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ABSTRACT
There is growing concern that I/O systems will be hard
pressed to satisfy the requirements of future leadership-class
machines. Even current machines are found to be I/O bound
for some applications. In this paper, we identify existing per-
formance bottlenecks in data movement for I/O on the IBM
Blue Gene/P (BG/P) supercomputer currently deployed at
several leadership computing facilities. We improve the I/O
performance by exploiting the network topology of BG/P for
collective I/O, leveraging data semantics of applications and
incorporating asynchronous data staging. We demonstrate
the efficacy of our approaches for synthetic benchmark ex-
periments and for application-level benchmarks at scale on
leadership computing systems.

1. INTRODUCTION
Today’s largest computational systems are providing un-

precedented opportunities to advance science in numerous
fields, such as climate sciences, biosciences, astrophysics,
computational chemistry, high-energy physics, materials sci-
ences, and nuclear physics [17]. Current Department of
Energy (DOE) leadership-class machines such as the IBM
Blue Gene/P (BG/P) supercomputer at the Argonne Na-
tional Laboratory (ANL) and the Cray XT system at the
Oak Ridge National Laboratory (ORNL) consist of a few
hundred thousand processing elements. BG/P is the sec-
ond generation of supercomputers in the Blue Gene series
and has demonstrated ultrascale performance together with
a novel energy-efficient design.

While the computational power of supercomputers keeps
increasing with every generation, the I/O systems have not
kept pace, resulting in a significant performance bottleneck.
The ExaScale Software Study: Software Challenges in Ex-
treme Scale Systems explains it this way: “Not all existing
applications will scale to terascale, petascale, or on to exas-
cale given current application/architecture characteristics”
citing “I/O bandwidth” as one of the issues [19]. On top
of this, one often finds that existing solutions only achieve
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a fraction of quoted capabilities. The International Exas-
cale Software Project Roadmap [5] notes that management,
analysis, mining, and knowledge discovery from data sets of
this scale are very challenging problems, yet a critical one
in petascale systems and an even greater one for exascale.

In [20], we focused on the performance of the BG/P I/O
nodes (ION) in passing data from the collective network to
the external network. In this paper we consider the perfor-
mance details of all available networks (torus, tree, exter-
nal) and how best to deploy them in order to minimize the
time spent blocked on I/O. Special consideration is given
to network topologies. We have developed an infrastruc-
ture called GLEAN as our vehicle by which we develop,
demonstrate and deploy these improvements. We are mo-
tivated to help increase the scientific output of leadership
facilities. GLEAN provides a mechanism for improved data
movement and staging for accelerating I/O, interfacing to
running simulations for co-analysis, and/or an interface for
in situ analysis via a zero to minimal modification to the
existing application code base.

The novel contributions of our paper include the following:

• Identifying the performance bottlenecks in data move-
ment for I/O in BG/P.

• Design of topology-aware data movement and aggre-
gation mechanisms for BG/P.

• Identifying the performance benefits of restricting com-
munication for aggregation to a reduced set of nodes
instead of global communication.

• Demonstrating our approaches using synthetic and ap-
plication benchmarks to yield multi-fold improvement
on leadership-class systems.

The remainder of the paper is organized as follows. We
present a brief overview of the Argonne Leadership Comput-
ing Facility, I/O forwarding in BG/P, and a summary of our
previous findings in Section 2. Sections 3 and 4 describe the
network performance issues under consideration and our ap-
proach to exploiting topological concerns. In Section 5, we
present our performance results for synthetic benchmarks.
In Section 6, we evaluate the effectiveness of GLEAN in ap-
plication performance tests at scale. Section 7 covers related
work to provide the reader with context for the reported re-
sults and design choices. Finally, we close in Section 8 with
a discussion of conclusions and future work.

2. BACKGROUND
We present an overview of the Argonne Leadership Com-

puting Facility (ALCF) resources, specifically the IBM Blue



Gene/P architecture, and describe the I/O subsystem of the
BG/P. The ALCF resources described are used for the sys-
tem evaluation in this paper.

2.1 Argonne Leadership Computing Facility

Figure 1: The Argonne Leadership Computing Fa-
cility (ALCF) maintains a 160K core BG/P com-
pute cluster (Intrepid), data analysis cluster (Eu-
reka), and the file server nodes all interconnected
by a 5-stage Myricom 10G Ethernet switch complex,
and other compute infrastructure including several
test systems and a large computing cloud resource.

ALCF is a U.S. Department of Energy facility that pro-
vides leadership-class computing infrastructure to the sci-
entific community. Figure 1 depicts the architecture of the
primary ALCF resources consisting of the compute resource
(Intrepid), the data analysis cluster (Eureka), and the file
server nodes connected by a large Myricom switch complex.

The BG/P system is the second in a series of supercom-
puters designed by IBM to provide extreme-scale perfor-
mance together with high reliability and low power con-
sumption. Intrepid is a 160K core BG/P system with a peak
performance of 557 TF, 80 TB local memory, and 640 I/O
nodes each with 4 cores, connected to the switching inter-
connect with aggregate 6.4 Tbps. BG/P systems comprise
individual racks that can be connected together; each rack
contains 1,024 four-core nodes, for a total of 4,096 cores per
rack. 64 nodes are grouped into a pset, and 16 psets together
form a rack consisting of 1024 nodes i.e. 4096 cores.

Each node on the BG/P uses a quad-core, 32-bit, 850 MHz
IBM Power PC 450 with 2GB of memory. Each node is con-
nected to multiple networks. The I/O and interprocess com-
munication of BG/P travel on separate internal networks.
A three-dimensional torus network is used for point-to-point
communication between compute nodes (CNs), while a global
collective network allows CNs to perform I/O to designated
I/O forwarding nodes (this network can also be used for opti-
mized MPI collective operations). In the BG/P system, the
I/O forwarding nodes are referred to simply as I/O nodes
(IONs) and have the same architecture as the CNs. For each
pset, a dedicated ION receives I/O requests from the CNs in
that group and forwards those requests over its 10 gigabit
Ethernet port to the external I/O network. A CN is con-
nected to each of its six neighbors in the 3D Torus via a 425
MBps link in each direction, and to two neighbors via the

global collective networks over a 850 MBps link.
The IONs are connected to an external 10 gigabit Ethernet

switch, which provides I/O connectivity to file server nodes
(FSNs) of a cluster-wide file system as well as connectivity to
Eureka, the data analysis (DA) cluster nodes. Eureka con-
tains 100 servers with 800 Xeon cores, 3.2 TB memory, and
200 NVIDIA Quadro FX 5600 GPUs. Eureka is connected to
the switch with 100 links at 10 Gbps each. There are 128 file
server nodes; each node is a dual-core dual-processor AMD
Opteron with 8 GB RAM per core. Each FSN is connected
to the Myricom switch complex over 10 Gbps. The FSNs
are connected via InfiniBand 4X DDR to 16 Data Direct
Network 9900 storage devices. The production filesystem is
a 4.5 TB GPFS parallel filesystem shared between Intrepid
and Eureka.

2.2 I/O forwarding in BG/P
The BG/P runs a lightweight Linux-like operating sys-

tem on the compute nodes called the Compute Node Kernel
(CNK). CNK is a minimalistic kernel that mitigates oper-
ating system interference by disabling support for multipro-
cessing and POSIX I/O system calls. To enable applica-
tions to perform I/O, CNK forwards all I/O operations to
a dedicated I/O node, which executes I/O on behalf of the
compute nodes. Control and I/O Daemon (CIOD) [15]) is
the BG/P I/O-forwarding infrastructure provided by IBM.
It consists of a user-level daemon running on the ION. For
each CN process in the partition, a dedicated I/O proxy pro-
cess handles its associated I/O operations. CIOD receives
I/O requests forwarded from the compute nodes over the
tree network and copies them to a shared-memory region.
The CIOD daemon then communicates with the proxy pro-
cess using this shared memory, which in turn executes the
I/O function.

2.3 Prior findings with the BG/P I/O system
In [20], we reported on the performance of BG/P’s I/O for-

warding mechanisms. The theoretical achievable collective
network throughput from CNs in a pset to their designated
ION, taking into account 16 bytes of header information for
the CIOD I/O forwarding for every 256-byte payload, as well
as 10 bytes of hardware headers related to operation control
and link reliability—is ≈ 731 MiBps.

As we increase the message size, the ratio of the time
spent by CIOD on the actual data transfer to the time spent
on sending the control information increases, thus leading
to increased network utilization. For a given pset and a
message size of 1 MiB, the tree network is able to sustain up
to 680 MiBps, or 93% efficiency. For moving data (memory-
to-memory) for the CNs in a pset to a DA node, we are able
to sustain an end-to-end throughput of 420 MiBps.

3. PERFORMANCE OF I/O MECHANISMS
MPI collective I/O, POSIX I/O and MPI independent

I/O are the primary interfaces used by applications run-
ning on leadership class systems to interact with the filesys-
tem. High-level libraries such as Parallel-netCDF (pnetcdf)
[12] and HDF5 [9] provide a much more convenient abstrac-
tion for computational scientists interacting with storage,
because they focus on familiar constructs: variables with
multiple dimensions and attributes of the variables. These
libraries map variables into regions of a file and record in-
formation on those variables in a self-describing format, and



typically use the aforementioned file access interfaces to in-
teract with files.

Figure 2: Collective network topology of the CNs in
a BG/P pset.

Figure 2 shows the collective network topology connect-
ing the CNs in a pset to the ION. The collective network
architecture design takes into account multiple factors in-
cluding optimizing global collective operations that are la-
tency bound, I/O operations that are bandwidth intensive,
and accounting for a scalable cost-effective mechanism to
interconnect BG/P boards. The ION is connected to the
file servers and analysis nodes over the Myricom 10G Eth-
ernet network. On BG/P, MPI independent I/O defaults
to POSIX I/O. POSIX I/O uses the collective network to
move data from the CNs via the ION over to the external
I/O network. MPI collective I/O uses a three-phase proce-
dure to move the data out. In MPI collective I/O, in each
pset, 8 processes are assigned to performing aggregation. In
the first phase, the buffer offsets and sizes are aggregated on
the aggregator nodes using AllToAllv. Next, the actual data
is aggregated using AllToAllv over the collective network.
Finally, this data is moved out from the aggregator nodes
using POSIX I/O to the ION via the collective network.

In order to evaluate the performance of the MPI collective
I/O and POSIX I/O in moving data out of the IBM BG/P
system we wrote a parallel benchmark to write data using
Collective I/O and POSIX I/O to /dev/null on the compute
nodes. As the I/O operations on the CN are forwarded and
executed on the ION, this benchmark effectively measures
the achievable throughput of the I/O mechanisms to move
data out of the BG/P system without the effects of the stor-
age system. This represents the maximum throughput one
could expect by using these interfaces.

Figure 3 (a) compares the performance of the MPI collec-
tive I/O and POSIX I/O at 4,096 BG/P cores as we vary the
message size per MPI process from 2 KiB to 4,096 KiB. Fig-
ure 3 (b) compares the performance of MPI collective I/O
and POSIX I/O at 32,768 BG/P core as we vary the message
size per MPI process from 2 KiB to 4096 KiB. In both cases,
the reported throughput is the average of 5000 iterations.
For a 4K message per MPI process at 4,096 cores, collec-
tive I/O achieves 6% of the Peak throughput and POSIX
I/O achieves 4% of the peak. At 64K, the collective I/O
achieves 27% of the peak while POSIX I/O achieves 50%
of the peak. As we increase the message size, the control
overhead associated with the CIOD forwarding mechanism
to move data out to the ION decreases relative to the data
transmission time leading to increased performance.

At 32,768 cores, for a 4K message per MPI process, collec-
tive I/O achieves 0.3% of the peak throughput and POSIX
I/O achieves 4% of the peak. At 64K, the collective I/O
achieves 4.5% of the peak while POSIX I/O achieve 50% of

(a)

(b)

Figure 3: Performance comparison of I/O mecha-
nisms on the BG/P.

the peak. In case of 32,768 processes, POSIX I/O performs
better than collective I/O for all message sizes to move data
out of the BG/P system, and, as we increase the number of
processes, the collective I/O mechanism is unable to scale.
For small messages, both MPI collective I/O and POSIX
I/O fail to scale in performance. Investigating this further,
we found that in BG/P for collective I/O, the first 8 nodes in
a pset are designated as aggregators as depicted in Figure 5
(b). Additionally, a considerable amount of time is spent in
the aggregation data movement phase as the designated ag-
gregator node assigned could be in another pset several hops
away. This leads to an increased global communication and
network contention in the collective network leading to a
decreased performance with collective I/O.

At 4,096 KiB message size per process, MPI collective
I/O defaults to using independent I/O (POSIX) for the I/O
operations. We would expect the performance of collective
I/O mechanisms to be similar to that of the independent
I/O. However, in case of collective I/O, the first phase in
which the buffer sizes and offsets are exchanged using an
MPIAlltoAllv still occurs. The overhead of this exchange
is small at small core counts; However, it leads to a 100 %
reduction in collective I/O performance in comparison to
POSIX I/O as we scale to 32K cores.

As we move toward exascale systems where the memory
per core is expected to be reduced significantly, scalability
for small messages will become a key factor. In this paper,
we address scalable end-to-end data movement.



4. GLEAN ARCHITECTURE
In designing GLEAN we are motivated to improve the

performance applications that are impeded by their own de-
manding I/O. We strive to move the data out of the simu-
lation application with as little overhead as possible to the
system. To achieve this while providing clean interfaces to
existing and future applications, the GLEAN design aims
to:

• Exploit the underlying network topology to speed data
motion off of the supercomputer,

• Provide asynchronous data I/O via staging nodes,

• Develop scalable mechanisms for collective I/O by re-
ducing synchronization requirements,

• Mitigate variability in I/O performance of shared filesys-
tems using staging,

• Leverage data semantics of applications,

• Enable simulation-time data analysis, transformation
and reduction,

• Provide non-intrusive integration with existing appli-
cations, and,

• Provide transparent integration with native applica-
tion data formats.

Figure 4 compares the traditional mechanism for I/O with
GLEAN. The simulation running on the compute may in-
voke GLEAN directly or transparently through a standard
I/O library such as parallel-netcdf and hdf5. The data
is moved out to dedicated analysis/staging nodes. Using
GLEAN, one can apply custom analyses to the data on the
compute resource or on the staging nodes. This can help
reduce the amount of data written out to storage. On the
staging nodes, GLEAN using MPI-IO or higher-level I/O
libraries to write the data out asynchronously to storage.

Figure 4: Relationships between GLEAN and prin-
cipal components of a HPC application.

GLEAN is implemented in C++ leveraging MPI, threads
and provides interfaces for Fortran and C-based parallel ap-
plications. It offers a flexible and extensible API that can be
customized to meet the needs of the application. In the fol-
lowing subsections we describe our GLEAN design in terms
of three principal features: network topology, data seman-
tics, and asynchronous data staging.

4.1 Exploiting BG/P network topology for I/O
As we move towards systems with heterogenous and com-

plex network topologies, effective ways to fully exploit their
heterogeneity is critical. BG/P has different networks with
varying throughputs and topologies. The 3D torus intercon-
nects a compute node with its six neighbors at 425 MB/s
over each link. In contrast, the collective network is a shared
network with a maximum throughput of 850 MBps to the
ION. The collective network is the only way to get to the
ION in order to perform I/O. BG/Q is expected to have
a more complex network topology. An important goal in
GLEAN is to leverage the topologies to move the data out
of the machine as soon as possible enabling the simulation
to continue on with its computation.

MPI collective I/O uses AllToAllv wherein, depending on
an aggregator’s rank, the aggregation traffic can cross the
pset boundaries and, this leads to global communication and
network contention. In GLEAN, we restrict the aggregation
traffic to be strictly within the pset boundary. The goal is
to move the data out of the system as fast as possible to
the staging nodes and use the staging nodes to perform any
data shuffling and reduce any global communication critical
for scaling to large core counts. Figure 5(a) shows GLEAN’s
selection of 8 aggregator groups formed within a pset. Each
group is depicted by a distinct color and the aggregator node
for the group is highlighted. For comparison 5(b) shows the
8 aggregator nodes used in MPI I/O collective operations.
In this case, the first 8 nodes are selected as aggregators
and highlighted. We would like to note that the aggregation
traffic in the MPI collection I/O is global and not restricted
to a pset.

In each aggregator group in GLEAN, the node where the
aggregation is performed is chosen such that the aggrega-
tor nodes are distributed across the collective network in a
pset (Figure 2). We first measured the achievable through-
put from a single CN to the ION and found no significant
performance variation from various points in the collective
network. We did not, however, perform the analogous multi-
point test to find the cost of contention and plan to inves-
tigate this in future. Assuming that this might be an issue
when many CNs are sending data to the ION, we choose to
distribute the GLEAN aggregator nodes across the collective
network in a pset.

(a) (b)

Figure 5: Aggregation groups formed within a pset
by GLEAN (a) with aggregator nodes highlight, and
aggregator node configuration used by MPI I/O (b).

To create the aggregators, for each pset, we use an MPI
sub-communicator giving us only the MPI processes belong-
ing to the pset. We split the sub-communicator into ag-
gregation sub-groups and created a communicator for each
sub-group. We would like to note that these communicators



are created once at initialization and reused during an entire
simulation run. To create the aggregation groups, we lever-
aged the BG/P ”personality” information to get the X,Y,Z
rank in the 3D torus of the each process and group the near-
est neighbors in all 3 dimensions. The data aggregation also
includes the associated data semantics. Once the data is
aggregated, the aggregator nodes send the data out to the
staging nodes via the IONs.

4.2 Leveraging application data semantics
A key design goal in GLEAN is to make application data

semantics a first-class citizen. This enables us to apply var-
ious analytics to the simulation data at runtime to reduce
the data volume written to storage, transform data on-the-
fly to meet the needs of analysis, and enable various I/O
optimizations leveraging the application’s data models. To-
ward this effort, we have worked closely with FLASH [7], an
astrophysics application, to capture its adaptive mesh refine-
ment (AMR) data model. We have interfaced with PHASTA
[18], which uses an adaptive unstructured mesh, to make
unstructured grids supported in GLEAN. Additionally, we
have mapped Parallel-netCDF and hdf5 APIs to relevant
GLEAN APIs, thus enabling us to interface with simula-
tions using pnetcdf and hdf5. We have worked with many
of the most common HPC simulation data models ranging
from AMR grids to unstructured adaptive meshes.

4.3 Asynchronous data staging
Asynchronous data staging refers to moving the applica-

tion’s I/O data to dedicated nodes and next writing this
out to the filesystem asynchronously while the application
proceeds ahead with its computation. A key distinguishing
characteristic of GLEAN’s data staging is that it leverages
the data models and semantics of applications for staging in-
stead of viewing data simply as files and/or buffers. On the
staging nodes, typically the Eureka analysis cluster nodes,
GLEAN runs as an MPI job and communicates with the
GLEAN aggregator nodes over sockets, as sockets are the
only way to communicate between BG/P CNs and the exter-
nal I/O network. A key requirement is to scale to the large
number of connections from BG/P. In the case of 8 GLEAN
aggregators per pset, an entire machine run (160K cores - 640
psets) will have 5,120 connections. These connections are
distributed among various GLEAN staging nodes. Further,
each staging node is designed with a thread-pool wherein
each thread handles multiple connections via a poll-based
event multiplexing mechanism. Asynchronous data staging
blocks the computation only for the duration of copying data
from the CN to the staging nodes. The data staging serves
as burst buffer for the simulation I/O that can be written
out asynchronously to the filesystem while the computation
proceeds ahead. Data staging also significantly reduces the
number of clients seen by the parallel filesystem, and thus
mitigates the contention including locking overheads for the
filesystem. The data semantics enables GLEAN to trans-
form the data on-the-fly to various I/O formats. On the
staging nodes, we envision GLEAN to be deployed either as
an ”always ON” service, run on dedicated set-aside nodes of
a simulation or co-scheduled along with the simulation. If
there is insufficient memory on the staging nodes (receivers),
the transfer is blocked until sufficient buffer/memory space
is made available. We are currently pursuing the option of
using node-local storage to stage data.

5. MICROBENCHMARKS
We describe a series of experiments to evaluate the per-

formance of GLEAN using synthetic I/O loads.

5.1 Data movement from compute nodes
Our goals were to determine the number of aggregators

that maximize performance, to compare performance the
performance of GLEAN with MPI collective I/O and POSIX
I/O as we vary the message size and number of Intrepid cores
sending data, and to test GLEAN strong scaling.

5.1.1 Optimizing the number of aggregators
Having determined the best placement of aggregator nodes

in the collective network topology, it is important to deter-
mine the best number of aggregator nodes per pset. Figure
6 depicts the total throughput as a function of message size
as we move data from the BG/P CNs to the IONs for 1024
BG/P cores. The baseline performance achieved by POSIX
I/O and by MPI collective I/O is shown for comparison.

Figure 6: Comparing performance of GLEAN for
varying number of aggregators (log-linear scale).

Note that four aggregators give the best performance across
the measured message sizes. With only two aggregators,
throughput falls short at small message sizes as the num-
ber of ION threads processing the data is unable to sustain
the higher throughput due to the low clock speed of the
ION. At large message sizes, the two aggregator configura-
tion begins to underperform because the aggregated memory
required increases and the amount of network parallelism is
restricted to only two aggregators. For even larger message
sizes, we expect the same drop in performance to happen
with four aggregators. At message sizes larger than 64K per
core, the performance difference as we vary the number of
aggregators from four to sixteen is not very significant. By
having more aggregators, the amount of memory needed for
the aggregation buffer reduces, and, in our final implemen-
tations, we adopt an adaptive scheme where larger message
sizes invoke larger numbers of aggregators. We believe that
in future systems, auto-tuning the number of aggregators
based on the message sizes as well as the processing capa-
bilities of the IONs will be critical in the design of collective
I/O operations.

5.1.2 Performance with number of BG/P cores
Because GLEAN is designed to send data within a pset

without interfering with other psets, we expect GLEAN to



scale perfectly as we scale the number of cores for this test.
In this test, the data is moved only to the IONs and is not
affected by the external I/O network. But we do want to
benchmark GLEAN’s performance to the I/O mechanisms
at scale for various message sizes to demonstrate the efficacy
of our approach.

(a)

(b)

(c)

Figure 7: Performance comparison of I/O mecha-
nisms to move data out to the IONs for various mes-
sage sizes per core at 4K, 16K and 64K BG/P cores
(log-log scale).

Figure 7 depicts the results of these experiments for 4,096
cores (1 BG/P Rack), 16,384 cores (4 racks) and 65,536 cores
(16 racks). Each plot shows aggregate throughput in GiBps
against the message size per MPI process in KiB. GLEAN
shows the expected perfect scaling from 4,096 cores to 65,536

cores for each message size from 2 KiB to 4,096 KiB. POSIX
I/O approaches GLEAN performance at large message size
and, like GLEAN, it scales perfectly as the various psets do
not communicate with one another. MPI collective I/O ap-
proaches GLEAN performance more slowly at higher mes-
sage sizes, but fails to scale – evidence of the aggregation
being done across psets.

For small message sizes, the impact on strong scaling is
most pronounced. GLEAN achieves up to 30-fold improve-
ment in throughput over POSIX I/O and up to 400-fold
improvement over MPI collective I/O. For the specific case
of moving 1 GiB of data from 256 cores up to 65,536 cores,
the strong scaling figures are shown in Figure 8. GLEAN
achieves nearly perfect strong scaling.

Figure 8: Strong scaling performance of the I/O
mechanisms to write 1 GiB data to the BG/P IONs
(log-log scale).

5.2 End-to-end performance
Our final experiments with synthetic benchmarks were de-

signed to evaluate the end-to-end performance of GLEAN in
moving data from Intrepid to the Eureka staging nodes.

5.2.1 Scaling with the number of staging nodes
In [20], we employed a thread pool mechanism to effi-

ciently move data out of the IONs. We employ a similar
thread pool mechanism on the staging nodes to efficiently
receive the data from Intrepid. By performing extensive
tuning, we found four threads per node provide us with
best performance. Next, we evaluated the number of stag-
ing nodes needed to efficiently to receive the data from the
Intrepid system across the Myricom network. In this case,
we determine that the Myricom I/O network infrastructure
effects plays a key role.

In the previous section, we demonstrated how to opti-
mally send data out from Intrepid compute nodes with the
result that one rack of Intrepid can sustain a maximum of 6.7
GiBps out over the external I/O network - This limit is set
by the forwarding performance of CIOD on the ION. Using
nuttcp, a network performance benchmark, we determined
that GLEAN on a Eureka node can sustain a maximum per-
formance of 670 MiBps. Thus we would expect 10 Eureka
nodes to receive this data in ideal network conditions.

In Figure 9, we present the data movement performance
from 16,384 Intrepid cores to the data staging nodes (Eu-
reka). Ideally, Intrepid could send a maximum of 26.8 GiBps.



We see from the graph that as we add Eureka nodes, we are
able to sustain additional aggregate throughput. The per-
formance flattens out between 36 and 48 Eureka nodes to
22.1 GiBps indicating that we are hitting the network rout-
ing limit of the CLOS-based Myricom network to the subset
of Eureka nodes.

Figure 9: Scaling with number of staging nodes.

5.2.2 End-to-end performance
We present a mix of end-to-end performance tests to bench-

mark GLEAN at scale. Figure 10 and Table 1 summarizes
tests scaling from 4,096 cores (1 BG/P rack) to 131,072 cores
(32 BG/P racks) to various fractions of Eureka nodes. In se-
lecting the number of Eureka nodes to receive the data, we
tried to roughly match 10 Eureka nodes to each BG/P rack
until we ran out of Eureka nodes. We have included columns
in the table for simple extrapolations of performance from
the earlier measurements. Note that in the one and two
rack cases, we expect to be limited by Intrepid’s outgoing
BW and in the four to 32 rack cases, we expect Eureka to
be increasingly responsible for limiting the throughput. The
final column of the table shows that we are achieving over
80% of the expected throughput in all of the cases. At 132K
Intrepid cores, we are able to sustain 54 GiBps of aggregate
throughput to the staging nodes.

Figure 10: End-to-end performance of GLEAN be-
tween Intrepid and Eureka.

Intrepid Intrepid Eureka
Cores Eureka Capacity Capacity Measured

(Racks) Nodes [GiBps] [GiBps] [GiBps] Efficiency
4096 (1) 12 * 6.7 8.0 5.4 0.80
8192 (2) 24 * 13.4 16.1 10.7 0.80

16384 (4) 36 26.8 * 24.1 21.6 0.89
32768 (8) 64 53.6 * 42.9 37.4 0.87

65536 (16) 90 107.2 * 60.3 47.0 0.78
131072 (32) 96 214.4 * 64.3 52.4 0.81

Table 1: End-to-end throughput for select configu-
rations.

In a separate experiment, we achieved 84 GiBps between
Intrepid using the 128 fileserver nodes and 100 Eureka nodes
for staging. In this experiment, we did not have the efficient
thread-pool receiving mechanism implemented on the stag-
ing nodes. We believe with that improvement in place, we
could now achieve 126 GiBps. It is clear that the CLOS
network is capable of more than can be delivered to Eureka
alone, a fact that could lead to better I/O performance for
Intrepid in the future.

6. EVALUATION WITH APPLICATIONS
We have integrated GLEAN with several applications and

report its performance at leadership class scale with realistic
data patterns. The applications selected span a wide gamut
of data models, and enabled us to experiment with several
integration schemes. In the following section, we describe
our methods and results for GLEAN as used by three ap-
plications: FLASH, S3D, and PHASTA on leadership-class
systems.

6.1 FLASH
FLASH code [7] is an adaptive mesh, parallel hydrody-

namics code developed to simulate astrophysical thermonu-
clear flashes in two or three dimensions, such as Type Ia su-
pernovae, Type I X-ray bursts, and classical novae. It solves
the compressible Euler equations on a block-structured adap-
tive mesh. FLASH provides an Adaptive Mesh Refinement
(AMR) grid using a modified version of the PARA-MESH
package and a Uniform Grid (UG) to store Eulerian data.

For our study, we used the Sedov simulation included in
the FLASH distribution. Sedov evolves a blast wave from
a delta-function initial pressure perturbation [6]. The Se-
dov problem exercises the infrastructure (AMR and I/O) of
FLASH with the minimal use of physics solvers. It can,
therefore produce representative I/O behavior of FLASH
without spending too much time in computations. We ran
the application in 3D with 163 cells per block. Each block
consists of 10 mesh variables, and the problem size is con-
trolled by adjusting the global number of blocks. We choose
to advance four time steps and produce I/O output at every
single step so that most application runtime is mostly spend
on I/O. The I/O in each step consists of checkpoint files for
restart purposes and plot files for analysis. A checkpoint
file is a dump of the complete state of a runtime applica-
tion, including mesh data in double precision. A plot file
is a user-selected subset of mesh variables stored in single
precision. In these experiments checkpoint I/O writes all 10
mesh variables. The plot file I/O writes only selected vari-
ables of interest (in these experiments, the 1st, 6th, and 7th
variables).

We evaluate the performance of pnetcdf, hdf5 and GLEAN
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Figure 11: Weak scaling results for FLASH.

for two standard FLASH output streams: checkpoint and
plot data. We configured FLASH to use both pnetcdf and
hdf5 with collective I/O to the GPFS parallel filesystem
on Intrepid. It was demonstrate in [11] that the collective
interfaces outperformed independent I/O interfaces for the
given FLASH Sedov simulation on ALCF systems. Working
closely with the FLASH developers, we designed GLEAN to
have an API to capture the data semantics of FLASH in-
cluding the AMR hierarchy. To interface with FLASH, we
transform pnetcdf into appropriate GLEAN API calls. By
setting an environment variable that is passed to the flash
executable when the job is launched with pnetcdf, one can
use GLEAN with FLASH. Thus, we are able to integrate
with FLASH without modification to the FLASH simula-
tion code. On the staging nodes (Eureka), GLEAN can
be configured to write data out asynchronously using ei-
ther pnetcdf, or transformed on-the-fly to hdf5 and written
out. This is possible because GLEAN captures the data se-
mantics of FLASH. As we scaled from 4,096 cores to 32,768
cores in powers of two, the number of Eureka nodes used for
staging data in GLEAN was 12, 24, 36 and 72 respectively.
We would like to note that using GLEAN, we wrote FLASH
checkpoint and plot files to the GPFS parallel filesystem and
verified that the generated files were consistent with the files
written directly without GLEAN.

In our weak scaling study, each run wrote five checkpoints
and six plotfiles. For 4,096 cores, each checkpoint file is 12
GiB, and for 32,768 cores, it is 96 GiB. From Figure 11
(a), we see that the achievable throughput for pnetcdf and

hdf5 increases as we weak scale. This is because the num-
ber of IONs involved increases. The maximum throughput
achieved by hdf5 is 3.13 GiBps and pnetcdf is 4.4 GiBps.
GLEAN, using the pnetcdf interface, is able to sustain an
observed throughput of 31.3 GiBps - a 10-fold improve-
ment over hdf5 and a 7-fold improvement over pnetcdf. The
observed throughput is the throughput achieved to transfer
the data to the staging nodes. We argue that this is the
throughput seen by the application as the data is written
asynchronously to the filesystem. We also performed exper-
iments to synchronously write the data to the parallel filesys-
tem, and at 32K cores with 72 staging nodes, we achieve a
storage throughput of 16.3 GiBps - a 4-fold end-to-end
improvement to storage. This higher throughput achieved
is primarily due to the reduced number of clients seen using
staging and demonstrates end-to-end I/O acceleration using
GLEAN. As we can overlap the writing to the filesystem
with the application’s computation once the data is staged,
we limit the focus of the remaining results in this paper to
the throughput achieved to the staging nodes.

For plot file data, at 4,096 cores, each file is 1.8 GiB, and
at 32,768 cores, it is 16 GiB each. In plot files, the data writ-
ten per process is smaller than checkpoint data. At 32,768
cores, GLEAN is able to sustain an observed throughput of
27.2 GiBps - a 117-fold improvement over hdf5 and a 12-
fold improvement over pnetcdf. In the case of plot files, the
amount of data written per process is less than that written
in checkpoint files. At these scales, the efficacy of GLEAN
becomes even more evident.

(a)

(b)

Figure 12: Strong scaling results for FLASH.



Figure 12 depicts the strong scaling performance for writ-
ing out 3.4 GiB plot files and 24 GiB checkpoint files as
we scale the number of processes from 4,096 to 32,768 pro-
cesses. For plot files, at 4,096 processes, GLEAN achieves
a 5-fold improvement over pnetcdf and 16-fold improve-
ment over hdf5. At 32,768, GLEAN achieves a 37-fold im-
provement over pnetcdf and a 347-fold improvement over
hdf5 and sustains an average throughput of 26 GiBps. In
the case of checkpoint files, GLEAN is able to sustain 31
GiBps. Thus, effectively exploiting the network topology
of the BG/P, leveraging the data semantics of the applica-
tions and asynchronous data staging are critical as we scale
towards larger core counts. These will be of paramount im-
portance as we move towards future exascale architectures
with larger core counts and smaller per-core memory foot-
prints.

6.2 S3D
The S3D application [3] simulates turbulent combustion

using direct numerical simulation of a compressible Navier-
Stokes flow. It uses a structured grid, with variables stored
separately, one block per variable over the whole grid. The
variables are declared as 3D or 4D arrays. The domain is de-
composed among MPI processes in 3D. Periodically, all pro-
cesses participate in writing out a restart file. This restart
file can be used to resume computation and as input for
visualization and analysis tools. S3D-IO extracts just the
portion of S3D concerning restart dumps, allowing us to fo-
cus only on I/O characteristics.

S3D supports multiple output methods, including MPI
collective I/O and pnetcdf. In order to better understand the
API requirements in GLEAN and to interface with Fortran-
based simulations, we added a new I/O method in S3D-IO to
use GLEAN. This integration took about two days and was
valuable in helping design GLEAN interfaces for Fortran-
based applications. We present scaling results from 4,096
BG/P cores (one rack) to 32,768 BG/P cores (eight racks)
with MPI collective I/O, pnetcdf and GLEAN. In the case of
GLEAN, data was transferred from Intrepid to Eureka, and
could be written out asynchronously using pnetcdf. As we
scaled from 4,096 cores to 32,768 cores in powers of two, the
number of Eureka nodes used for staging data in GLEAN
used was 12, 24, 36 and 72 respectively. In these runs, S3D
data consists of 4 variables, namely, species (11 elements),
pressure, temperature, velocity (three components).

Figure 13 (a) depicts the weak scaling of the various I/O
mechanisms for a block size of 22 × 36 × 22 per MPI pro-
cess. This block size is representative of the recent S3D
production runs on Jaguar at OLCF and the Hopper2 sys-
tem at NERSC. In the case of 32,768 processes, the size of
each checkpoint file is 68GiB, and we wrote out 20 time-
steps, producing a total data of 1.38 TiB for each run. The
throughput performance reported is the average through-
put achieved for the 20 time-steps. From the Figure 13 (a),
we see that MPI collective I/O achieves a higher through-
put with respect to pnetcdf, as in S3D, this I/O mecha-
nism does not write out any metadata to the file. There-
fore, this leads to a 1.5 fold improvement in performance
over pnetcdf. MPI collective I/O and pnetcdf demonstrate
multi-GiBps throughput as S3D writes large messages sizes
per process in this weak scaling experiment. GLEAN is able
to achieve 5.1 GiBps at 4,096 cores - A 2.5 fold improvement
over MPI Collective I/O and 3.5 fold speed up over pnetcdf.

At 32,768 cores, GLEAN achieves an observed throughput of
26.2 GiBps - a 4.5 fold improvement over MPI Collective
I/O and 5.8 fold improvement over pnetcdf.

Figure 13 (b) depicts the strong scaling performance for
the various I/O mechanisms for a total 3D domain size of
512× 512× 512. We varied the number of BG/P cores from
4,096 to 32,768, thereby, strong scaling the block size per
process from 32 × 32 × 32 (4,096 cores) to 16 × 16 × 16
(32,768 cores). The data size per time-step is 16 GiB, and
we configured S3D to write out 20 time-steps to generate a
total of 320 GiB of data for each run. GLEAN is able to
achieve an observed throughput of 4.8 GiBps at 4,096 cores
- a 2-fold improvement over both MPI Collective I/O and
pnetcdf. At 32,768 cores, GLEAN achieves 25.7 GiBps
- a 9-fold improvement over MPI collective I/O and 13-
fold improvement over pnetcdf. Thus, we observe the it is
critical to incorporate topology-aware data movement and
asynchronous data staging in order to achieve strong scaling
- a key requirement in future systems.

(a) weak scaling

(b) strong scaling

Figure 13: Scaling results for S3D I/O.

6.3 PHASTA
The PHASTA code [18] performs computational fluid dy-

namics (CFD) using a finite element discretization using a
LES-based turbulence model. PHASTA uses an adaptive,
unstructured tetrahedral grid. The number and locality of
elements changes frequently, based on solution characteris-
tics and load balancing. Grid and field structures are stored
in dynamically-allocated memory, due to frequent adaptiv-
ity updates.



We describe our success with GLEAN at enabling simulation-
time analysis and visualization of PHASTA running on 128K
cores of Intrepid (32 racks) with ParaView [10] running on
80 Eureka nodes. To achieve this we worked closely with
PHASTA developers to capture its unstructured tetrahedral
mesh data model. Additionally, to facilitate visualization
of the PHASTA data using ParaView, we added support
for ParaView’s visualization meshes. On Eureka, GLEAN
was able to transform on-the-fly PHASTA’s staged data into
ParaView’s mesh format. ParaView is one of the highly
used visualization toolkits on leadership class systems. Sim-
ulations using GLEAN would be able to visualize data at
run-time.

We briefly describe two scaling studies for co-visualization
of the PHASTA simulation with ParaView enabled by GLEAN.
For 416 million element case of PHASTA on 32 Intrepid
racks consisting of 20 GiB, GLEAN was able to transfer
this data in 0.6 secs achieving 34 GiBps. For 3.32 billion
elements ( 160 GB) using 32 racks and 80 Eureka nodes,
GLEAN achieved 41 GiBps. GLEAN enabled PHASTA
developers to visualize live a 128K cores simulation.

7. RELATED WORK
In RBIO for BG/P [8], a dedicated set of BG/P compute

nodes per pset are set aside to provide a cache for check-
pointing data. This is achieved by splitting the main MPI -
COMM WORLD into a communicator for caching data and
another for the simulation. The caching nodes do not partic-
ipate in the simulation’s computation. Various MPI collec-
tive optimizations that rely on the global communicator are
no longer available to the simulation. Additionally, RBIO
requires changes to a simulation to use the RBIO API.

I/O delegation [16] is a portable MPI-IO layer where
certain tasks, such as file caching, consistency control, and
collective I/O optimization are delegated to a small set of
compute nodes, collectively termed as I/O delegate nodes.
A collective cache design is incorporated to resolve cache co-
herence and alleviate the lock contention at I/O servers. I/O
delegation resides at the ROMIO layer and does not need
an application to be modified. On BG/P, I/O delegation
could use GLEAN to move data onto the delegate nodes.
Additionally, These nodes could be part of the staging area,
thus enabling the simulation to have access to all the cores
and optimized collectives.

The ADIOS high-level I/O library [13, 2] has demon-
strated high-performance I/O for applications on large-scale
systems. To use ADIOS, applications need to be modified
via a lightweight API. Additionally, ADIOS writes data into
a custom BP format. The library provides several post-
processing tools to convert the BP format into formats in-
cluding HDF5 and netCDF. As the I/O bottleneck becomes
even more critical in future, this conversion time could be-
come significant. In GLEAN, we support the commonly
used I/O libraries and do not need any offline data con-
version. ADIOS supports asynchronous data staging via
decoupled and asynchronous remote transfers (DART) [4]
and DataStager [1]. DART is an asynchronous communi-
cation and data transport substrate for large-scale parallel
applications. It uses one-sided communication mechanisms
including RDMA for extracting and transporting data. To
the best of our knowledge, these mechanism supports multi-
dimensional arrays. In GLEAN, we strive to capture a range
of data models including AMR and unstructured grids.

Active buffering with threads [14] transforms blocking
write operations into nonblocking operations by buffering
data and subsequently transferring it to storage in the back-
ground. Unlike our work, ABT is implemented in ROMIO,
performing the buffering on the compute client. Since it re-
quires a thread to perform the write-back, it cannot be used
on systems that do not offer full thread support for compute
nodes, as is the case with the BG/P system.

8. CONCLUSIONS
The performance mismatch between the computing and

I/O components of current-generation HPC systems has made
I/O the critical bottleneck for scientific applications. It is
therefore crucial that software take every advantage avail-
able in moving data between compute, analysis, and storage
resources as efficiently as networks will allow. Currently
available mechanisms often fail to perform as well as the
hardware infrastructure would allow, suggesting that im-
proved optimization and perhaps adaptive mechanisms de-
serve increased study.

Our evaluation of I/O performance in IBM Blue Gene/P
shows that significant improvements are possible by opti-
mizations driven by the topological strengths and weak-
nesses of available networks. In particular, we find that there
are significant opportunities to (1) improve performance of
data movement from CNs to IONs on each pset, and (2)
exploit the combined bandwidth from BG/P system to the
analysis and the filesystem nodes. We have developed an
infrastructure called GLEAN as our vehicle by which we
develop, demonstrate and deploy these improvements. The
GLEAN infrastructure hides significant details from the end
user, while at the same time providing them with a flexible
interface offering the fastest path to their data and in the
end scientific insight. GLEAN provides a mechanism for
leveraging topology-aware data movement for accelerating
I/O, interfacing to running simulations for co-analysis, and
an interface for in situ analysis with minimal modifications
to the existing application code base. By fully exploiting
the network topology of BG/P, GLEAN achieves both weak
and strong scaling to move data out from the BG/P sys-
tem. In our evaluations with applications at scale, GLEAN
is able to sustain an observed throughput of upto 31 GiBps
for checkpointing data and up to 41 GiBps for simulation-
time visualization at 128K cores on Intrepid BG/P.

As we move toward systems with heterogenous and com-
plex network topologies, effective ways to fully exploit their
heterogeneity is critical. The topology-aware mechanisms
and reduced synchronization requirements of GLEAN can
be used to optimize the performance of MPI-IO implemen-
tations on various platforms. This will greatly benefit the
higher-level I/O libraries including hdf5, pnetcdf and ADIOS
built on top of MPI-IO. GLEAN has been ported to laptops
running OSX and Linux, Linux-based clusters and BG/P
systems. We are currently working on porting GLEAN to
Cray stems and making our topology-aware mechanisms generic.
Additionally, we plan to incorporate the topology-aware data
movement optimizations to the MPI-IO layer on BG/P to al-
low the broader community of applications to benefit from
our efforts (including hdf5 and pnetcdf) and to make our
topology-aware mechanisms more generic. We believe this is
a significant step toward scaling the performance of applica-
tions on current large-scale systems and will provide insight
for the design of I/O architectures for exascale systems.
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