
Visualizing Multiscale, Multiphysics Simulation Data: Brain Blood Flow
Joseph A. Insley∗

Argonne National Laboratory
Leopold Grinberg†

Brown University
Michael E. Papka‡

Argonne National Laboratory

ABSTRACT

Accurately predicting many physical and biological systems re-
quires modeling interactions of macroscopic and microscopic
events. This results in large and heterogeneous data sets on vastly
differing scales, both physical and temporal. The ability to use a
single integrated tool for the visualization of multiscale simulation
data is important to understanding the effects that events at one
scale have on events in the other. In the case of blood flow, we
examine how the large-scale flow patterns influence blood cell be-
havior.

In this paper we describe the visualization tools that were de-
veloped for data from coupled continuum - atomistic simulations.
Specifically, we overview a) a custom ParaView reader plug-in
that processes macro-scale continuum data computed by a high-
order spectral element solver; and b) an adaptive proper orthog-
onal decomposition-based technique for the visualization of non-
stationary velocity fields from atomistic simulations. We also dis-
cuss how the ParaView parallel processing and rendering infras-
tructure was leveraged in the new tools. We apply our methods to
visualize multiscale data from coupled continuum-atomistic simu-
lations of blood flow in a patient-specific cerebrovasculature with a
brain aneurysm.

Index Terms: J.2 [Computer Applications]: Physical Sciences
and Engineering—Physics; I.6 [Computing Methodologies]: Sim-
ulation and Modeling—applications, simulation output analysis;
I.3.8 [Computer Applications]: Computer Graphics—Applications

1 INTRODUCTION

Interfacing atomistic-based with continuum-based models is now
required to simulate realistic multiscale physical and biological sys-
tems [5]. Multiscale modeling is crucial in many disciplines, for ex-
ample, to tune the properties of smart materials, to probe the func-
tion of living cells and organisms, and to predict the dynamics and
interactions of rarefied plasmas with dense plasmas [1]. This code-
and model-coupling pose a number of challenges, including stable
interface conditions, communicating data between various compo-
nents of the coupled solver, and the analysis of heterogeneous data.
The focus of this paper is on visualization of heterogeneous and
very large data sets produced by multiscale, multiphysics simula-
tions of unsteady flow. Specifically, we consider the simulation
of a blood clot (thrombus) formation at the wall of an aneurysm
(see Figure 2), which is part of a larger arterial network. We em-
ploy a coupled solver resolving the macroscale flow features by
applying a continuum model and microscale features by applying
an atomistic approach [5]. The solver is based on coupling two
open source parallel codes: DPD-LAMMPS (a dissipative particle
dynamics version of the Large-scale Atomic/Molecular Massively
Parallel Simulator [2], modified at Brown University) and NekTar -
a high-order spectral/hp element library. The data produced by each

∗e-mail:insley@mcs.anl.gov
†e-mail:lgrinb@dam.brown.edu
‡e-mail:papka@anl.gov

solver represent either continuum or atomistic fields, and it is saved
in separate files with formats specific to each solver. The size of
each file depends on the resolution employed by each solver; in the
case considered here the number of degrees of freedom required by
NekTar was about three billion, while the number of particles in
the atomistic domain was about 800 million. Simulation of half of
a cardiac cycle took 24 hours on 131,072 cores of a BlueGene/P,
and, due to flow unsteadiness, the solution was saved at interme-
diate states by each solver in over a thousand files. To efficiently
handle the visualization of the continuum data we have developed
a parallel, coupled ParaView-NekTar code.

Figure 1: This figure shows the coupling of ParaView with our custom
NekTar reader plug-in.

This software is comprised from two major components: 1) Par-
aView for parallel visualization algorithms and image rendering;
and 2) NekTar for parallel data processing. One of the key features
of this software is interactive and multi-resolution data visualiza-
tion. The user accesses NekTar’s utilities via the ParaView GUI,
as schematically illustrated in Figure 1. To analyze and visualize
the collective motion of atoms we implement the adaptive proper
orthogonal decomposition, which maps the atomistic data to the
continuum. We visualize platelet deposition (the major outcome
of the multiscale simulation) by presenting particles instantaneous
positions at various times.

2 MACROSCALE SIMULATION DATA

For spatial discretization NekTar employs the spectral/hp element
method (SEM) [6]. The computational domain Ω is decomposed
into a set of polymorphic non-overlapping elements Ωei ⊂ Ω, i =
1, ...,Nel, as illustrated in Figure 3. Within each element the solu-
tion ue(t,x) is approximated in terms of hierarchical, mixed-order,
semi-orthogonal Jacobi polynomial expansions [6]

ue(t,x) = ∑
k

ūe
k(t)φ

e
k (x), (1)

where ūe
k is an amplitude of the k-th shape function φ e

k (x) in the
element e. The solution computed by NekTar is saved in the modal
space, that is it contains the values of ūe

k for each element. To visu-
alize the continuum data at different levels of granularity it is possi-
ble to interpolate the solution using formula (1) to different number
of points x.

To achieve high parallel efficiency, NekTar employs a multi-
patch approach, where the computational domain is divided into
smaller overlapped patches (see Figure 2) [4]. The continuum



Figure 2: Blood flow in the brain is a multiscale problem. Shown on the left is the macrodomain where the spectral element equations are solved;
different colors correspond to different computational patches. Shown in the inset (right), located next to the arterial wall of the aneurysm, is
the microdomain of 3.93mm3 where dissipative particle dynamics is applied. Of interest in the present paper is the deposition of platelets to the
aneurysmal wall.

Figure 3: Illustration of the unstructured surface grid and the poly-
nomial basis employed in NekTar. The solution domain (patch) is
decomposed into non-overlapping elements. Within each element
the solution is approximated by vertex, edge, face and (in 3D) inte-
rior modes. The shape functions associated with the vertex, edge
and face modes for fourth-order polynomial expansion defined on tri-
angular and quadrilateral elements are shown in color.

solver is applied in each patch separately, the solution continuity is
achieved by imposing proper interface conditions. The multi-patch
approach allows the solution data for each patch to be saved and vi-
sualized separately; moreover, when visualizing the entire solution,
different resolutions can be applied to each patch. Such an approach
results in greater flexibility and computational savings, since high
resolution data is generated only in the region of greatest interest.

2.1 Data description

In NekTar the solution data and geometry are stored separately in
MESH and SOLUTION files. The MESH file contains coordinates
of elements, connectivity, boundary condition information, as well
as information on the curved boundaries. The SOLUTION files
contain the calculated values, which can be used both for restart
and also for data analysis. The size of the MESH and SOLUTION
files depends on the number of elements in the patch, spectral reso-
lution and number of variables considered in the computation, i.e.,
velocity field, pressure, temperature, etc.



2.2 Processing high-order spectral element data from
NekTar

Processing of NekTar’s data is accomplished in two steps. In the
first step the MESH data is read and the computational domain is
partitioned across processes (with METIS [8]). In the second step
each process reads and stores the SOLUTION corresponding to the
elements included in its partition. The modal values of the solution
are cached in memory, and are used to transform the solution from
modal to physical space, using Equation (1). Using the GUI the user
specifies what data should be made available and at what resolu-
tion. These two steps are applied to process the data for each patch.
The second step is repeated for each time step. After these calcula-
tions required to transform data from modal to physical space have
been completed, the tasks of computing derived properties (such as
derivatives) and converting data to vtkUnstructuredGrid of tetrahe-
dra is performed in each partition independently, resulting in linear
scaling. Processing of NekTar’s data is performed with the custom
reader using the functionality provided by the NekTar library. To
reduce data redundancy at the interfaces of elements the vtkClean-
ToGrid filter is applied. Finally, the cleaned vtkUnstructuredGrid is
passed on to the ParaView pipeline where all of the standard visu-
alization algorithms can be applied to it.

Figure 4: Solution of a flow problem showing vorticity. A) data com-
puted using first order derivatives operator (ParaView). B) data com-
puted using high-order derivatives operator (NekTar). Although the
computation times are similar, and both cases use the same final
grid, the results of B) are much more accurate.

The data computed by NekTar are processed with high-order
spectral accuracy, i.e., the interpolation, integration and differen-
tiation are performed on the quadrature grid consistent with the
simulation resolution. In computing derived quantities it is impor-
tant to take into account that high spatial resolution achieved by
P-refinement (i.e. using higher polynomial order) allows for the
use of relatively large elements, thus using high-order operators for
computing derived quantities is more appropriate. In Figure 4 we
plot results of the solution in the right interior carotid artery from
our blood flow problem. The vorticity field computed with the two
approaches is compared: in Figure 4 (A) the spectral element data
is first projected onto a relatively coarse grid and then vorticity is
computed (with ParaView) using a low-order derivative operator;
in Figure 4 (B) derivatives are computed (using NekTar) with the
spectral accuracy consistent with the simulation resolution and the
results are displayed on the same grid as in the first case. Clearly a
high-order derivative operator provides more accurate results, even
for relatively smooth data.

At any time the user can choose to change the resolution of the
spectral elements of the mesh by entering the desired resolution
through the GUI. Changes in resolution parameters automatically
propagate to NekTar’s functions, which use the solution data al-
ready cached in memory in its original resolution, to perform inter-
polation onto a different set of points and update the vtkUnstruc-
turedGrid. Similarly, when the user animates through time steps
of the data set the geometry of the elements and information on

their connectivity are reused, and only the data from the new SO-
LUTION file needs to be read from disk. As new time steps are
read in the cleaned vtkUnstructuredGrids for previous time steps
are cached in memory so that they don’t need to be reread from disk
each time they are to be displayed. Performing advanced memory
management, including pre-fetching future time steps to decrease
latency while animating, is an area of future work.

Figure 5 depicts the strong scaling performance of the ParaView-
NekTar reader plugin-in, considering the average time to process a
single time step of NekTar data. The data used for these tests com-
prise the four patches that make up the cerebrovasculature shown
in Figure 2, which totals about 576 MB per time step on disk.
Once read from disk, and transformed to physical space with de-
rived quantities, each time step consumes about 8 GB in memory
when calculated using an element resolution of eight. This time
includes reading the SOLUTION data from disk and performing
interpolation on it, calculating vorticity, and rendering. From the
figure we see linear scaling of the time required both when cal-
culating the vorticity using ParaView and when using NekTar, for
element resolution of eight. While the performance is nearly identi-
cal, the image quality of the vorticity field, as illustrated previously
in Figure 4, is superior when calculated with NekTar.

Figure 5: Strong scaling performance of the ParaView-NekTar reader
plug-in. The nek res08 line illustrates time when vorticity was calcu-
lated using NekTar, while the pv res08 line represents overall time
when vorticity was calculated using ParaView. In both cases an ele-
ment resolution of eight was used.

3 MICROSCALE SIMULATION DATA

We consider two types of data produced by our atomistic solver: 1)
quantities associated with each particle, such as particle type, coor-
dinates and velocity vectors, activation level for particles represent-
ing platelets, etc., and 2) an ensemble average velocity or density
computed by projecting atomistic data onto the continuum using
window proper orthogonal decomposition. In the following subsec-
tions we describe this particle and continuum data in more detail.

3.1 Particle data
Typical DPD simulation of blood flow includes particles repre-
senting the plasma, red blood cells (RBCs), platelets, glycocalyx,
etc. These particles may have different properties; moreover, some
blood cells (i.e. RBCs or glycocalyx) must be represented by a col-
lection of particles with fixed connectivity. For visualization pur-
poses the particles are distinguished by their ID and type. In simu-
lations with non-periodic domains particles may exit the computa-
tional domain over time and be removed, while others are inserted.
In such cases the same ID can be associated with different particles
at different time steps, which poses obvious challenges in tracing
individual particles in time and space.



The number of particles in blood flow simulations can be ex-
tremely large; this affects not only the IO complexity and the size
of data files, but also the visualization. Fortunately, the majority of
the DPD particles (at least in simulations considered here) repre-
sent the blood plasma, and their visualization can be substituted by
presenting the flow filed as a continuum instead of as discrete par-
ticles. Using such a technique leads to substantial computational
savings. In typical simulations data for every 100 M particles re-
quire about 6.5 GB of disk space; avoiding output of data for the
plasma particles typically reduces the disk space requirements by
80 to 95 percent. For example, in Figure 6 we visualize data from
a blood flow simulation using the DPD method. The large-scale
flow features are presented using continuum data computed by a
projection of atomistic data onto a specified grid. The small scale
features, such as RBC membrane folding, are presented by show-
ing a surface representing each RBC membrane, constructed from
a collection of particles (typically 250 to 600).

Figure 6: This figure shows healthy (red) and diseased (blue) red
blood cells and a fraction of solvent particles (small spheres). Using
only a subset of the solvent particles prevents them from occluding
the rest of the data. Also shown are streamlines and cutting planes
of the velocity field of the continuum data.

In general we have faced two major challenges in the visualiza-
tion (using ParaView) of atomistic data computed with LAMMPS.
The first challenge is due to the lack of a specialized reader to ac-
quire the atomistic data, and in particular the RBC data. The second
challenge is computing an ensemble average of a non-stationary so-
lution and projecting the atomistic data onto the continuum.

To overcome the first challenge we have created a utility to pro-
cess the atomistic data and output it to vtk files appropriate for
ParaView. The data for particles representing plasma and platelet
particles are transformed into vtkUnstructuredGrids of vertices.
Particles representing RBCs and connected according to the fixed
connectivity maps form vtkUnstructuredGrids of triangles. Each
of the two vtkUnstructuredGrids is saved into a separate vtk file
for each time step. Our current efforts are on transforming this
utility into a another specialized ParaView reader plug-in, and to
make it available to other users. To overcome the second chal-
lenge and accurately compute the ensemble average solution of
non-stationary data we employ window proper orthogonal decom-
position (WPOD). This method is briefly described in the next sub-
section.

3.2 Projection of atomistic data onto continuum
WPOD is a spectral analysis tool based in transforming a veloc-
ity field into orthogonal temporal and spatial modes: ū(t,x) =
∑N pod ak(t)φk(x). The temporal modes are computed as the eigen-
vectors of the correlation matrix constructed from the inner product

of velocity fields (snapshots) computed at different times. The ve-
locity field snapshots are computed by sampling (averaging) data
over short time intervals, typically Nts = [50−500] time steps. The
data are sampled over spatial bins centered at the vertices of the
finite element mesh. The radius of each bin is comparable to the
cut-off radius of the DPD particles and also to the distance between
the vertices. The POD eigenspectrum can be subdivided into two
regions. The first region contains the fast converging eigenvalues
λk, corresponding to the low-order modes, while the second region
contains the slow converging λk, corresponding to the high-order
modes. In Figure 7 we plot an eigenspectra and first three POD
modes computed in DPD simulation of pulsatile flow in a pipe. The
fast converging modes correspond to the motion, correlated in time
and space, while the slow converging modes correspond to the ther-
mal fluctuations. The ensemble average solution is computed from
the fast converging modes. The continuum data is computed on a

Figure 7: DPD simulations of pulsitale flow in a pipe: POD eigen-
spectra.

set of grid points, vertices of the finite element mesh, located in-
side the atomistic domain and having fixed coordinates. These data
typically consists of the ensemble average solution representing the
velocity field, density and pressure.

Since the grid used for the field data stays consistent over the
course of the simulation, only the data values need to be written
to disk for each time step. In a post-processing step the static grid
and connectivity information are read from disk and used to create
a vtkUnstructuredGrid. For each time step the data values are read
and then applied to this static grid. Again this results in a vtk file per
time step, including all field variables from the calculation. These
can be read into ParaView along with the particle data and standard
visualization filters, such as streamlines and cutting planes applied
to them, as seen in Figure 6.

4 VISUALIZATION OF MULTISCALE DATA

The methods and software described in the previous sections have
been applied to visualize multiscale data from coupled atomistic-
continuum simulations of platelet deposition in an aneurysm. The
continuum data computed by NekTar reveal the large scale flow
features such as flow direction, recirculation regions, swirling
flow, etc. Visualization of the atomistic data computed by DPD-
LAMMPS, particularly that of activated platelets, illustrate the
platelet deposition, along with the detachment of small platelet
clusters due to high shear flow, which could not be detected with-
out visualization. In Figure 8 streamlines show the complex flow
patterns in the aneurysm, while platelet deposition onto the arterial



wall is depicted by plotting the location of active platelets. Ensem-
ble average velocity fields computed with the WPOD method help
to verify the correctness of the coupling between NekTar and DPD-
LAMMPS. In Figure 9 the data computed by NekTar and DPD-
LAMMPS are compared by plotting the velocity vector fields ex-
tracted along the slice at the boundary between the continuum data
and the WPOD data. In Figure 9 the region inside the black rectan-
gle was calculated by the DPD-LAMMPS code, while the outside
region was calculated by NekTar.

Figure 8: This figure reflects the overall flow through the artery and
aneurysm as calculated by NekTar, as well as that within the subdo-
main calculated by DPD-LAMMPS, seen in greater detail in A and B,
together with platelet aggregation along the aneurysm wall.

Figure 9: This figure helps to validate that the flow fields calculated by
the two different scale codes (NekTar for macroscale, DPD-LAMMPS
for microscale) are consistent.

5 DISCUSSION

As our compute capabilities continue to grow, an increasing num-
ber of scientific domains will likely be turning to multiscale simu-
lations to more accurately model both physical and biological sys-
tems. Having appropriate tools for scientists to visually explore
and quantatitevly analyze these large heterogeneous data sets will
be critical to extracting knowledge from them [7, 3].

In this paper, we described a new NekTar reader plug-in de-
signed to process data computed by a high-order spectral/hp ele-
ment solver, and how it was used to explore macroscale simulation
data. While the example used here was for blood flow simulation,
it is a generic solution that can be applied to a large number of
problems where the solution is obtained using a high-order spec-
tral method. The NekTar reader plug-in will be made available to a
wide community of NekTar users, as it will soon be included in the
standard distribution of ParaView.

We also discussed tools and a new technique for the visualization
of data computed by the atomistic solver LAMMPS. Finally, we
have applied these new visualizations tools to present data from
multiscale simulations computed by our coupled solver.

Determining the appropriate DPD-LAMMPS data to visualize
has been an evolving process. As the capabilities of the integrated
solvers are extended and better understood, the data formats are ex-
pected to stabilize. As we move closer to that stability, we envision
moving toward additional custom ParaView reader plug-ins, which
will enable this data to also be read in its native format, without the
need to create and store additional data specifically for visualiza-
tion.

ACKNOWLEDGEMENTS

This work was supported in part by the TeraGrid, the National Sci-
ence Foundation Grants OCI-0504086 and OCI-0904190, and by
the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357. We
also thank Professor G. E. Karnidakis, Dr. D. Fedosov, and the Vi-
sualization group in the Mathematics and Computer Science divi-
sion at Argonne National Laboratory for their contribution to mul-
tiscale simulations. In addition we acknowledge Kitware Inc. for
providing technical support in our development of the ParaView
plug-in.

REFERENCES

[1] International assessment of research and development in simulation-
based engineering and science, WTEC report. Technical report. Edi-
tors: S. Glotzer and S. Kim.

[2] LAMMPS Molecular Dynamics Simulator. Sandia National Laborato-
ries, http://lammps.sandia.gov.

[3] R. Fuchs and H. Hauser. Visualization of multi-variate scientific data.
Computer Graphics Forum, 28(6), 2009.

[4] L. Grinberg and G. E. Karniadakis. A new domain decomposi-
tion method with overlapping patches for ultrascale simulations: Ap-
plication to biological flows. Journal of Computational Physics,
229(15):5541 – 5563, 2010.

[5] L. Grinberg, V. Morozov, D. Fedosov, J. A. Insley, M. E. Papka, K. Ku-
mar, and G. E. Karniadakis. A new computational paradigm in multi-
scale simulations: Application to brain blood flow. In Proceedings of
the 2011 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, Seattle, WA, 2011.

[6] G. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for
CFD, second edition. Oxford University Press, 2005.

[7] K.-L. Ma, C. Wang, H. Yu, K. Moreland, J. Huang, and R. Ross. Next-
generation visualization technologies: Enabling discoveries at extreme
scale. SciDAC Review, 12:12 – 21, 2009.

[8] K. Schloegel, G. Karypis, and V. Kumar. Parallel static and dynamic
multi-constraint graph partitioning. Concurrency and Computation:
Practice and Experience, 14(3):219–240, 2002.


