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Abstract

A new embedded-atom method (EAM) potential for a U-Mo-Xe system has been developed by using an
Ab initio force-matching calculation method. Specifically, the new potential was built by using 121
reference structures for liquid uranium and molybdenum, solid alpha- and gamma-uranium, solid bec .
molybdenum, pure xenon, and corresponding binary and ternary systems for a wide range of temperatures
and pressure. The values of the lattice constants, thermal expansion coefficients, and P-T and P-V
curves of uranium showed good agreement with experiment and density functional theory (DFT) Ab
initio calculations. Calculated energies of point defects in pure molybdenum were comparable to those
obtained with a Xe-Mo EAM potential and DFT calculations. However, the energy of vacancy formation
in pure y-U showed worse agreement with the experimental value.

Introduction

The development of prospective low-enriched nuclear fuel based on uranium alloys has become
more important because of worldwide efforts encouraging the development of low-enriched 23y
fuels [1]. The main incentive is to reduce the danger of using the nuclear fuels by developing
new fuel material that is safer and more effective. According to experimental data, low-enriched
uranium and uranium-molybdenum alloys have good strength and stainless properties {2—4].
Therefore the UxMo alloys can be considered as new prospective fuel alloys. However, the key
problem hindering the use of the new uranivm alloys in industry 1s the stability of the fuel -
against defect formation, swelling, and phase transitions caused by heating and irradiation by
fission products. Additionally, fuel irradiation leads to formation of nanoscale structures,
including voids and bubbles filled with xenon gas [5]. These structural changes significantly
influence the mechanical and thermal properties of the fuel and eventually lead to destruction of
the fuel cell and, hence, to a decrease in its endurance period.

Molecular dynamics (MD) is a powerful tool for studying the structure changes in the material -
and for analyzing the corresponding changes in the material’s properties. Specifically, MD
studies have helped researchers obtain a better understanding of the mechanisms of the structural
changes occurring in U-Mo alloys; indeed, in some cases of high temperature and pressure, MD
has proved to be the only feasible method of revealing the physics of the materials. The
interatomic potentials were the key property of the atomistic MD and the biggest task in
initiation of the simulation study of the new fuel material.
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Presented here is the first attempt to develop a new interatomic potential for the U-Mo-Xe
system, since a potential for uranium-molybdenum-xenon system does not exist. The new

- potential will allow scientists to calculate the thermodynamical and mechanical properties of
uranium-molybdenum alloys and can be applied to study the mechanisms of formation and
evolution of the radiation defects. The potential is built based on the concept of the embedded-
atom model [6] using a force-matching method [7]. The calculated ab initio values of forces per
atom, energies, and stresses were used as reference data during the optimization of the potential

. functions. The potential was used to calculate the properties of the fuel alloys (containing from 6
to 10 weight percent of molybdenum) and pure phases of uranium and molybdenum. The goal of
the present work is to study in detail the mechanisms of the atomistic structure and properties
changes occurring in the U-Mo fuel alloys under heating and irradiation.

Computational model

An Ab initio force-matching method (FMM), originally proposed by Ercolessi and Adams {71,

was used in all our calculations. The method is suitable for developing an accurate interatomic

potential for a ternary uranium-molybdenum-xenon system. FMM allows development of the
“interatomic potentials for complex systems and applicable for multielemental and multiphase

alloy systems. FMM was successfully applied to constructing of an interatomic potential for a

Mo-Xe system [8] and pure U [9]. The procedure of construction is as follows.

At the first stage, the reference database of the lattice structures is built. This reference database
contains values of the atomic forces, energies and stresses calculated within the DFT ab initio
methods for some reference atomic structures representing pure uranium, pure molybdenum, and
xenon and also for complex structures: U-Mo, Mo-Xe and U-Mo-Xe systems under various
pressure-temperature conditions. Composition of the binary and ternary systems was also varied
in an interval of atomic weights of Mo from several percent to almost 20%.

At the second stage, the embedded-atom-method potential is optimized. During the optimization
one must minimize the deviations between the reference values and the calculated values
obtained with the developed force-matched potential and, consequently, find a potential that
reproduces the reference data with the best accuracy. In what follows we describe both parts of
the procedure in more detail.

Construction of the reference database

For computing the reference database, a set of configurations was created containing the
information about the atomic coordinates for the systems with a small number of atoms. A full
set of configurations previously built for developing the potentials for Mo-Xe system[8] and for
pure uranium [9] was used and additional configurations representing binary U-Mo and ternary
U-Mo-Xe systems were built. Specifically, the area of Mo concentration from 6 to 20 at. % was
studied, because this composition corresponded to the most realistic composition of future U-Mo
fuel alloys.

A list of all 19 additional configurations is presented below.

List of the reference structures representing U-Mo alloys with/without Xe
1. 128 atoms: 112 U atoms, 16 Mo atoms (12.5 at. % Mo).
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T ~ 1000 K, liquid U-Mo alloy without Xe
2. 128 atoms: 120 U atoms, 8 Mo atoms (6.2 at. % Mo)
T ~ 1050 K, liquid U-Mo alloy without Xe
3. 128 atoms: 112 U atoms, 16 Mo atoms (12.5 at. % Mo).
T~ 1150 K, liquid U-Mo alloy without Xe
4. 128 atoms: 112 U atoms, 16 Mo atoms (12.5 at % Mo).
T ~ 1200 K, liquid U-Mo alloy without Xe
5. 128 atoms: 112 U atoms, 16 Mo atoms (12.5 at. % Mo).
T ~ 400 K, crystal bee structure, without Xe
6. 128 atoms: 120 U atoms, 8 Mo atoms (6.2 at. % Mo).
T ~ 350 K, crystal bee structure, without Xe
7. 128 atoms: 112 U atoms, 16 Mo atoms (12.5 at. % Mo) .
T ~ 270 K, crystal bee structure, without Xe (the arrangement of Mo atoms differs from the one
in conf. (5))
8. 128 atoms: 104 U atoms, 24 Mo atoms (18.75 at. % Mo)
T ~ 270 K, crystal bee structure, without Xe .
9. 128 atoms: 112 U atoms, 16 Mo atoms (12.5 at. % Mo) :
T ~360 K, crystal bee structure, slightly expanded (lattice parameter a 1s 3. 48 A 1nstead of
the equilibrium 3.441 A) , without Xe
10, 128 atoms: 112 U atoms, 16 Mo atoms (12.5 at. % Mo). _
T ~ 400K, crystal bee structure, slightly compressed (a is 3.42 A instead of the
equilibrium value 3.441 A), without Xe '
11. 129 atoms: 104 U, 24 Mo 1Xe (18.75 at. % Mo). T ~ 300 K, crystal bee structure.
The single Xe atom originally is embedded as an interstitial in octahedral pore. But then
during the calculation it relaxes to the lattice 31te knocking out one U atom and causing the
single interstitial U atom formation.
12. 129 atoms: 112 U, 16 Mo, 1 Xe (12.5 at. % Mo). T ~ 300 K, crystal bcc structure.
The single Xe atom originally is embedded as an interstitial in tetrahedral pore but also relaxes to
the lattice site, knocking out a single U atom.
13. 128 atoms: 104 U, 23 Mo, I U (18 at. % Mo). T ~ 300 K, crystal bee structure.
The single Mo atom in the lattice site is replaced by the single Xe atom.
14, 128 atoms: 110 U, 2 Mo, 16 Xe, T ~ 300 K, crystal bee structure.
I5. 128 atoms: 110 U, 2 Mo, 16 Xe, T ~300 K, crystal bee structure. The arrancrement of the
~ Xe atoms differs from the one selected in (14).
16. 128 atoms: 104 U, 24 Mo, T ~ 450 K, crystal bee structure. Lattice parameter equals
3.35346 A, compressed configuration.
17. 128 atoms: 104 U, 24 Mo, T ~ 450 K, crystal bee structure, Lattice parameter equals
3.285 A, compressed configuration.
18. 128 atoms: 104 U, 24 Mo, T ~ 450 K, crystal bee structure. Lattice parameter equals
3.21658 A, compressed configuration.
19. 128 atoms: 104 U, 24 Mo, T ~ 460 K, crystal bec structure. Lattice parameter equals
3. 148148 A, compressed conﬁguratlon .

In order to obtain thermal displacements in all reference structures, short (~picosecond) MD
' computations were carried out with the trial potential constructed from the potentials for U and
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Mo-Xe systems. The final atomic arrangement obtained after the MD calculation for a single
structure was one of the required configurations. All MD calculations in this work were
performed with the LAMMPS code [10]. The simulation box with periodic boundary conditions
in all three dimensions contains 128/129 atoms (depending on the simulated structure; see the list
above). :

Next, the DFT ab initio calculations of the reference forces, energies per atom, and the stress
tensors for each configuration were performed. The plane-wave program code VASP was used
[11]. In order to represent the inner electronic structure of uranium, projector augmented-wave
pseudo-potentials were adapted that had been developed by Kresse and Joubert [12] and
implemented in the VASP package. The basis plane-wave energy cutoff was set at 450 eV,
Based on the symmetry of the studied structures, a set of k-points meshes—2 x 2 x 2 for bec U-
Mo and U-Mo-Xe—was chosen. These values provided the convergence of energies. The
reference database contained information about pure components of the U-Mo-Xe system and
the additional binary and ternary systems and consisted of 17,926 values of the atomic forces (or
53,778 force components), 137 values of the energy per atom, and 802 components of the stress
tensor.

Optimization of the potential functions ‘

For the U-Mo-Xe system the set of the potential functions was chosen within the frame of the
embedded-atom method 6], allowing us to take into account many-body interatomic
interactions:

U=3 o)+ Y Flp)), | M

i< f
P, =Y ), | ‘ )
= j . .
where the first term in expression (1) represents the pair interaction, and the second term
depending on the effective electronic density (2) allows us to consider many-body interatomic
interactions taking place in metals,

To describe the potential for ternary system within the frame of the embedded-atom method, we
must determine 12 functions:
* 6 functions describing possible pair interactions between U and U, U and Mo, U and Xe,
Mo and Mo, Mo and Xe, Xe and Xe
* 3 functions for electron density: p (U), p (Mo), p (Xe)
* 3 embedded functions: ¥ (U), F'(Mo), F (Xe).

In order to construct an EAM potential using the force-matching niethod, one must select a
certain number of trial functions (as a set of cubic spline knots that uniquely define the whole
potential) and calculate the forces, energies, and stresses with this given potential. In our _
simulations, 12 trial potential functions were chosen. Then the calculated values were compared
with the reference ab initio data by calculation of the target function (3): '
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where f; is calculated force,ﬁ) ; is reference force, I; is computational weight assigned to an atom
J»and & equals 0.1 (eV/A)

If a trial potential did not give good agreement with the reference data, the trial functions were
automatically changed to minimize the target function and, hence, to minimize the difference
between reference data and calculated ones. The optimizing iterations were conducted with the
potfit [13] code, with the multidimensional minimization carried out in a large parameter space.
The number of parameters was equal to the number of the spline knots. For the 12 functions
describing the U-Mo-Xe system, the number of parameters was about 200 (depending on a
chosen number of cubic spline knots).

Verification of the potentials obtained
After the potfit code execution, the generated potential was verified by test MD calculations of
the properties of U-Mo-Xe system and its components.

* According to the literature sources, U-Mo alloys have been experimentally studied for many
years, and significant information exists about their behavior under irradiation, lattice
parameters, heat capacity, thermal expansion, electrical resistance, density, thermal conductivity,
and melting temperature [1-5]. Some of the data (for example, lattice constants and thermal
expansion) was useful for the first step of the verification because it was easily computed and the
results helped us understand whether the potential was able to reproduce U-Mo alloys. Also, the
potential was applied for calculating the properties of pure components of the system (U; Mo,
and Xe) to test their repeatability.

We built four versions of the U-Mo-Xe potential, improving, from version to version, the ability
to represent the system studied.

Calculations of the lattice constants

As the first basic step during verification we calculated the lattice parameters of uranium,
molybdenum, and U-Mo alloys. Specifically, we performed LAMMPS [10] MD calculations
with the full set of developed potentials. For these computations we varied the lattice constants
of the given structures at the given temperatures to obtain zero pressure in the system and to
exclude possible deviations between the pressure components. Using each of the potential
versions, we found the corresponding lattice constants that give Pxx = Pyy = Pzz = P~ 0 GPa
for each phase studied. The results are summarized in Table 1.

Table  — Lattice constants (A) of U-Mo alloys and pure U and Mo in comparison with the
experimental data



Experiment [U-Mo-Xe 1.0 [U-Mo-Xe 1.2 [U-Mo-Xe 1.3 U-Mo-Xe 1.4
[3, 14,15] :
U-6Mo, 3.44155 3.5575 3% |3470508% [3.462 0.6 % 3.467 0.7 %
300K
U-10Mo, [(3.4219 3.549 3.7% [3.4260.1%  |3.4183 0.1% |3.41830.1 %
300 K
o-U,300 K
a 2.8537 2.85671 0.1 % [2.86983 0.5 % {2.85394 0% 2.85390%
b 15.8695 5.76632 1.7 % [5.76142 1.8 % [5.75155 2% 5.75152 %
c 4.9548 4.93164 0.5 % [4.93248 0.4 % [4.94288 0% 4.9428 0.2 %
¥y 0.1025 0.1015 0.1 % [0.10150.1%  [0.1025 0 % 0.10250 %
v-U, 3.557 3.59 0.9% 3.53207% 3.543 04 % 3.542 -0.4 %
~1160K
Mo, $B.1472 3.1518 0.2% PB.151702% 3.14690 % 3.1474 0 %
~0K

Also, it is possible to calculate the changes of the lattice constants of U-10Mo with the

temperature. The computations of the lattice constants in this case were carried out in the same
way as described above. Results obtained for all four versions of the potentials are compared in

Fig. 1. According to this data, the thermal expansion provided with the potential 1.4 is
approximately two times lower than the experimental value [3].
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Figure 1 — Lattice parameter of U-10Mo in comparison with the data [3]. The deviation between
the values for the 800 K point is about 0.5%.

We also calculated the pressure-temperature dependence at the given volume for a-U. Models of
a-U were built with the given lattice constants (see Table 1; we use the values that gives P ~ 0
GPa for each potential). Then the volume of each model (V= ¥V, (300 K)) was fixed, the
temperature was changed, and the corresponding pressure values were calculated for each
temperature point. 7 :

Figure 2 shows that the potentials 1.3 and 1.4 overestimates the pressure values, but the
dependence is in agreement with the experimental data [16].
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Figure 2 — Pressure-temperature dependence calculated for a-1J at the given constant volume. 1 —
Experimental data [16]; 2 — results obtained with EAM potential for pure U [9]; 3 — potential U-
Mo-Xe 1.2; 4 — potential U-Mo-Xe 1.3; 5 — potential U-Mo-Xe 1.4.

One can see from Figures 1 and 2 that potential 1.2 gives the better performance whiie

. representinig thermal expansion of pure uranium and of U-10Mo. It also was found that this
version of the potential cannot be applied for examining pure uranium phases because it does not
describe the mechanical properties (bulk modulus and elastic constants) of pure uranium with
good accuracy. '

- Bulk modulus of a-U
© Bulk modulus was determined from MD simulations of uniform compression and expansion of
the equilibrium volume as

AP

v, =, 4

B-

where Ve 1s the equilibrium phase volume and AV is about 2%.
The corresponding results for the bulk modulus are summarized in Table 2.

Hence, the potential version 1.2 was improved to get potentials 1.3 and, then, 1.4 that represent
the elastic properties of the pure components with better accuracy.

From this point, verification of the 'las_t version, 1.4, was undertaken in order to understand how it
works in various cases for U-Mo and pure U, Mo, and Xe.

Table 2 — Bulk modulus of the a-U at 300 K calculated with the four versions of the potential, in
comparison with the experimental data [17] '

Experiment [17] _ 135.5 GPa
B (ver 1.0), 300 K 185 GPa
B (ver 1.2),300 K - : 180 GPa
B (ver 1.3), 300 K . : 107 GPa
B (ver 1..4), 300K ' 107 GPa

Elastic constants for pure U and Mo



The elastic constants for pure a- and y-uranium were calculated and compared with the existing
experimental data. The results of comparison are given in Table 3.

The elastic constants c;; were calculated from MD-simulation of uniaxial compression of solid -
phases (U and Mo). The elastic constants can be detérmined as follows (in Voigt notation):

o=——2, )

B
where APj; is the change in pressure along the axis j providing that the model size 1 is reliably
decreased along one of its dlmensmns and the corresponding deformation equals

AN 3
i = h o . _ _ ' ' ()

The potential 1.4 reproduces the bulk modulus of high-temperature y- -U. Results obtained for
-elastic constants and bulk modulus of o-U and pure Mo were within 20—40 % of the
experimental values,

Table 3 — Elastic constants calculated for pure uranium and‘molybdenum. Corresponding relative
deviations between calculated and experimental values are also presented.

F.xperiment U-Mo-Xe 1.4 [dev]

[15,17-20]
Uranium _ _ _

"B, 0-U (300 K) 135.5. e 21%
c11 215 | 1235 -42%
Cc22 199 353 27 %

C33 267 | B2t +20%
B,y-U(~1100K) = |113.3 89 - 21%
Molybdenum |
C11 - 450 585 +30%
c1z 173 238 +3735%

: T hermal expansmn of pure Mo

Next, the thermal expansion for pure Mo was calculated. The corresponding results are presented

in Fig. 3. The potential for U-Mo-Xe 1.4 is in a good agreement with the experimental data [15]

and with the dependence obtained previously Wlth the potential developed for the binary Mo-Xe
system [8].
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Figure 3 — Calculated thermal expansion of pure Mo. 1- experimental data [15]; 2 — results
obtained in this work with the EAM potential U-Mo-Xe 1.4; 3 — EAM potential for Mo-Xe [8], 4
— EAM potential for Mo {21], 5 — calculations with the potential [22].

Room-temperature isotherms
Further, during verification we carried out a simulation of the uniform compression of pure Mo,
Xe, and a-U at low temperatures to obtain the room temperature isotherms for each of these
elements. It can be seen from Figs. 4 and 5 that in this case the potential 1.4 reproduces the
experimental data with good accuracy. Results obtained for pure a-U (Fig. 6) were also
consistent with the experimental ones. | :
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Figure 4 — Room temperature isotherm for pure Mo. 1 - existing experimental results {18]; 2 —
‘1sotherm calculated with the potential U-Mo-Xe 1.4; 3 — EAM potential for Mo-Xe {8]; 4 — EAM
potential [21]; 5 — EAM potential developed in [22]. ' '
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Figure 5 — Room temperature isotherm of pure Xe. Calculated results are presented in
comparison with the experimental data [23].
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Figure 6 — Room temperature isotherm of low-temperature a-U phase. 1 - experimental DAC
isotherm [17]; 2 - isotherm calculated with the EAM potential developed for pure uranium in
[9].; 3 — potential U-Mo-Xe 1.4.

Melting temperatures
The potential 1.4 was used to calculate the phase transitions in pure molybdenum and uranium.

Using a two-phase simulation technique [24, 25], we calculated the melting temperatures for
pure Mo and pure U at zero pressure.

To calculate the melting temperaﬁlre, we built a model of two coexisting phases with phase
boundaries between liquid and bee phase (a similar technique was used for U and for Mo). One
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part of the box is filled by the atoms of metal in the bee phase and another part by the liquid
metal. In this way a model of the coexisting phases with the boundaries between the various
phases is constructed. It is considered that at the melting temperature the boundary between bce
and liquid phases remains stable. Also at the melting temperature the time-temperature
dependence was constant during the whole calculation time.

The results were compared with experiment, and the temperatures (with corresponding relative
errors) are given in Table 4. We can see a little overestimation for U and underestimation for
Mo.

Table 4 — Melting temperature of the pure components (U, Mo) at the P ~ 0 GPa

Experiment | U-Mo-Xe 1.4 [dev.]
Mo ' 2890 K [26] L 260K 7%
U _ 1406 K [14] 1530 K +9 %

Defect energies

The new potential for studying radiation defects generated by radiation of fission debris in U-Mo
alloys can be used not only to verify the thermodynamical properties of U, Mo, and U-Mo but -
also to test how the potential obtained can reproduce defect properties.

At this time there is no réference information about the possible mechanisms of the defects
formation and migration occurring exactly in U-Mo alloys. We therefore started the verification
. from a calculation of the defect formation energies in pure molybdenum and uranium.

Using the potential U-Mo-Xe 1.4, we calculated the self-interstitial atom (SIA) defect formation
energies for pure molybdenum. The results were compared with the existing data. Formation
energy of a single interstitial atom (SIA) can be determined as follows:

Eopg = By~ En

n ; ' (7

where 7 is the number of atoms in the ideal structure, E, is the energy of the ideal lattice, and
E,+1 1s the energy of the defect structure with one additional interstitial atom (we add a single
uranium atom). To determine the values of £, and £, |, we performed structure relaxation of the
ideal and defect lattices. The results were compared with calculated SIA properties in various
possible positions: dumbbell <100>, dumbbell <110>, dumbbell <111>, crowdion <111>,
tetrahedral, and octahedral. For these computations the potential U-Mo-Xe 1.4 was used. In Fig.
7, one can see the difference between the C111 formation energy and the energies of formation
of other possible interstitial defects in pure Mo. The potential 1.4 can describe the hierarchy of
defect energies calculated within the DFT theory 1n [25,26]
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Figure 17 — Differences between defect formation energies for SIA in pure Mo. 1 —DFT [27]; 2
—DFT [28]; 3 -EAM U-Mo-Xe 1.4; 4 - EAM Mo-Xe {8]; 5 - EAM Mo [22].

Vacancy formation energy

During the investigation of the defects, MD simulations were performed to calculate vacancy
formation energy: '

n-1
Ev{;c = E(n—l) _T‘En . (8)
The algorithm of the calculation was the same as for the SIA defects; that is, the energies of the
ideal structure and the structure were compared with a single vacancy. According to expression
(8), the values for a single vacancy formation energy were obtained in pure Mo (Table 5) and in
pure bee 7-U (Table 6). For y-U, the structure relaxation procedure was corrected. We performed
relaxation only for part of the simulation box, namely, for atoms that were situated at the
distance less than 5.26 A from the vacancy, in order to avoid deformation of the lattice occurring
because of the high-temperature nature of the y-U.

Table 5 — Single vacancy formation energy calculated for pure Mo (eV)

Experiment [29] DFT [28] EAM Mo-Xe[8] EAM U-Mo-Xe 1.4
26-32 - 1296 2.79 2.61

Table 6 — S'ingle formation energy calculated for pure bee y-U (eV)

“Experiment [30] DFT [31] EAM U [9] EAM U-Mo-Xc 1.4
120+ 0.25 1.08 1.52 2.246
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The potential U-Mo-Xe 1.4 gives a good agreement with the experiment for vacancy formation
in pure Mo, but it gives an incorrect, overestimated value for a single formation energy in pure
bece high-temperature uranium.

Conclusion

We developed several versions of the potential for the U-Mo-Xe system. The key point of this
work was verification of these potentials by calculating some thermodynamical and mechanical
* properties of the U-Mo-Xe system and its components and further comparing the results with the
existing experimental data and information obtained from DFT ab initio calculations. According
to the results of the verification, the potential can reproduce the thermodynamical properties of
U-Mo fuel alloys and pure U, Mo, and Xe. The potential U-Mo-Xe 1.4 was proved to reproduce
a wide range of properties of pure elements with the most accuracy. Also, it allows one to
calculate the properties of U-Mo alloys (computed lattice constants and thermal expansion
" compare well with the experimental data). The potential U-Mo-Xe 1.4 gives an adequate
description of SIA defects in pure Mo because the initial reference structures for Mo include
various types of defect structures. '

To construct a reliable interatomic potential that would be applied directly to study defect
properties in pure U and, further, in U-Mo alloys, we must add to the reference data the
corresponding defect structures representing defect U and defect U-Mo lattices. The existing
potential U-Mo-Xe 1.4 will be further modified to take this improvement into account. Also, this
modification w1ll help obtain better agreement with the vacancy formation energy for pure
uranium.

It was shown that the potential gives good agreement with the experlmental data for the lattice
constants of U-Mo alloys, low-temperature o-U, high-temperature bee y-U, and molybdenum.
The computed elastic and thermodynamical properties of U, Mo, and Xe were also consistent
with the experimental results. Moreover, the potential enabled calculations of the thermal
expansion coefficient for the U-Mo alloys and pure uranium and molybdenum and is applicable
for investigation of the mechanisms of the radiation defects formation in U-Mo system and in
pure U and Mo. '

The results of the simulations performed allow the optimization of the structure of nuclear fuels
for obtaining the required mechanical properties. The results of the MD computations will be
useful for directing the experiments, for planning ainy modernization of nuclear systems, and for
increasing their efficiency and safety.
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