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ABSTRACT

The performance mismatch between computing and I/O compo-
nents of current-generation HPC systems has made I/O the crit-
ical bottleneck for scientific applications. It is therefore critical
to make data movement as efficient as possible, and, to facilitate
simulation-time data analysis and visualization to reduce the data
written to storage. These will be of paramount importance to en-
abling us to glean novel insights from simulations. We present our
work in GLEAN, a flexible framework for data-analysis and I/O
acceleration at extreme scale. GLEAN leverages the data seman-
tics of applications, and fully exploits the diverse system topolo-
gies and characteristics. We discuss the performance of GLEAN
for simulation-time analysis and I/O acceleration with simulations
at scale on leadership class systems

1 INTRODUCTION

Today’s largest computational systems are providing unprecedented
opportunities to advance science in numerous fields, such as cli-
mate sciences, biosciences, astrophysics, computational chemistry,
high-energy physics, materials sciences, and nuclear physics. Cur-
rent Department of Energy leadership-class machines such as the
IBM Blue Gene/P (BG/P) supercomputer at the Argonne National
Laboratory, and the Cray XT system at the Oak Ridge National
Laboratory consist of a few hundred thousand processing elements.
In the case of FLASH [6], a multiphysics, multiscale simulation
code with a wide international user base, the Intrepid BG/P su-
percomputer at Argonne Leadership Computing Facility (ALCF)
is enabling scientists to better model, validate and verify various
phenomena in fields including thermonuclear-powered supernovae
and high-energy density physics.

While the computational power of supercomputers keeps in-
creasing with every generation, the I/O systems have not kept pace,
resulting in a significant performance bottleneck. The ExaScale
Software Study: Software Challenges in Extreme Scale Systems puts
it this way: “Not all existing applications will scale to terascale,
petascale, or on to exascale given current application/architecture
characteristics” citing “I/O bandwidth” as one of the issues [10].
The International Exascale Software Project Roadmap notes that
“management, analysis, mining, and knowledge discovery from
data sets of this scale is a very challenging problem, yet a critical
one in Petascale systems and would be even more so for Exascale
systems.” [4].

Simulation-time data analysis and visualization has been widely
recognized as a key component in future systems to reduce the data
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being written to storage as well as provide faster insight. There have
been two proposed ways to achieve this: in situ where the analysis
runs on the same resource as the simulation, and co-analysis where
the data is moved to a dedicated coupled resource over a high-speed
network for analysis. These two approaches are not mutually exclu-
sive and may be used in combination as appropriate. Each presents
special advantages and has limitations. In situ analysis uses sim-
ulation data structures while they are in memory and so obviates
the need to move or store the data. On the other hand, in situ
analysis must be laid out in advance, excluding the opportunity for
data exploration before it is written into an analysis result. Further-
more, memory-intensive analysis operations such as temporal anal-
ysis that require multiple time steps of the simulation to be stored
for computation are made impractical by the already high memory
pressure of simulations. Co-analysis can provide extremely flexible
machinery that enables analysis of temporal variations and other
memory-intensive operations while offloading this work from the
simulation (similar to how GPUs are used now). This flexibility
comes at the expense of additional hardware resources, namely the
analysis nodes and related infrastructure. Additionally, one could
employ a hybrid approach wherein coarse-grained analysis is per-
formed in situ to identify regions of interest that are moved out to
the co-analysis resource for fine-grained analysis.

In this paper, we describe GLEAN, a flexible and extensible
framework that takes application, analysis and system characteris-
tics into account to facilitate simulation-time data analysis and I/O
acceleration. The GLEAN infrastructure hides significant details
from the end user, while at the same time providing a flexible in-
terface to the fastest path for their data and analysis needs, and in
the end scientific insight. It provides an infrastructure for acceler-
ating I/O, interfacing to running simulations for co-analysis, and/or
an interface for in situ analysis with zero or minimal modifications
to the existing application code base. Non-intrusive integration is
achieved by seamlessly embedding GLEAN in higher-level I/O li-
braries such as pnetcdf and hdf5.

The novel contributions of our paper include the following:

• A flexible infrastructure for simulation-time analysis and I/O
with non-intrusive integration with applications;

• Demonstration of simulation-time analysis at scale with ap-
plications; and,

• Demonstration at scale with applications to yield multi-fold
improvement over their current I/O mechanism.

The remainder of the paper is organized as follows. We present
a brief overview of GLEAN in Section 2. In Section 3, we evalu-
ate the effectiveness of GLEAN with applications at scale. Section
4 covers related work to provide the reader with context for the
reported results and design choices. Finally, we present our conclu-
sions in Section 5.



2 GLEAN ARCHITECTURE

In designing GLEAN we are motivated to improve the performance
of applications that are impeded by their own demanding I/O and
analysis requirements. We strive to provide these with zero or as
little overhead as possible to the system.

Figure 1 shows an overview of GLEAN. Traditionally, a simula-
tion uses I/O libraries to write their data out to storage. This data is
later post-processed. In GLEAN, the simulation running on a com-
pute resource may invoke GLEAN directly or transparently through
I/O libraries such as parallel-netcdf and hdf5, or via the GLEAN
API. Custom analyses including Fractal Dimension (FDIM) and
Lagrangian Coherent Structures (LCS) can be applied in situ on
the compute resource. We would like to note that as we leverage
the data models and structures of the application, in situ analysis
does not need any memory copy. Additionally, one could move the
simulation data out to the analysis nodes for staging where they can
be transformed, reduced, analyzed using tools including ParaView,
and written to storage. GLEAN is implemented in C++ leveraging
MPI, threads and provides interfaces for Fortran and C-based par-
allel applications. It provides a flexible and extensible API that can
be customized to meet the needs of the application. We describe
our GLEAN design in terms of three principal concerns: network
topology, data semantics, and asynchronous data staging.

Figure 1: Relationships between GLEAN and principal components
of a HPC application.

2.1 Exploiting network topology for I/O
As we move towards systems with heterogenous and complex net-
work topologies, effective ways to fully exploit their heterogeneity
is critical. BG/P has different networks with varying throughputs
and topologies. BG/Q is expected to have a more complex network
topology. An important goal in GLEAN is to leverage the topolo-
gies to move the data out of the machine as soon as possible, thus
enabling the simulation to continue on with its computation.

On BG/P, MPI collective I/O uses the BG/P collective network,
while in GLEAN, we leverage both the 3D Torus network as well
as the collective network for moving the data out of the machine.
Additionally, we leverage the topology to reduce the synchroniza-
tion overheads of collective operations - critical in scaling to large
core counts. Figure 2 shows GLEAN’s selection of 8 aggregator
groups formed within 64 BG/P nodes (pset). In determining the
importance of selection of aggregator group partitions, we found
that even for a single pset, there is at least a factor of three in per-
formance from the worst case we tested to the configuration that

Figure 2: Aggregation groups formed within a pset(64 Compute
Nodes) by GLEAN with aggregator nodes highlighted

GLEAN uses. In each aggregator group, the node where the ag-
gregation is performed is chosen such that the aggregator nodes are
distributed across the collective network in a pset.

2.2 Leveraging application data semantics

A key design goal in GLEAN is to make application data semantics
a first-class citizen instead of just viewing data as buffers and/or
files. This enables one to apply various analytics to the simula-
tion data at run-time to reduce the data volume written to storage,
transform data on-the-fly to meet the needs of analysis, and enable
various I/O optimizations that leverage the application’s data mod-
els. Toward this effort, we have worked closely with FLASH [6],
an astrophysics application, to capture its adaptive mesh refinement
(AMR) data model. We have interfaced with PHASTA [9], which
uses an adaptive unstructured mesh, to add unstructured grid sup-
port to GLEAN. Our initial targets have been chosen to cover a
wide gamut of data models used in simulations. Figure 3 depicts
the AMR data model used by FLASH. In GLEAN, working closely
with FLASH developers, we have co-designed a FLASH AMR
class that captures the in-memory data schema used by FLASH
simulation and associated data structures used to manage it. Ad-
ditionally, we have mapped relevant pnetcdf and hdf5 APIs to rel-
evant GLEAN APIs, thus enabling us to seamlessly interface with
FLASH simulations using pnetcdf and hdf5.

Figure 3: FLASH AMR



2.3 Asynchronous data staging

Asynchronous data staging blocks the simulation only for the du-
ration of copying data from the compute nodes to the dedicated
staging nodes. The data staging serves as a burst buffer for the
simulation I/O that can be written out asynchronously while the
computation proceeds ahead. A key distinguishing characteristic of
GLEAN’s data staging is that it leverages the data models and se-
mantics of applications for staging instead of viewing data as files
and/or buffers. On the staging nodes, GLEAN runs as an MPI job
and communicates with the compute nodes. In case of BG/P, this
communication is over sockets - the only way to communicate be-
tween BG/P compute nodes (CNs) and the external I/O network.
Further, each staging node is designed with a thread-pool wherein
each thread handles multiple connections via a poll-based event
multiplexing mechanism. The data semantics enables GLEAN to
transform the data on-the-fly to various I/O formats.

3 EVALUATION WITH APPLICATIONS

We have integrated GLEAN with several applications and report its
performance at leadership class scale with realistic data patterns.
The applications selected span a wide-gamut of data models, and
enabled us to experiment with several integration schemes. In the
following we describe our methods and results for GLEAN as used
by two applications: FLASH and PHASTA.

3.1 FLASH I/O Acceleration

FLASH [6] is an adaptive mesh, parallel hydrodynamics code de-
veloped to simulate astrophysical thermonuclear flashes, such as
Type Ia supernovae, Type I X-ray bursts, and classical novae. It
solves the compressible Euler equations on a block-structured adap-
tive mesh. FLASH provides an Adaptive Mesh Refinement (AMR)
grid using a modified version of the PARA-MESH package and a
Uniform Grid (UG) to store Eulerian data. We worked closely with
FLASH developers to capture the AMR hierarchy and data seman-
tics of FLASH in GLEAN. Additionally, by embedding GLEAN
in the pnetcdf and hdf5 I/O libraries used by FLASH, we are able
to interface with FLASH without modifying the simulation code.
We discuss the performance of GLEAN to accelerate the I/O of
FLASH, and next discuss in situ analysis of FLASH using GLEAN
to compute the fractal dimension. These evaluations were per-
formed on the ALCF infrastructure consisting on the Intrepid BG/P
supercomputer, Eureka Data Analysis Cluster and the File Servers
all interconnected via a 5-stage Myrinet CLOS network.

For our study, we used the Sedov simulation included in the
FLASH distribution. Sedov evolves a blast wave from a delta-
function initial pressure perturbation [5]. The Sedov problem exer-
cises the infrastructure (AMR and I/O) of FLASH with minimal use
of physics solvers. It can, therefore, produce representative I/O be-
havior of FLASH without spending too much time in computations.
The application is configured to have 163 cells per PARA-MESH
block. We choose to advance the solution over four time steps and
produce I/O output at every single step so that I/O dominates the
application runtime. The I/O in each step consists of checkpoint
files for restart purposes and plot files for analysis. A plot file is a
user-selected subset of mesh variables stored in single precision. In
these experiments a checkpoint file contains all ten mesh variables
in double precision and a plot file contains three selected variables
in single precision.

We compare the performance of pnetcdf, hdf5 and GLEAN for
writing out the checkpoint and plot data of FLASH. We configured
FLASH to use both pnetcdf and hdf5 with collective I/O. On the
staging nodes (Eureka), GLEAN can be configured to write data
out asynchronously using either pnetcdf, or transformed on-the-fly
to hdf5 and written out. This is possible because GLEAN captures
the data semantics of FLASH. As we scaled from 4,096 cores to

32,768 cores in powers of two, the number of Eureka nodes used
for staging data in GLEAN was 12, 24, 36 and 72 respectively.

(a)

(b)

Figure 4: Weak scaling results for FLASH.

In our weak scaling study, each run wrote five checkpoints and
six plotfiles. For 4,096 cores, each checkpoint file is 12 GiB; and
for 32,768 cores, it is 96 GiB. From Figure 4(a), we see that at
32,768 cores the maximum throughput achieved by hdf5 is 3.13
GiBps and pnetcdf is 4.4 GiBps. GLEAN is able to sustain an ob-
served throughput of 31.3 GiBps - a 10-fold improvement over hdf5
and a 7-fold improvement over pnetcdf. For plot file data, at 4,096
cores, each file is 1.8 GiB; and at 32,768 cores, it is 16 GiB. In plot
files, the data written per process is smaller than checkpoint data.
At 32,768 cores, GLEAN is able to sustain an observed throughput
of 27.2 GiBps - a 117-fold improvement over hdf5 and a 12-fold
improvement over pnetcdf. At these scales, the efficacy of GLEAN
becomes even more evident.

Figure 5 depicts the strong scaling performance for writing out
3.4 GiB plot files and 24 GiB checkpoint files as we scale the num-
ber of processes from 4096 to 32,768 processes. For plot files,
at 4096 processes, GLEAN achieves a 5-fold improvement over
pnetcdf and 16-fold improvement over hdf5. At 32,768, GLEAN
achieves a 37-fold improvement over pnetcdf and a 347-fold im-
provement over hdf5 and sustains an average throughput of 26
GiBps. In case of checkpoint files, GLEAN is able to sustain an
observed throughput of 31 GiBps.

Thus, effectively exploiting the network topology of BG/P, lever-
aging the data semantics of the applications, and asynchronous data
staging are critical as we scale towards larger core counts. These
approaches will be of increasing importance as we move towards
future exascale architectures with larger core counts and smaller
per-core memory footprints.



(a)

(b)

Figure 5: Strong scaling results for FLASH.

3.2 In Situ Fractal Dimension Analysis for FLASH
In FLASH, fractal dimension helps illustrate the degree of turbu-
lence in a particular time step as well as identify the variation of
turbulence across sub regions in the domain. The fractal dimen-
sion computation is designed with MPI and uses several optimiza-
tions including nearest neighbor communication. Table 1 compares
the time spent in fractal dimension computation of FLASH us-
ing box-counting for five variables at the highest refinement level
for three iso-values using a parallel post-processing analysis using
pnetcdf on 20 analysis nodes, and in situ using GLEAN on 2,048
BG/P cores. From table 1, we see that in situ yields a 14-fold im-
provement over the parallel post-processing tool. In case of post-
processing, the time to read the necessary data from storage dom-
inates the analysis time. Additionally, as GLEAN is embedded in
the pnetcdf layer, the in situ analysis requires no modification to the
FLASH simulation code. We plan to build a suite of in situ analyses
in GLEAN for FLASH. This would also help identify the regions
of interest that need further fine-grained analysis which can be then
be moved over to the staging/analysis nodes.

Table 1: Fractal Dimension Analysis of FLASH
Post Processing in situ with GLEAN

Analysis time in secs 11.6 0.8

3.3 Co-visualization of PHASTA
The PHASTA code [9] performs computational fluid dynamics
(CFD) using a finite element discretization using a LES-based tur-
bulence model. PHASTA uses an adaptive, unstructured tetrahe-
dral grid. The number and locality of elements changes frequently,
based on solution characteristics and load balancing. Grid and field

structures are stored in dynamically-allocated memory, due to fre-
quent adaptivity updates.

We describe our success with GLEAN at enabling simulation-
time analysis and visualization of PHASTA running on 160K cores
of Intrepid (40 racks - entire machine) with ParaView [7] running
on 100 Eureka nodes. To achieve this we worked closely with
PHASTA developers to capture its unstructured tetrahedral mesh
data model. Additionally, to facilitate visualization of the PHASTA
data using ParaView, we added support for ParaView’s visualiza-
tion meshes. On Eureka, GLEAN was able to transform on-the-fly
PHASTA’s staged data into ParaView’s mesh format. ParaView is
one of the highly used visualization toolkits on leadership class sys-
tems. Simulations using GLEAN would be able to visualize data at
run-time using ParaView.

Figure 6: Co-visualization of PHASTA

Figure 6 depicts a simulation-time co-visualization of PHASTA.
For a 3.3 billion element case ( 100GiB), GLEAN was able to trans-
fer the data from Intrepid to Eureka and sustain 48GiBps. This en-
abled one to apply multiple ParaView filters to achieve simulation-
time visualization of PHASTA. This is critical for understanding the
health of a simulation as well as visual debugging its state. GLEAN
enabled PHASTA developers to visualize live a 160K cores simu-
lation.

4 RELATED WORK

The ADIOS high-level I/O library [8, 2] has demonstrated high-
performance I/O for applications on large-scale systems. To use
ADIOS, applications need to be modified via a light-weight API.
Additionally, ADIOS writes data out into a custom BP format. The
library provides several post-processing tools to convert the BP for-
mat into formats including HDF5 and netCDF. As the I/O bottle-
neck becomes even more critical in future, this conversion time
could become significant. In GLEAN, we support the commonly
used I/O libraries and do not need any offline data conversion.
ADIOS supports asynchronous data staging via Decoupled and
Asynchronous Remote Transfers (DART) [3] and DataStager [1].
DART is an asynchronous communication and data transport sub-
strate for large-scale parallel applications. It uses one-sided com-
munication mechanisms including RDMA for extracting and trans-
porting data. To the best of our knowledge these mechanism sup-
ports multi-dimensional arrays. In GLEAN we strive to capture a
range of data models including AMR and Adaptive unstructured
grids.

Over the years there have been many visualization systems built
to run in tandem with simulation, often on supercomputing re-
sources. Recent examples include a visualization and delivery
system for hurricane prediction simulations and a completely in-



tegrated meshing-to-visualization system for earthquake simula-
tion [11]. These systems are typically lightweight and specialized
to run a specific type of visualization under the given simulation
framework. Our approach differs in that we link the codes and
run on the simulation nodes, directly accessing the simulation data
structures in memory without any changes to the simulation. Pro-
posed solutions in visualization toolkits [7] [12] require modifica-
tion to the simulations code and we strive to provide non-intrusive
integration as well as an infrastructure where one could use the
aforementioned toolkits for analysis. Additionally, our goal is to
provide a flexible infrastructure combining both in situ as well as
co-analysis.

5 CONCLUSIONS

Simulation-time data analysis and data staging is critical to mitigate
the storage bottlenecks faced by applications and to generate insight
expeditiously. GLEAN is a flexible and extensible framework tak-
ing application, analysis and system characteristics into account to
facilitate simulation-time data analysis and I/O acceleration. The
GLEAN infrastructure hides significant details from the end user,
while at the same time providing them with a flexible interface to
the fastest path for their data and analysis needs, and in the end
scientific insight.

Table 2: Modes accomplished with GLEAN
Infrastructure Application Mode

Co-analysis PHASTA Visualization with ParaView
Data Staging FLASH, S3D I/O Acceleration

In Situ FLASH Fractal Dimensions
In Flight MADBench2 Histograms

In GLEAN, we fully leverage the diverse network topologies of
the system and data semantics of applications. We have success-
fully demonstrated (Table 2) in situ analysis, co-analysis, data stag-
ing and in flight analysis for a number of the applications at scale
(up to 160K cores) on leadership class systems and achieved up to
48 GiBps for data movement. We believe this is a significant step
toward scaling the performance of applications on current large-
scale systems and will provide insight for the design of I/O and
analysis architectures for exascale systems.
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