
pass data from one to the next. The data is processed by
each command and then passed on to the next command.
Globus XIO pipe open driver is designed to allow
GridFTP clients to use pipe to combine GridFTP with
other Unix tools even on the remote GridFTP server.
Figure 2 shows five boxes with different names. The
“Client” box represents client logic; the “Server” box
represents the GridFTP server logic. The “Data,” and
“Popen,” boxes represent Globus XIO drivers. The
“Data” driver handles the network interactions for the
GridFTP server. “Popen” driver is the new XIO driver
created to provide piping capability. The piping
functionality is achieved by allowing the GridFTP client
to replace the “File” driver that handles the file system
interactions with the new XIO driver, the pipe open
(Popen) driver, on the GridFTP server’s disk I/O stack.
As the data blocks pass through the Popen driver, it gets
piped to the Unix command that the client provides and
the output of that command gets written to the disk. When
the data is being read from the server, the data read from
the disk is passed through the Unix command before it
gets written to the network. This approach is minimally
invasive to the tested and robust GridFTP server.
The Popen driver allows users to access the standard I/O
of existing programs by opening pipes to standard I/O.
This really provides the same functionality as you can
expect with UNIX pipes, yet the user doesn’t need to
worry too much about what is exactly happening with the
pipes. Essentially, the user can execute commands to
programs allowing for instance, a directory of files on a
remote server to have a checksum computed using
/bin/md5sum and the result sent to the standard input of
the initiating host.
We note that execution of arbitrary programs as part of a
data transfer opens a potential security risk. For this
behavior to be allowed on the server, all programs that the
user might execute using the Popen driver, as well as the
Popen driver itself must be explicitly added to the
whitelist at the time the GridFTP server is run. A server
only permits execution of programs on its Popen
whitelist. If a client requests a program to be run that is
not on the whitelist, the transfer fails. Below we
demonstrate the command necessary to enable Popen and
tar when running a GridFTP server:

globus-gridftp-server -fs-whitelist
popen,file,ordering -popen-whitelist tar:/bin/tar

Breaking the above command down, we see the standard
command for running a GridFTP server, followed by the
first whitelist command with 3 arguments, popen, file and
ordering. The fs whitelist is a comma-separated list of
drivers allowed on the disk stack. We load the Popen
module which gives us access to the Popen driver
functionality, we load the File driver, this allows us to
also conduct non-Popen operations (regular file system
interactions), and finally we load the ordering driver. This

is there because when sending data to a pipe it needs to be
in order. Often, GridFTP data streams are not in order.
The Ordering driver will re-order data and make sure the
data that is being directed to the pipe in order. Next we
see the popen whitelist, this is a comma-separated list of
programs that the Popen driver is allowed to execute. In
our case above we see tar:/bin/tar, effectively allowing the
Popen driver to use the tar program.

Figure 3: Pipe Open XIO Driver

4. POPEN DRIVER USE CASES
In this section we describe the various use cases of the
Globus XIO Popen driver.

4.1 SSH GridFTP

Figure 4. SSH GridFTP
One of the key advantages of the Popen driver is that it
allows us to add SSH [18] as an alternate security for
authenticating with GridFTP, with relative ease. The
Globus Toolkit's GridFTP code base has become the de
facto standard for data movement within Grid projects,
and is in use in the vast majority of such projects in the
U.S. and abroad. These projects appreciate GridFTP's
integration with the public key infrastructure (PKI)-based
Grid Security Infrastructure (GSI) [19], as well as its
implementation of the fast, efficient, and robust GridFTP
data transport protocol. Another important user
community for GridFTP comprises small application
groups and researchers whom often report that they
struggle due to challenges inherent in configuring GSI.
For this user community, GridFTP's reliance on GSI can
represent a time investment that is not justified, due to the
associated need to establish, configure, and manage an

appropriate PKI. Thus, these communities have expressed
a strong interest in seeing extensions to GridFTP that
would allow for alternative security solutions. We have
added SSH as an alternative security mechanism to
authenticate GridFTP clients and servers using the Popen
driver. The Popen driver allows us to route the control
channel over SSH easily. While globus-url-copy
(commonly used GridFTP client) popens the SSH client.
The SSH client authenticates with the SSH daemon
running on the server machine and remotely starts the
GridFTP server as a user process on the server machine.
Now the standard input and standard output (both
protected by SSH) becomes the control channel. This
process is illustrated in Figure 4.

4.2. On-the-fly tar
As described in Section 2.1, GridFTP enhancements such
as data channel caching, parallelism, and striping require
the use of the extended block mode (MODE E) [2] of
GridFTP. In this mode, data channels must go from
sender to receiver. Also Mode E uses a configurable port
range for data channel connections. Firewalls have to be
configured accordingly.
Some environments, biomedical and health care
environments for example, impose specialized
requirements on a computing infrastructure [20]. In
particular, participating institutions have differing firewall
requirements, ranging from no firewall to one or more
institutional firewalls.
Some sites do not allow any inbound connections to client
machines. Thus, MODE E, which enables advanced
GridFTP performance features such as pipelining,
parallelism, and striping, cannot be leveraged in transfers
on these clients for downloads, because inbound
connections are blocked by firewalls. Data has to be
downloaded using the standard FTP mode, where a
separate TCP data connection has to be formed for each
file to be sent. The result is greatly reduced performance.
Faced with large datasets composed of many very small
files, it’s noted that the FTP protocol becomes quite
inefficient because with each file, a data channel needs to
be opened and then closed. This problem develops further
when considering the TCP TIME _WAIT that takes place
before completely closing the data channel. This wait
time can exist in some cases for up to 4 minutes and
usually not less than 1 minute, however, the actual time is
dependent on your operating system. Additionally, this
small files case can be worsened if the executing transfer
reaches the maximum number of TCP connections (by
doing concurrent transfers), in which any additional data
channel requests for the transfer will hang. Taking into
consideration the numerous complexities of the many
small files problem, we leveraged the Popen driver to tar
up the files on the fly. This powerful feature allows us to
archive a directory at the source, transfer the file as a
single archive, and un-tar the file as it arrives at its
destination directory.

The following steps illustrate a scenario of a directory
download:
1. The client creates a control channel connection to the

server and tells the server that the requested data
must be archived prior to the transfer.

2. If the server has popen support enabled, the server
archives the data with the specified command, and
sends the resulting data as a stream over a single data
channel, as generated by the archive program (e.g.,
tar).

3. The client receives the archive file over the data
channel and unpacks it as it is received (again using
tar), recreating the directory structure in the client file
system.

This provides several tangible benefits, among them;
entire transfers are completed with one command similar
to the standard globus-url-copy command, with some
additional arguments relating to the program that we are
piping data through. Another major benefit here is that
this requires only a single data channel, which is quite
necessary in situations where a limit is placed on
concurrent channel connections. This situation can arise
with firewalls that simply won’t allow a user to have
concurrent connections.
We find it necessary to compare the performance of the
Popen driver with the performance of several of our other
options for transferring files. The reader should take into
account the overall benefits of using only one data
channel in a transfer when examining the results, as in
some cases transfers using concurrent connections will
close in on or slightly exceed the performance of the
Popen driver.

4.3 Checksum
GridFTP protocol has a CKSM command to checksum a
file. In order to checksum a directory containing large
number of files, traversing the remote directory and
performing a checksum on files, one at a time, using the
CKSM command is pretty time-consuming, The Popen
driver with md5sum whitelisted, allows us to pipe
commands through md5sum and complete a checksum of
a file or directory on a remote host. The following steps
illustrates the process of doing integrity checks via popen
for a directory upload
1. Upload the directory, e.g. using the tar-stream

method
2. Invoke the proper globus-url-copy command to use

Popen driver enabled GridFTP to run md5sum to
compute checksums of all files in the uploaded
directory, and to transfer the result file back to the
local machine.

3. Create a local checksum file of the local directory
4. Compare the results of the checksum’s of the two

datasets to verify integrity of the uploaded directory.

5. EXPERIMENTAL RESLUTS

Figure 5. Throughput comparison on 60ms WAN

Figure 6. Throughput comparison on 20ms WAN

Figure 7. Throughput comparison on 4ms WAN

Figure 8. Checksum performance comparison

0
20
40
60
80
100
120
140
160
180

Th
ro
ug
hp

ut
 in
 M

Bi
t/
s

Files_File Size

Comparison of Data Transfer
between PSC Pople and Purdue

Steele. RTT = 20ms

base

 ‐pp

 ‐cc

 popen

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

Ti
m
e
in
 S
ec
on

ds

#Files_Size Files

Comparison Checksumming
between PSC Pople and Purdue

Steele. RTT = 20

sync

popen
md5sum

0

20

40

60

80

100

120

140

160

180

Th
ro
ug
hp

ut
 in
 M

bi
t/
s

#Files_FileSize

Comparison of Data Transfer
between NCSA Ember and SDSC

Trestles. RTT = 60ms

base

 ‐pp

 ‐cc

 popen
0

5

10

15

20

25

30

35

40

45

Th
ro
ug
hp

ut
 in
 M

Bi
t/
s

#Files_Size Files

Comparison of Data Transfers
between NCSA Lincoln ans
UChicago Never-2 = RTT 4

base

 ‐cc

 popen

5.1 Experimental Setup
Our testing will reflect a total of three separate testing
relationships between a total of six different hosts,
although the methods and transfer datasets should be
considered identical. These hosts, five of which belong to
TeraGrid, were selected based on their Round-Trip Times
(RTT) where the goal was to test with resource pairs
having RTT’s of 4ms, 20ms, and 60ms. The tests were
invoked via pre-scripted commands and results redirected
into appropriate files. To avoid any potential setbacks
with system administrators and current firewall
restrictions, all tests were conducted on Globus GridFTP
servers built and installed on the user account of the
individual conducting the testing. The servers were run
with the appropriate whitelist arguments on both the
source and destination hosts of the transfer. Our chosen
resources were as follows: Pittsburgh Supercomputing
Center’s (PSC) resource Pople, and Purdue University’s
resource Steele with an RTT of 20ms, National Center for
Supercomputing Application’s (NCSA) resource Ember
and SanDiego Supercomputing Center’s (SDSC) resource
Trestles with an RTT of 60ms, NCSA’s resource Lincoln
and University of Chicago’s resource Never-2 with an
RTT of 4ms. All datasets used for testing were 5GB in
total size. The range of files in the datasets, which
consisted of 5 separate denominations of files and file
sizes, were as follows– 104,857 50KB, 52,428 100KB,
20,971 250KB, 10,485 500KB and 5,120 1MB. Various
“blips” in testing occurred and are attributable to system
load.

5.2 On the fly tar
Figures 5-7 compares the performance of transfers using
the tar stream functionality in GridFTP with that of the
baseline GridFTP and GridFTP with other lots of small
files optimizations. The chosen transfer utilities and their
arguments were as follows– globus-url-copy with no lots
of small files optimization (base), globus-url-copy with
only (-pp), globus-url-copy with only (-cc) (in which case
a value of 10 was found to be the most acceptable while
balancing performance and efficiency,) and finally,
globus-url-copy with the necessary commands to utilize
the Popen driver to tar and untar the dataset (popen).
Our testing reveals that in most cases, as our RTT
increases, so does the difference in transfer throughput
between the Popen driver tarstream and others with the
exception of –pp. For –pp the transfer throughput
increases as RTT increases as it is expected. The –pp
option eliminates the inter-file latency on the control
channel and thus the effect of –pp is more pronounced as
the RTT increases. However, -pp is not as good as the tar
option. We are not sure why there is a drop in
performance for the 1MB files in Figure 5. We suspect
that it is attributed to external factors such as increase in
system or network load.

We identify that in several cases using –cc, that the results
begin to close in, but generally not overcome, our popen
tarstream. It should be recalled that, our –cc was executed
with a value of 10 for all tests, a value which is already a
relatively resource demanding 10 concurrent connections,
and yet we still see superior performance from the data
channel in use by our tar stream.

We ran into some issues running –pp tests between NCSA
and UChicago (Figure 7). That’s why –pp numbers are
not shown on that graph. We will include those numbers
in the final version of the paper.

5.3 Checksum
We compared the performance of computing checksums
using md5sum via the Popen driver in the GridFTP server
with that of computing checksums using the CKSM
command in GridFTP. The CKSM command in the
Globus implementation of GridFTP uses the OpenSSL
libraries to compute checksums. These tests were
conducted on only one pair of the resources listed in
section 5.1. Those resources are PSC Pople and Purdue
Steele. However, we will be using the all of the same
datasets for these tests.

While a few extra steps were involved in computing the
checksums using the Popen driver (as described in
Section 4.3), it results in significant timesaving as shown
in Figure 8. Please note that the x-axis in Figure 8 is
different from that of the x-axes in Figures 5.7. The file
size goes from 1MB to 50KB. Percentage improvement in
performance increases as the file size decreases. For the
dataset with largest number of files – 104,857 50KB files,
it took the traditional checksum method nearly 2500
seconds longer (almost twice as long) to complete than it
did our md5sum method. Data integrity check using the
popen md5sum option takes a certain amount of initial
preparation. It should be noted that, the times represented
in our results for the popen md5sum method are a
combination of the resource time taken to complete all the
steps involved.

6. SUMMARY
In this paper, we described the design of Globus XIO Pipe
Open driver that enables an application to leverage
existing tools much in the same way as standard Unix
pipes. We showed a few different use cases of this driver
in the context of GridFTP. We showed how its been used
to provide functionalities such as SSH based security for
GridFTP, on-the-fly tar to improve the performance of
lots of small files data sets and faster checksum
calculation for directories containing many files using the
Unix checksum utilities. We also evaluated the
performance of some of these capabilities and showed
that they can bring significant performance
improvements.

Acknowledgment

This work was supported in part by the Office of
Advanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357
References
[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.

Dumitrescu, I. Raicu, and I. Foster, “The Globus Striped
GridFTP Framework and Server, SC'05,” ACM Press,
2005.

[2] W. Allcock, “GridFTP: Protocol Extensions to FTP for the
Grid,” Global Grid Forum GFD-R-P.020, 2003.

[3] J. Postel and J. Reynolds, “File Transfer Protocol,” IETF,
RFC 959, 1985.

[4] I. Foster and C. Kesselman, The grid: blueprint for a new
computing infrastructure. Morgan Kaufmann Publishers
Inc., 1999.

[5] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of
the Grid: Enabling scalable virtual organization,” The
International Journal of High Performance Computing
Applications, vol. 15, no. 3, pp. 200–222, Fall 2001.

[6] TeraGrid. http://www.teragrid.org.
[7] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I.

Foster, "GridFTP Pipelining," in Teragrid 2007 Conference
Madison, WI, 2007.

[8] R. Kettimuthu, A. Sim, D. Gunter, B. Allcock, P. Bremer,
J. Bresnahan, A. Cherry, L. Childers, E. Dart, I. Foster, K.
Harms, J. Hick, J. Lee, M. Link, J. Long, K. Miller, V.
Natarajan, V. Pascucci, K. Raffenetti, D. Ressman, D.
Williams, L. Wilson, L. Winkler, "Lessons learned from
moving Earth System Grid data sets over a 20 Gbps wide-
area network", 19th ACM International Symposium on
High Performance Distributed Computing (HPDC), 2010

[9] W. Liu, B. Tieman, R. Kettimuthu, I. Foster, “A Data
Transfer Framework for Large-Scale Science
Experiments,” 3rd Intl. Wksp. on Data Intensive
Distributed Computing (DIDC 2010) in conjunction with
19th Intl. Symposium on High Performance Distributed
Computing (HPDC 2010), June 2010.

[10] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link, “The
Globus eXtensible Input/Output System (XIO): A Protocol
Independent IO System for the Grid,” in Proceedings of the
19th IEEE International Parallel and Distributed Processing
Symposium - Workshop 4, Vol. 5, IEEE Computer Society,
Washington, DC, 2005. 179.1. DOI=
http://dx.doi.org/10.1109/IPDPS.2005.429

[11] R. Kettimuthu, M. Link, J. Bresnahan, and W. Allcock,
“Globus Data Storage Interface (DSI) – Enabling Easy
Access to Grid Datasets,” First DIALOGUE Workshop:
Applications-Driven Issues in Data Grids, Aug. 2005.

[12] J. Postel, “RFC 793: Transmission Control Protocol,”
September 1981

[13] Y. Gu and R. L. Grossman, “UDT: UDP-based Data
Transfer for High-Speed Wide Area Networks,” Comput.
Networks 51, no. 7 (May 2007), 1777–1799.

[14] J. Bresnahan, M. Link, R. Kettimuthu, I. Foster, “UDT as
an Alternative Transport Protocol for GridFTP,” 7th
International Workshop on Protocols for Future, Large-
Scale and Diverse Network Transports (PFLDNeT 2009),
Tokyo, Japan, May 2009.

[15] H. Subramoni, P. Lai, R. Kettimuthu, D.K. Panda, “High
Performance Data Transfer in Grid Environment Using
GridFTP over InfiniBand,” 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid 2010), May 2010.

[16] J. Bresnahan, M. Link, R. Kettimuthu, I. Foster, “GridFTP
Multilinking,” 2009 TeraGrid Conference, Arlington, VA,
June 2009.

[17] J. Bresnahan, M. Link, R. Kettimuthu, and I. Foster,
“Managed GridFTP,” 8th Workshop on High Performance
Grid and Cloud Computing, May 2011

[18] T. Ylonen and C. Lonvick, eds., “The Secure Shell (SSH)
Authentication Protocol,” IETF, RFC 4252, 2006

[19] www.globus.org/security/overview.html
[20] R. Kettimuthu, R. Schuler, D. Keator, M. Feller, D. Wei,

M. Link, J. Bresnahan, L. Liming, J. Ames, A. Chervenak,
I. Foster, C. Kesselman, "Data Management Framework for
Distributed Biomedical Research Environments," IEEE
eScience Workshop on High-Performance Computing in
the Life Sciences, Dec 2010.

