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Abstract:

Conventional methods to quantify sequencing error have intrinsié features that limit theif
applicability to shotgun metagenomic data. The increasing diversity and proliferation of
high-throughput technologies have made the need for universal error-estimation methods
particularly acute. We introduce DRISEE, a platform-independent method to assess
sequencing error in shotgun metagenomic data, and utilize it to discover previously

uncharacterized error in de novo sequence data from two widely used technologies.

 ANL/Hes - P1939 -08 1!



Main Text:
Accurate quantiﬁcation of sequencing error is essential to sequence-dependent
investigations, making it possible to distinguish observations of genuine interest from
background noise. Sequence-based experimental inferences, particularly those rel.ated o
the identificeition and characterization of features (protein or 16s rRNA coding regions,
regulatory elements, etc.) are greatly affected by the presence of sequencing erfors'.
Errors in metagenomic amplicon-based sequencing have led to grossly inflated estimates
of taxonomic diversity”*. While methods such as denoising® have been developed to
address the issue of noise/error in amplicon-based metagenomic sequencing™®, no
analogous techniques have been reported to account for noise/error in the context of
shotgun-based metagenomic sequencing. Limitations inherent to methods used t01assess
de nofo sequencing error are largely to blame. At present, two methods are commonly
used: (1) Reference-genome-based methods utilize previously completed genomes as a
standard to which de nove data can be compared, but such methods are applicable only to
genomic data. (2) Score-based methods rely on sophisticated platform-dependent
(frequently proprietary) error models.to produce base calls, each with an accompanying
fidelity estimate or score, but offer no information regarding error type (i.e. substitution,
insertion, deletion), and cannot account for errors introduced by procedures that are
common to nearly every experimental sequencing protocol (e.g. the use of different
DNA/RNA extraction procedures to process a group of samples). Each of these methods |
requires extensiye reference data (in the form of reference genomes and/or error models),

and neither is wholly suited to platform-independent analysis of error in shotgun-based



metagenomic data (see Supplemental Text for more detailed descriptions of reference-
genome and score-based methods).

The limitations of reference-genome and score-based methods inspired the
creation of Duplicate Read Inferred Sc*;quencing Error Estimation (DRISEE). DRISEE
éxploi-ts artifactually duplicated reads (nearly identical reads that share a completely
identical prefix, present with abundances that greatly exceed chance expectations, even
when a modest level of biological duplication is taken into account)”® to explore
sequencing_ error (see Methods). Sequence variation within a group of artifactually
duplicated reads is more likely to be the product of technical artifact(s) (i.c. sample
processing and/or sequencer errors) than a reflection of genuine diversity in the originally
sampled population or culture. Based on this premise, DRISEE utilizes prefix identical
clusters of artifactually duplicated reads to create internal standards (consensus
sequences) to which each individual duplicate read is compared. Sequencing error is
determined as a function of the variation that exists within clusters of artifactually
dﬁplicated reads. This strategy is platform-independent and can be used to quantify error
in metagenomic or genomic samples with respect to error frequency and type. DRISEE
identifies reads using stringent requirements for prefix length and abundance that are
extremely unlikely to occur unless the sequences have been artifactually 'duplicated. For
the Work presented here, a prefix length of 50 bases and a minimum abundance of 20
reads was used; chance occurrence was ~ 4E-32 (see Methods). The Methods present a
detailed, workflow-based description.of DRISEE analysis.

Tnitial validations of DRISEE with simulated data showed nearly perfect

correlations between known and DRISEE-based error estimates (Supplementary Fig. la,



R? = 0.99). Additional validations with real genomic. sequencing data exhibit good
correlation with error gstimates produced with conventional reference-based analyses® of
the same samples (Supplementary Fig. 1b, R =Q.89, excluding outliers). In further trials,
DRISEE was applied to genomic and metagenomic shotgun data produced by two widely
utilized sequencing technologies, 454 and Iflumina (n=242 ggnomic 454, n=65
metagenomic 454, n=10 genomic Illumina, and n=159 metagenomic Illumina samples),
476 samples in all. Less than half of the individual samples (#=169) exhibit DRISEE-
based errors consistent with the reported range of second-generation sequencing errors
| (0.25—4%)2’8"12; The majority of samples (#=307) exhibit DRISEE-based errors that fall
outside the range of reported sequencirig errors (error < 0.25%, n=73; error > 4%, n=234,

avg + stdev = 12.63 + 15.12) (Supplementary Fig. 2). To explore this result, we obtained

FASTQ data via SRA (http://www.nchi.nlm.nih.gov/sra) for subsets of DRISEE-
analyzed samples: 20 of the 65 metagenomic 454 samples and 12 of the 159 Illumina
metagenomic samples. Per base DRISEE and Phred!*-based errors for these samples were |
calculated and compared (see Methods). Whereas Phred values exhibit nearly
indistinguishable trends between the 454 and Tllumina data, DRISEE error profiles differ
for each technology (Figs. 1a and 1b).

DRISEE produces error estimates that are routinely higher than those derived
from score-based (Figures 1a & 1b) or reference-genome-based (Supplementary Fig. 1b)
methods. We attribute this observation fo fundamental differences among the methods:
Phred scores estimate the fidelity with Which. a given technology has made a base call.
This measure is an exclusive product of error introduced by the actual act of sequencing.

No information regarding error introduced by procedures that precede sequencing is



provided. As an example, amplification is commonly used to. produce sufficient
quantities of material for sequencing from an initial sample. Even with high fidelity
enzymes (e.g. Taq or ®29 DNA polymerase) each amplification product may contain
errors, deviations from th¢ original biological template. Successive amplification(s)
‘propagate previous errors and introduce new ones, leading to an increasingly divergent
population of reads. Deviations from the original biological template constitute a type of
error that is undetectable with score-based methods (see Supplementary Fig. 3).
Reference-genome-based methods caﬁ detect such errors but cannot be applied to
metagenomic data, and they suffer from additional artifacts introduced by biased
selection “procedures that can deflate error estimates. In particular, conventional
reference-genome-based methods frequently discard duplicate reads and reads that fail to
meet arbitrary standards with respect to identity/alignment with the relevant reference
genome. This strategy can constrain calculated errors to artificially low values. The most
error prone réads, those that do not align well with the reference genome and would
contribute significantly to observed errors, are not considered.

We also used DRISEE to provide data regarding error type. Figure 2 presents all
error types together (total error) as well as a breakdown of each error type (A, T,C, and G
“ substitutions and insertion/deletion errors) observed across metagenomic 454 (65
samples} and Illumina (159 samples) data. The results are consistent with previous
observations in genomic shotgun sequencing: Illumina data are dominated by
substitution-based errors', whereas 454 data exhibit a majority of insertion/deletion
errors’' (Figs. 2a and 2b). No other method provides estimates with respect to error type

in metagenomic shotgun data.



DRISEE provides a more complete estimate of sequencing error than is possible
with scoré-based methods, one. that accbunts for error introduced at any procedural step
in a sequencing protocol, from collectioﬂ of a biological sample to extraction of
DNA/RNA, intermediary processing of the extracted material and, ﬁnally; sequencing
itself (see Suppleméntary Fig. 3). Distinct profiles were observed when samples produced
with the same technology were grouped by experiment, suggesting the présence of
technological or lab-dependent errors (Fig. 1¢). Even finer distinctions are observable
among the error profiles for single samples taken from the same experiment (Fig. 1d).
Based on its unbiased treatment of duplicate reads—reads are not screened against an
external standard—DRISEE estimates of error are much less constrained by identity
based filters than conventional reference-genome-based methods and are therefore
capable of measuring a much broader range of errors.

Arguably, DRISEE has some limitations. At present, it is not applicable to
cukaryotic data, sequences. with low complexity, and/or known sequences that may
exhibit an unusually high level of biﬁlogical repetition, particularly amplicon ribosomal
RNA data. These types of data are likely to meet DRISEE requirements for ﬁreﬁx length |
and abundance, but represent real biological variation that could be misinterpreted by
DRISEE as sequencing error. Moreover, DRISEE operates on artifactually duplicated
reads—an approach that Wbrks well with current platforms such as 454 and Illumina but
may require procedural modifications (such as the intentional inclusion of highly
abundant sequence standards) if future developments eliminate artifactually duplicated

reads,



In summary, DRISEE provides accurate assessments of sequencing error of
metagenomic and genomic data, accounting for error type as well as frequency. DRISEE.
error profiles can be used to explore correlations between sequencing error and metadata,
allowing investigétors to differentiate experimentally meaningful trends from artifacts
introduced by previously uncharacterized sequencing error. Traditional score-based and
reference-genome-based methods do not allow for such observations with respect to
shotgun metagenbmic data. DRISEE also offers the advantage that it requires no data
other than an input FASTA file. Moreover, DRISEE considers error independent of
sequencing platform, without prior knowledge. These characteristics make DRISEE a
promising method—particularly with respect to the enormous quantities of shotgun-based
metagenomic data that are anticipated in the near future.

DRISEE is available via MG-RAST. We also provide code that allows users. to
perform DRISEE analyses ~independent of MG-RAST

(ftp://ftp.metagenomics.anl.gov/DRISEE/).



Methods:

Overview:

Duplicate Read Inferred Sequencing Error Estimation (DRISEE) is a method that
can be applied to sequence data produced from any sequencing technology. It provides an
error profile that can be used to explore the sequencing error, as well as biases in error,
that are present in a single sequencing run or any group of sequencing runs. The latier
capability enableé the user to produce error profiles specific to a particular sequencing
technology, sample preparation procedure, or sequencing facility—in short, to any
quantified variable (i.e., metadata) related to the sequenciﬁg of a given set of samples.

DRISEE exhibits several desirable characteristics that are not found in the most
.wid.ely utilized methods to quantify sequencing error: re]‘erence—genome;based methods
that rely on comparison to stagdard sequences (generally a published sequenced
genome): and quality score-based methods that rely on sophisticated, platform-dependent
models of error to derive base calls with affiliated confidence estimates (Q or Phred
scores) for each sequenced base. DRISEE can be applied to metagenomic or genomic
data produced with any sequencing technology and requires no prior knowledge (i.e.,
reference genomes or platform—dependent error models).

DRISEE relies on the occurrence of artifactually duplicated reads—nearly
identical sequences that exhibit abundances that greatly exceed expectations of chance,
even when a modest.amount of possible biologica] duplication is taken into account.
Illumina and 454 platforms exhibit a well docﬁmented7’8, but poorly understood,
propensity to produce la;ge numbers of duplicate reads. DRISEE utilizes this artifact as a
means to create internal sequence standards that can be used to assess error within a

single sample, or across multiple samples. We identify duplicate reads as those that
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exhibit an identical prefix (prefix = the first / bases of a read) at some threshold
abundance (1) that exceeds chance expectations, even those that take biological
duplication into account. The precise values of [ (prefix length) and » (prefix abundance)
can be varied to accommodate the scale of any sequencing technology. In the work
presented here, bins (groups) of duplicate reads were used to calculate error values if they
exhibited and identical prefix length (/) of 50 bases with an abundance (n) of 20 or more
reads. This requirement is stringent enough to justify assumptions of biological and
statistical uniqueness; indeed, such an occurrence is extremely unlikely:
=1 #*4 =120%450=4E-32

where p is the probability that a prefix of length / (SObp) will be observed n (20) times; 4
represents the number of possible bases (A, T, C, and G). Even in data that are Illumina
scale (on the order of 1 million reads per run), a chance observation of 20 reads that
exhibit the same 50bp prefix is so unlikely as to be safely deemed improbable.

DRISEE exhibits a universality that other methodé lack, but only if the data under
consideration meet a few criteria: (1) Data must be in FASTA format. (2) There must be
enough duplicate reads to safely infer that they are the product of artifact and not of real
biological variation. (3) Input sequence data should not be culled, trimmed, or modified
in any way by sequencer processing software. (4) Data under consideration should be the
product of random (i.e. shotgun) sequencing. (5) Amplicon data—specifically, directed
sequencing of amplicon ribosomal RNA data, are not suitable for DRISEE analysis; reads
start with highly conserved regions (primer target sites) followed by regions that exhibit a
large degree of real biological variation (the hypervariable regions) that would be

misinterpreted as error by DRISEE.



Typical DRISEE workflow (see Supplementary Figure 4)

DRISEE was designed primarily as a means to assess metagenomic sequencing error in
Samples submitted to MG-RAST. DRISEE is available via MG-RAST-based analyses of
shotgun metagenomiq data. We also provide MG-RAST independent code that will allow
users to perform DRISEE analyses on their own. Below we outline the steps in a typical
DRISEE. workflow. All analyses presented in the accompanying manuscript utilized the
default values and arguments méntiloned below.

1. Sequence data in FASTA format

In an effort to keep DRISEE as platform-independent as possible, it considers data in

nearly ubiquitous FASTA format. Tools are described elsewhere for conversion to

FASTA (http:/mag.sourceforge.net/fy all2std.ph). DRISEE specifically avoids use of
Phred scores or any other platform-dependent error metric as a means to slort, cull, trim,
or assess reads. Typical input includes all sequenced reads produced in a single
sequencing run or sample.

2. Check for random sequencing

DRISEE was designed to consider sequencing data generated by random (shotgun)
procedures. While it can be used to explore variation in amplicon-based data, such
variation cannot be equated with sequencing error. Amplicon-based data are identified
through either available metadata or the application of a tool that identifies amplicon
and/or randomly sequenced samples baéed on an analysis of their prefix entropy (i.e. tﬁe
Shannon® entropy of the distributions of preﬁxes of successive lengths). Samples that
exhibit a nonrandom éequence patterns in their prefix, consistent with expectations of

amplicon samples, are excluded from consideration by DRISEE. -
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3. Screen reads for length and the preseﬁce of ambiguous base calls
Sequence data undergo a mild two-step filtering procedure™ to remove two types of
reads:
A. Reads that exhibit uncharacteristic lengths (the default Setting is to remov.e
those that exhibit lengths farther than two standard deviations from the mean).
B. Reads with ambiguous base calls (the default setting is to remove reads that
contain any ambiguous base calls).
4. Bin reads based on the presence of identical prefixes
A list of unique prefixes in the screened FASTA file is generated. All remaining reads
are then grouped (or binned) according to their prefix. Any prefix length can be used; the
current default is 50 bases.
5. Screen bins by abundance
‘Groups (or bins) of prefix identical reads are sorted with respect to read abundance. Bins
with a minimum number of reads are processed further. Any minimum can be used; the
current default is 20 reads. DRISEE can consider ail such bins in a sample, or can
consider any arbitrary number of such bins. DRISEE analyses presented in the
accompanying manuscript considered no more than 1,000 randomly selected bins for
each sample. DRISEE can use all reads in a given bin, 61' any arbitrary number of reads
that is equal to or larger than the required minimum number of reads. DRISEE analyses
presented in the accompanying manuscript considered all reads for bins that contained
between 20 and 1,000 reads. A random selection of 1,000 reads was considered for any
bin that had more than 1,000 reads. Results derived from complete DRISEE analyses

(consideration of all reads in all bins that met DRISEE requirements) and analyses that
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used a maximum bin Hmit Qf 1,000 with a read limit of 1,000 exhibited little appreciable
difference (data not shown). ,A variety of alternative selection and/or bootstrap
procedures are possible with DRISEE analyses.—these are not discussed here..

6. Screen for eukaryotic or other suspect content

Bins can now be screened for eukaryotic content, sequences with low complexity, and/or
known sequences that may exhibit an unusually high level of biological repetition (16s
tRNA-based, sequences with low complexity, eukaryotic sequences etc.). Bins that
contain such sequences should be excluded from further cénsideration.

7. End-trim reads

Reads within a bin can be trimmed to a uniform length; the default operation is to trim
reads to the length of the shortest read in their respective bin. Trimming can be
performéd by using other criteria or can be avoided altogether.

8. Construct consensus sequences via multiple alignment |

All reads for a given bin undergo multiple alignment (UCLUST'® — with additional
custom scripts). The multiple alignmenfs are used to generate a consensus (i.c. Steiner)
sequence. In the first iteration, a séed sequence is randomly chosen from all reads in the
bin. In the second and all subéequent iterations, the consensus sequence generated from
the previous iteration is used as the seed. This process is iterated until it achicves
convergence (defined as three consecutive iterations with no change in cluster identity) or
once a pre-determined iteration limit has been achieved (by default 10; in practice, bins
rarely require more than the first two to three iterations to achieve convergence).

9. Compare bin reads with the bin consensus sequence

12



Each individual read in a bin is compared, baée-by—base, with the final consensus

sequence for that bin. Only the non-prefix portion of the reads is considered (bases 51

and onwards in the work presented in the accompanying manuscript). At eéch position

(with respect to the consensus sequence) a read is scored as one of six matches (A, T, C,

G, insertion, or deletion) or one of si% mismatches (A substitution, T substitution, C

substitution, G substitution, insertion, or deletion). Insertions and deletions that span

more than one base are scored as multiple mismatches (e.g. a deletion of three bases is

scored as three mismatches).

10. Construct bin-level DRISEE prQﬁles

Deviations and matches for all reads in a bin are tallied with respect to position in the

consensus sequence. The consensus position indexed table of matches and mismatches

for the bin represent its DRISEE profile.

11. Construct run- or sample-level DRISEE proﬁ[es

DRISEE profiles for all considered bins in a given run can be combined (summed) o

produce a DRISEE error profile for the entire run or sample (see Supplementary Fig. 1
for an example). |

12. Sample Group level DRISEE profile construction

DRISEE profiles for all bins in a group of runs can be combined (summed) to produce a

DRISEE error profile for any group of runs/samples.

DRISEE profiles and the data they contain can be visualized directly, or processed further

to generate detailed analyses of the information they contain.
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Constm&ion and Analysis of Simulated Data

Datasets vﬁth known rates of error were generated with Metasim'’. Each artificial data
set contained 100,000 sequences (average length of 252bp) randomly selected from the
first 2,500 bases of the E. coli K-12 genome (Refseq accession number NC_000913) and
randomly corrupted with errors of known_ type and frequency. Data sets repfesented a
variety of substitution (0 to 2.3%) and insertion and deletion (0 t01.5% eéch) rates. Data .
sets contained substitution only, insertion and deletion only, or a combinaﬁon of error
types. Simulated data sets were processed with DRISEE as if they were real data sefs.
DRISEE detected errors were compared with known simulated rates, with respect to

- frequency and type (sec Supplementary Fig. 1a).

Comparative Snalyses of Real Genomic Sequencing Data

Real genomic sequencing data were acquired from é previously reported study that used
reference-genome-based methods to explore sequencing error in several single genome
sequencing samples’. DRISEE was appl.ied to data sets only if they.met the criteria used
with all other data considered in the accompanying manuscript: one or more bin(s) of
reads that exhibit 20 or more reads with an identical 50-base prefix. A total of 12
samples obtained from SRA. (http://www.ncbhi.nlm.nih.gov/sra) met these criteria:
SRR013470, SRR001574, SRR007446, SRR013433, SRR013137, SRR000266,
SRR006411, SRR0O18125, SRR017783, SRR013477, SRR013431, SRR013382. These
samplés were aﬁalyzed with the reference-geniome-based method described in Niu ef a.®
and with DRISEE. Errors derived from the originally reported reference-genome-based

method and DRISEE were compared (see Supplementary Fig. 1b).
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Data Sources

Unless otherwise indicated, data sets examined in this study were obtained via SRA or
MG-RAST. Supplementary Table 2 contains a complete list of sequence data used in the
accompanying ~ manuscript.  Datasets are  referenced by their SRA
(http://www.ncbi.nlm.nih.gov/sra), MG-RAST (http://metagenomics.anl.gov/), or

both identifiers/accession numbers.
Sofware availability

An MG-RAST independent version of DRISEE code can be downloaded via ftp

(ftp://ftp.metagenomics.anl.gov/DRISEE/) (see Supplementary Table 2).
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SUPPLEMENTARY TEXT

A Word on Reference-Genome and Score-Based Error Methods

Reference-genome-based methods compare sequenced reads to preexisting
standards (published genomes). Samples are typically cultured from a clonal isolate for
which a reliable reference is available. Where the best available reference is a related
strain or species, real biological variation can be mistaken for sequencing error®>!:1%,
Shotgun metagenomic data ﬁre excluded from consideration by such methods because of
their diversity (samples contain a broad spectrum of species) and the absence of adequate
reference data (many species have no appropriate reference genome(s), and reference
metagenomes do not exist).

Score-based mefhods use an alternative approach. Sequencer signals are
compared with 30ph_istiqated, frequently proprietary, probabilistié rﬁodels that attempt to
account for platform-dependent artifacts, generating base calls, each with an affiliated
quality (Phred or Q) score providing an estimate of error frequency, but no information
about error type. Although these methods can be applied to metagenomic data, they
present a challenge to investigations that require knowledge regarding error type. For
example, similarity-based gene annotation is extremely sensitive to frame-shifting
insertion/deletion errors but only mbderately affected by substitutions'; in this instance
the ratio of insertion and/or deletions to substitutions provides critical information,'
unattainable with conventional Q scores. The absencé of information regarding error type
is an even greater concern in light of documented platform-dependent biases in
sequencing error: I-liumina—based sequencing exhibits high substitution rates'®, whereas

454 technologies exhibit a preponderance of insertion/deletion errors''; identical Q scores
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from these two technologies are likely to represent different types of error, rendering

. . 19,11,19-
nominaily comparable scores incomparable O.11,19-23

The limitations of reference-genome and score-based methods are exacerbated by

the ‘ increasing democratization
(http://www.technologyreview.com/biomedicine/26850/)  of . high-throughput
24-27

sequencing  technologies and the rapid  proliferation of  projects
{(www.1000genomes.org, _ www.commonfund.nih.gov/hmp,
www.earthmicrobiome.org) that employ thenﬂ. This includes an increasing trend toward
meta-analyses (studies that consider data frorﬁ multiple sources) to examine collections
of samples fhat can exhibit a diverse technical provenanée7’28'30. Meaningful comparisons
of technically divérse sequence data feqilire accurate and platform-independent measures
of sequencing error; such that hona fide observations can be differentiated from

background noise.
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(a)

MG-RASTID SRA

(b)
MG-RASTID SRA

(c)

MG-RAST ID SRA

4443703.3 SRRO00673
4443706.3 SRR000684
4443707.3 SRRO006738
4443708.3 SRRO00630
4443709.3 SRRO00696
4443711.3 SRR001663
4443718.3 SRR000287
4443719.3 SRR000288

- 4443721.3 SRR000282

4443723.3 SRR000283
4443765.3 SRR001663
4444077.3 ERR010489
4444083.3 ERR010496
-4445065.3 ERR0O10500
4445066.3 ERR010494
4445067.3 ERR010492
- 4445068.3 ERR0O10498
4445069.3 ERR010483
4445070.3 ERR010486
4445081.3 ERR010482

4462766.3 SRR061437
4462771.3 SRR061442
4462772.3 SRR061443
4462773.3 SRR061444
4462775.3 SRRO61446
4462777.3 SRR061448
4462780.3 SRR061451
4462782.3 SRR061453
4462783.3 SRR061454
4462784.3 SRR061455
4462786.3 SRR061457
4462788.3 SRR061459

4460638.3*
4460639.3*
4460640.3*
4460641.3*
4460642 3*
4460643.3*
4460644.3*
4460638.3*
4460638.3*
4460642.3*
4460642.3*
4460643.3*
4460643.3*
4460644.3*
4460644.3*
4460639.3*
4460639.3*
4460640.3*
4460640.3*
4460641.3*
4460641.3*

SRR061914
SRR061471

SRR061478

SRR0O61534
SRR0O61577
SRR061591
SRR061535
SRR0O61576
SRR062031
SRR061476
SRR061477
SRR061488
SRR062010
SRR062064
SRR061485
SRR061468
SRR062030
SRR0O61466
SRR061469
SRR061479



SRR062007
SRR062069
SRR061538
SRR061935
SRR061943
SRR0O61938
SRR061539

SRR061976
SRR062068
SRR061461
SRRO61464
SRR061467
SRR061462
SRR061941
' SRR062027
SRR061922
SRR061489
SRR0O61518
SRR061490
- SRR0O62006
- SRR0O61956

- SRR062053

SRR061519
SRR061492
SRRO61590
SRRO61560
SRR0O62026
SRR061491
SRR061514
SRR0O61500
SRR061444
SRR061486
SRR061437
SRR061484
SRR061465
SRR061498
SRR062065
SRR061940
SRR061923
SRR061454
SRRO61502
SRR061470
SRR062044



SRR061522
SRR061939
SRR061501
SRR061960
SRR061480
SRR061562
SRR061455
SRR061460
SRR061447
SRRO61474
SRRO61445
SRR061902
SRR061440
SRR061515
SRR062048
SRR061453
SRR062045
SRRO61587
SRR062049
SRR061523
SRR061457
SRR061482
SRR061499

- SRR061481

SRRO61541
SRRO61586
SRR0O61463
SRR0O61475
SRR061918
SRR062011
SRR061957
SRRO61561
SRR061915
SRR061977
SRR061483
SRR061472
SRR061458
SRR061446
SRR062013
SRR061919
SRR061695
SRR0616594
SRR061449



SRR061934
SRR061494
SRR061497
SRR061441
SRR061493
SRR061487
SRR061495
SRRO61451
SRRO61503
SRR061496
SRR061448
SRR062052
SRR061903
SRR061961
SRR061556
SRR061540
SRRO61557
SRRO61456
SRR061459
SRR061443
SRR061442

4460167.3 '

4460175.3

4460260.3

4460261.3

4460262.3

4460265.3

4460266.3 -

4460267.3

4460268.3

4465820.3

4465823.3

* Data sets were used as me



Sample Set

Notes

(d)

MG-RASTID SRA

Notes

Sample Set 1
Sample Set 1
Sample Set 1
Sample Set 1
Sample Set 1
Sample Set 1
Sample Set 1
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 2.
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 2
Sample Set 3
Sample Set 3
- Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3

Merged
Merged
Merged
Merged
Merged
Merged
Merged
unmerged 1 of 2
unmerged 2 of 2
unmerged 1 of 2
unmerged 2 of 2
unmerged 1 of 2
unmerged 2 of 2
unmerged 1 of 2
unmerged 2 of 2
unmerged 1 of 2
unmerged 2 of 2
unmerged 1 of 2
unmerged 2 of 2
unmerged 1 of 2
unmerged 2 of 2

SRR061442
SRR061914

avgerr=1%
avg err = 45%




Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set3
Sampié Set3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3

Sample Set 3 |
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3



Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
‘Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sampie Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
~ Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Samgple Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3



Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 3 -
Sample Set 3
Sample Set 3
Sample Set 3
Sample Set 4
Sample Set 4
Sample Set 4
Sample Set 4
Sample Set 4
Sample Set 4
Sample Set 4
Sample Set 4
‘Sample Set 4
Sample Set 5
Sample Set 5

erged {Sample 1) and umerged (Sample 2) paired end



