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Abstract:  20	
  

The soil ecosystem is critical for human health, affecting aspects of the environment from key 

agricultural and edaphic parameters to critical influence on climate change. Soil has more 

unknown biodiversity than any other ecosystem. We have applied diverse DNA extraction 

methods coupled with high throughput pyrosequencing to explore 4.88x109 base pairs of 

metagenomic sequence data from the longest continually studied soil environment (Park Grass 25	
  

experiment at Rothamsted Research in the UK). Results emphasize important DNA extraction 

biases and unexpectedly low seasonal and vertical soil metagenomic functional class 

variations.  Clustering-based subsystems (CBSS) and carbohydrate metabolism had the largest 

quantity of annotated reads assigned although less than 50 % of reads were assigned at an E 

value cutoff of 10-5. In addition, with the more detailed subsystems, cAMP signaling in 30	
  

bacteria (3.24 ± 0.27 % of the annotated reads) and the Ton and Tol transport systems (1.69 ± 

0.11% ) were relatively highly represented. The most highly represented genome from the 

database was that for a Bradyrhizobium species. The metagenomic variance created by 

integrating natural and methodological fluctuations represents a global picture of the 

Rothamsted soil metagenome that can be used for specific questions and future inter-35	
  

environmental metagenomic comparisons. However, only 1% of annotated sequences 

correspond to already sequenced genomes at 96% similarity and E values of less than 10-5, 

thus, considerable genomic reconstructions efforts still have to be performed.  	
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Introduction  

Microorganisms first appeared more than 3.5x109 years ago (Allwood, 2006, 714-8), ~1.5 40	
  

billon years after the formation of our planet. Genetic flexibility over a vast expanse of 

geological time has enabled microorganisms to adapt to virtually every conceivable ecosystem 

on earth (e.g. Huber et al., 2007; Pointing et al., 2009; Larose et al., 2010). Among 

contemporary ecosystems, soil, which is a product of microbial and macrobial life, exhibits 

the greatest density and phylogenetic diversity per unit volume (Van Elsas et al., 2006; 45	
  

Roesch et al., 2007), with approximately 109 cells per gram, comprising a diversity that is 

estimated to range from thousands to millions of taxa (Knietch et al., 2003).  

Soil microbial communities are indispensable for the health of our planet; they drive major 

geochemical cycles (Falkowski et al., 2001) and help to support healthy plant growth (Ortíz-

Castro et al., 2009). Yet, there is still a considerable lack of understanding of the mechanisms 50	
  

of interaction and metabolism that exist among members of the microbial community and 

their ecosystem. Existing knowledge, concerning the phylogenetic and functional diversity, 

community metabolic potential, and consequences of evolutionary adaptation, is based largely 

on partial information gained from studies performed on microorganisms that have been 

cultivated from soil on a small scale or 16S rRNA gene sequences.  55	
  

A dependence on studies of cultivable organisms may limit our fundamental understanding of 

the diversity of interactions in this system. The organisms cultured from soil so far, represent 

a fraction of the soil biota, e.g. those amenable to growth in controlled laboratory conditions 

(Schloss and Handelsman, 2003; Davis et al., 2011). Attempts to apply metagenomic 

methodology to soil samples have been hampered by extreme technical challenges, such as 60	
  

extracting an unbiased and representational sample of genetic material from organisms with 

very different cell membranes and accessible DNA (Delmont et al., 2011b,c; Demaneche et 

al., 2008; Ginolhac et al., 2004; Handelsman et al., 1998; Rajendhran and Gunasekaran, 

2008). This problem is exacerbated by the uneven spatial distribution of microbial 

communities in soil ({Grundmann, 2004, 119-127;Ranjard, 2001, 707-16}. Unlike marine 65	
  

systems, which are generally well mixed and amenable to temporal and biogeographic 

observations (Gilbert et al. 2009, 2010), soil systems surveys have, despite a wealth of 

valuable data acquired from hundreds of well designed experiments and surveys, uncovered 

only a fraction of the assumed immense microbial diversity of the soil metagenome (e.g., 
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Tringe et al., 2005; Roesch et al., 2007; Morales et al., 2009). In spite of numerous efforts to 70	
  

study parameters influencing its diversity using cultural independent approaches (e.g., soil pH 

or nitrogen fertilisation, Rousk et al., 2010; Ramirez et al., 2010), data from soil are scarcer 

than those collected from other commonly encountered ecosystems. The only contemporary 

published soil metagenome (Tringe et al., 2005) contains just 100 million base pairs of DNA, 

which is potentially a mere millionth of one percent of the genetic material that could be 75	
  

extracted from a gram of soil (based on an assumption of 4 million base pairs per average 

microbial genome and 109 cells per gram of soil). The relative lack of available soil related 

sequence data presents an interesting paradox, that the most diverse environment on earth has 

received the least attention from metagenomic analysis (Vogel et al., 2009) although the first 

soil metagenome dates from 2005. To redress this balance, we have performed an in-depth 80	
  

investigation of a temperate European ungrazed grassland soil metagenome using 

pyrosequencing technology. 

Building on our previous investigations (Delmont et al., 2011b,c), this study describes an 

unprecedented effort to characterize the microbial diversity and functional potential of a 

single soil ecosystem that found in the Park Grass Experiment at Rothamsted Research; the 85	
  

location of the oldest agricultural experiments in the world, run continuously since 1856 

(Silvertown et al., 2006). In an attempt to explore this unique environment, almost 5x109 base 

pairs of metagenomic sequence data (Titanium pyrosequencing reads) were produced from 

soils collected from three depths and at three time points spanning two years. To address 

concerns regarding the influence of DNA extraction technique bias on microbial diversity 90	
  

(Delmont et al., 2011b), we performed 11 different extraction techniques to improve the 

diversity of the sequenced microbial genomes. The MG-RAST (Meyer et al., 2008) annotated 

content of the samples were compared to each other, and to samples of two previously 

reported, non-soil, environments, so as to place the samples in a more global context. 

Material and methods 95	
  

Soil samples: Samples were collected from the untreated control plot (3d) of Park Grass 

Experiment, Rothamsted Research, Hertfordshire, UK (Silvertown et al., 2006) in March 

2009, July 2009 and July 2010. The overall sample handling is outlined in Figure 1. Soil 

samples from the top 21 centimeters were collected (Delmont et al., 2011b) by sterile manual 

corers (10 cm diameter) in plot 3D at random locations, but not where previous samples had 100	
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been taken, and were placed in sterile plastic bags, sealed and placed on ice 24 hours until 

processing. Previous investigations of this soil demonstrated very little horizontal change in 

diversity, but measureable changes with depth (Delmont et al., 2011b). Hence, the core 

samples were fractioned into either seven subsamples as a function of the depth (every three 

centimeters for the direct lysis (described below) and into two depths for the indirect lysis 105	
  

(Delmont et al., 2011c; described below). The aim of this step is to homogenize the quantity 

of extracted DNA (which decreases with depth) represented in the final pool for each fraction. 

The different subsamples were then homogenized separately manually by thorough mixing 

and stored at -20°C for the direct lysis and at 4°C during a maximum period of one week for 

the indirect lysis. To access rhizospheric microbial communities, a soil core (0-21cm) was 110	
  

sieved (0.2mm) and grass roots were extracted. Soil attached to roots was then recovered in a 

water column. The column helped the physical separation between roots and soil present at it 

surfaces. The few grams of recovered soil were then mixed prior to DNA extraction. The 

metadata for the site and samples are provided in Table S1. 

DNA extraction method: Different extraction procedures were used to process the soil 115	
  

samples (Figure 1). We selected DNA extraction methods that use a wide range of approaches 

to extract and lyse cells. Among the selected methods, some were already known to provide a 

high DNA yield (e.g. BIO1O1), or DNA quality or increased DNA length (in plug lysis), 

others provided a low yield but could still potentially represent a difficult to access microbial 

communities. The main goal of this experimental design was to create DNA pools with a large 120	
  

variance in order to uncover a wider range of community members within this soil 

metagenome at both functional and taxonomical levels. 

Direct soil lysis: utilized one of two bead beating protocols, (Fast prep MP Bio1O1 

Biomedical, Eschwege, Germany) (Griffiths et al., 2000) with 0.5 g of soil. This approach was 

named “direct MP Bio101” (M1, J1, and replicates J1a10 and J1b10). In addition, 125	
  

rhizospheric soil from July 2010 was extracted with the same protocol (J1rhizo10) and soil 

from July 2009 was extracted with another bead beating method, the MoBio  PowerSoil® 

DNA Isolation Kit (Carlsbad, USA) (J7). Several different indirect DNA extraction methods 

were used by first extracting cells on a Nycodenz® gradient gel (density of 1.3) (Bertrand et 

al., 2005) and then applying one of the following four lyses with the extracted cells: 1) the 130	
  

same bead beating protocol, called “indirect MP Bio101” (replicates M2a and M2b from 

March 2009); 2) the Nucleospin® Tissue kit, named “indirect DNA Tissue” (M4 and J4, 
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March and July 2009, respectively); 3) the Gram positive kit, named “indirect Gram positive” 

(M5); and finally 4) a lysis using agarose plugs called “indirect lysis in plug”. (M3 and M6 

from 0 to 10cm and 11 to 21 cm depths, March 2009, respectively – see figure 1). Plugs were 135	
  

first transferred in 3 ml of G- lysis buffer (1% lauroyl sarcosine, 500 mM of EDTA Na2, pH 

9.5) with 0.5 mg/ml of lysozyme and incubated at 37°C for 12 h. The agarose plugs were then 

incubated in 3 ml of G- lysis buffer with 500 µg/ml of proteinase K at 56°C for 12 h, and 

finally equilibrated in a 10 mM Tris (pH 8.0), 1 mM EDTA storage buffer). This enzymatic 

lysis was performed in a stable environment (the agarose plug) and was performed without 140	
  

any physical perturbations (e.g., tube mixing that break DNA). This method is generally used 

to provide high quality and long DNA sequences for the construction of fosmid libraries or for 

genome size. General information about the different DNA extraction yields used is presented 

in the table 1. 

Pyrosequencing runs: A minimum of 10 µg of DNA were used for each Roche/454 145	
  

pyrosequencing run on a 454 pyrosequencer (GS FLX Titanium Series Reagents ; Roche 454; 

Shirley, NY, USA). Processing of samples (prior to sequencing) did not involve prior 

amplification step. For the direct lysis, equal quantities of DNA extracted from the seven 

fractions from 0 to 21cm were pooled together. J1a10 and J1b10 correspond to distinct 

extractions from the same soil core. For the indirect approach corresponding to soil from 0 to 150	
  

21cm, equal quantities of DNA extracted from the two fractions (0 to 10 and 11 to 21cm) 

were pooled together. For the indirect lysis using the bead beating protocol (0 to 21cm, March 

2009), two pyrosequencing runs (M2a and M2b) were performed from the same DNA pool (> 

20 micrograms). The sequence data are publically available 

(http://www.genomenviron.org/Projects/METASOIL.html).  155	
  

Data analyses: Artificial duplicates were deleted using cd-hit-454 with default parameters 

(Niu et al. 2010). Sequences were then annotated on the MG RAST (v.02) online software 

(Meyer et al., 2008). Reads were distributed into different metabolic subsystems. Similarity 

search between pyrosequencing reads and the SEED database (Overbeek et al., 2005) have 

been processed with a maximum E value of 10-5. All compared distributions were normalized 160	
  

as a function of the number of annotated sequences for each metagenome. Data corresponding 

to both functional and taxonomical distributions were then statistically analyzed within the 

STAMP software (Parks and Beiko, 2010). Fisher’s exact tests were performed and annotated 
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functions and taxa with p-values < 0.05 were considered to be significantly different between 

the different experiments 165	
  

Tests on assembly productivity were performed using Newbler (Margulies et al., 2005). 

Newbler was run directly from the “.sff” files produced by the pyrosequencer using the 

following parameters: Expected depth: 0 (i.e. undefined); Minimum read length: 20; Seed 

step: 12; Seed length : 16; Seed Count : 1; Minimum overlap length : 40; Minimum overlap 

identity : 90%; Alignment identity score: 2; Alignment difference score: -3. The minimum 170	
  

read length in the data set was 40. Each deeply sequenced dataset was assembled separately 

using the 454 GS de novo assembler software (Newbler v2.0.00.22,), and all contigs were 

used for subsequent analysis. In addition, MetaGeneMark (version 2.7d using the parameter 

file for metagenome gene prediction version 1) have been used to search genes from the 100 

largest contigs, and the 1006 genes predicted were analyzed via MG-RAST. 175	
  

 

Results 

Thirteen pyrosequencing runs were performed with DNA extracted from the Rothamsted 

Research (Park Grass) site. Grassland soil samples were taken at different depths and three 

different time points over 1.5 years. DNA was extracted from the samples using 6 different 180	
  

DNA extraction protocols (see materials and methods and figure 1). Two samples were 

sequenced in duplicate (J1a10 and J1b10, and M2a and M2b) to explore the reproducibility of 

the metagenomic profile. A total of 12,575,129 reads were generated (length average of 385.9 

± 31.8 bp) and 34.5 (±3.3) % of them were annotated with the MG-RAST online server (E 

value < 10-5) (Meyer et al., 2008). Based on the protein database used by MG-RAST, 88.64 185	
  

(±1.44) % of these annotated sequences had closest homology to a protein found in Bacteria, 

0.91 (±0.23) % to Eukarya, and 1.41 (±0.16) % to Archaea. Thus, almost 9% of annotated 

sequences were not classified at the domain level. All the annotated reads were compared to 

SEED-NR, FIGFams for functional assignments and then used in subsystem reconstructions. 

The closest matched gene was the source of information about the functional (metabolic) 190	
  

subsystem that the read was binned into and about the “taxa” represented by this read. 

Therefore, the taxa cited here correspond to the genomes in the database that best matched the 

given read as long as the E value was smaller than 10-5. Major functions and taxa identified 

can be found in tables S2 through S4. 
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Functional comparison: 195	
  

Functional differences between the 13 datasets generated from Rothamsted, two datasets from 

other soils, and one from an aquatic environment were derived by exploring the relative 

number of reads associated with the 835 functional subsystems detected at least in one 

metagenome (Figure 2). Bootstrap values are provided. The method of DNA extraction 

correlates with sample grouping. Samples, M1, J1, J1.a and J1.b were directly extracted using 200	
  

the MP Bio101 kit. Sample J7 which lies in the same general group was extracted directly 

with MoBio Powersoil kit. The sample from the application of direct MP Bio101 on the 

rhizosphere soil (J2) is closely associated with this group. The bootstrap values are not 

particularly high within this group. Three sample pairs on the other hand had significant 

bootstrap values (>90%) grouping them apart from the other samples: 1) the replicate samples 205	
  

from the application of MP Bio101 to the cells first removed from soil via the Nycodenz 

gradient (M2.a and M2.b); 2) the two depth samples extracted by indirect lysis in agarose 

plugs (M3 and M6); and 3) the two samples from different seasons extracted after Nycodenz 

by use of the DNA tissue kit (M4 and J4). In order to assess the statistical likelihood of the 

subsystem distribution differences between samples, STAMP software (Parks and Beiko, 210	
  

2010) based on a bootstrap approach using Fisher’s exact tests were applied to the MG-RAST 

(subsystem functional level 3) outputs. This approach determined what percentage of the 835 

subsystems were significantly (at 95% CI) different between any pair-wise comparison. 

Replicate runs (M2a / M2b and J1a10 / J1b10) had between 7.3 and 7.7 % dissimilar 

subsystems and seasonal variations had 8.6 and 11.7 % dissimilar subsystems for direct 215	
  

(M1/J1) and indirect (M4/J4) extractions respectively. When different lysis methods (e.g., 

M4, M5, and M6) were applied to the bacterial cells removed by Nycodenz gradient gel 

before DNA extraction, significant differences in subsystem distributions (16.9 – 39.8% 

dissimilar subsystems) were observed at the 95% CI. Using sequences corresponding to 

communities extracted from two distinct horizons (0 to 10cm: M3 and 11 to 20cm: M6), 220	
  

27.01% of the detected functional subsystems possessed statistically different distributions. 

Two types of geographical comparisons were made. One was between Rothamsted soil and 

soil from Italy (Vallombrosa forest soil, defined as a Cambric Umbrisol) extracted with the 

same method (MP Bio101) in our laboratory (the related Italian soil metagenome is 

represented by approximately 100 000 sequences) and these two soils had 14.1% dissimilar 225	
  

subsystems. The second was Rothamsted sequences compared to those from Puerto Rico 
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(located in the Luquillo experimental forest and defined as a tropical rain forest soil, 

Metagenome ID of 4446153.3 on MG RAST, one million reads), which were extracted and 

sequenced elsewhere. They had between 30.98% and 33.13% dissimilar subsystems. The most 

extreme comparison was between Rothamsted soil and the Sargasso Sea (72% dissimilar 230	
  

subsystems) as indicated also by the distance in figure 2. 

Among the major (29) metabolic classes, clustering-based subsystems (CBSS) and 

carbohydrate metabolism had the largest quantity of annotated reads assigned (Figure 3). 

Virulence and amino acid and derivatives were next in prevalence (Figure 3). The cluster-

based subsystems contain such functions as proteosomes, ribosomes and recombination-235	
  

related clusters. The virulence subsystem contains diverse functions also, such as resistance to 

antibiotics and toxic compounds, and pathogenicity islands. Some subsystems were relatively 

minor such as photosynthesis, prophage, dormancy and sporulation (Figure 3). Although there 

was significant (at the 95%CI) differences in the distribution of reads in some (from about 7 

to 40%) of the different metabolic subsystems from the different pyrosequencing runs of 240	
  

DNA extracted from Rothamsted soil, the standard deviation around the mean of all of the 

pyrosequencing runs varied between 2 and 50 %, with the higher variance for the metabolic 

classes with relative few assigned reads (e.g., macromolecular synthesis; error bars in figure 

3). When comparing the assigned reads at a finer functional subsystem classification within 

MG-RAST, the most prevalent subsystem (out of the 835 different categories) in the soil was 245	
  

the cAMP signaling in bacteria with 3.24 ± 0.27 % of the annotated reads (Table S2). The 

next most prevalent subsystem was the Ton and Tol transport systems at 1.69 ± 0.11% of the 

annotated reads (Table S2). These prevalent systems varied less than 10% between DNA 

extraction pools except for the distribution of CO2 uptake carboxysome related genes, which 

varied from 0.56% in M3 to 1.43% in M4, which represents an increase of 60.7% (average for 250	
  

the thirteen pyrosequencing runs was 0.70 ± 0.42 % of reads). 



10	
  

	
  

Taxonomic comparison: 

The 56 ± 4.4% of annotated protein sequences showed closest homology to a total of 1214 

unique taxa using the taxonomic annotation of functional SEED subsystems. The most 

dominant putative taxon was Solibacter usitatus (6.72 ± 0.29 % of annotated reads). Other 255	
  

taxa with relatively high number of assigned reads were Blastopirellula marina (4.96 ± 

2.88%), Bradyrhizobium japonicum (4.89 ± 0.635%) and Acidobacteria bacterium (3.64 ± 

0.94%)  (Table S3). The legitimacy of the read assignment at an E value of 10-5 cut-off is 

provided in part by the E value distribution of the different reads assigned to the reference 

genome. In the case of Bradyrhizobium japonicum, the majority of assigned reads had E 260	
  

values lower than 10-30 and in the case of Blastopirellula marina, the E values were in general 

larger than 10-30. Using the taxonomic classification of functional gene fragments, it is 

possible to use all annotated reads to determine community structure (Figure 4); however, it is 

also possible to use 16S rRNA sequences to determine the community structure, although the 

number of reads is considerably less than for the SEED annotation. Three different databases 265	
  

accessible within the MG-RAST platform and used with the MG-RAST software were used to 

determine community structure with standard deviations calculated from the variance of the 

13 different pyrosequencing runs (Figure 4). While there is a general agreement: alpha-, beta- 

and gammaproteobacteria and Actinobacteria dominate all four methods, there are some 

important differences in the relative number of reads in different classifications. For example, 270	
  

the Silva SSU database 94 has a much higher percentage of reads in Flavobacteria than the 

other systems (Figure 4). In order to use functional genes other than 16S rRNA for taxa or at 

least genera identification, a more accurate and limited analysis constrained the similarity at 

96% or better (still with an E value of 10-5). When this was performed using SEED, only 0.35 

±0.09% of the total reads (or about 1% of the annotated reads) were used to identify bacterial 275	
  

taxa (Table S4). The most abundant taxa identified from Rothamsted soil were members of 

the Bradyrhizobium, Rhodopseudomonas and Nitrobacter genera (Alphaproteobacteria); the 

Solibacter and Acidobacteria genera (Acidobacteria) and Pseudomonas 

(Gammaproteobacteria) and Burkholderia (Betaproteobacteria) genera.  Blastopirellula 

marina was no longer associated with any of the reads. 280	
  

Soil metagenome assembly: 
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Sequence data were assembled to provide a metric describing the depth of sequencing applied 

to the community metagenome; in part this was used to estimate the minimum quantity of 

sequencing required to completely sequence all the members of the soil microbial community. 

The extreme minimum could be considered as the quantity of sequences where no singleton is 285	
  

left unassembled, even if practically this minimum is insufficient to assemble all the genomes. 

Ten random read subsamples of increasing metagenome size (read quantity) were run through 

the Newbler assembler (Table S5).  No attempt was made here to optimize the assembly 

process.  The ten subsamples ranged in size from 1257242 to 12572342 reads (with 

487554794 to 4874169257 total number of bases) and produced from 7478 to 266600 contigs 290	
  

(Table S5). The largest contig size increased from 6361 bp to 22645 bp with three times as 

many reads but then decreased and leveled off at about 15400 bp with increasing number of 

reads (Table S5). The fraction of reads that were not included in any contig (“singletons”) fell 

from roughly 0.93 to 0.76 when increasing the number of reads ten-fold (Figure 5A insert).  

This data was fitted and extrapolated to the point where no read would be orphaned.  This 295	
  

extrapolation was at about 400 million 454 reads (average of 386 bp in length) with the 95% 

confidence interval stretching from less than 200 million reads to almost 1400 million reads 

(Figure 5A). The maximum contig length did not continue to increase with increasing read 

number, but the number of reads per contig did develop two general trends (Figure 5B).  

These two trends are schematically represented by the two lines in figure 5B.  The denser 300	
  

trend has a slope represented by a contig coverage of about 30x (when the assembler 

needs/uses 30X to build the contigs) and the smaller trend has a contig coverage of about 

4.5x. Contigs from these two trends were selected, broken in coding sequences by 

MetaGeneMark and then annotated using MG RAST. Globally, the trend corresponding to 

coverage of 30x possessed more sequences related to Firmicutes (10.99%) and 305	
  

Verrucomicrobia (21.85%). In contrast, the trend corresponding to low coverage assembled 

contigs (4.5x coverage) possessed a majority of sequences related to Proteobacteria (66.06%). 

Independent of the two observed trends, the 100 largest contigs created from the entire 

sequence pool were also annotated by MG RAST and in general the relative proportion of 

different functional and phylogenic classes (stars in figures 3 and 4) were similar to that for 310	
  

the sequences directly with some exceptions. There were fewer virulence subsystem hits and 

significantly more fatty acids and protein metabolism hits. 

Discussion 
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Soil is one of the most diverse environments on earth and the depth of the microbial diversity 

is still poorly understood. High throughput sequencing technologies, coupled with appropriate 315	
  

DNA extraction methods, provide a means to explore the soil ecosystem with an 

unprecedented level of detail (Vogel et al, 2009). In this study, pyrosequencing from 13 

samples generated nearly 5x109 base pairs of sequence data with average read size of 386 bp. 

Three key parameters were varied: soil depth, sample collection season, and DNA extraction 

method. Sequence samples were annotated with the MG-RAST online server, revealing broad 320	
  

functional (835 of 878 possible functional subsystems) and taxonomic (detection of 1214 

putative taxa) diversity in the Rothamsted Park Grass soil metagenome.  

The most abundant functional subsystems in the Rothamsted soil were seemed to be related to 

microbial cAMP signaling and Ton and Tol transport (Table S2). The same subsystems were 

prevalent in metagenomes in soil at Waseca farm, in Puerto Rico and Italy. These trends in 325	
  

soil functional content are robust enough to be observed on a global scale. cAMP is an 

important secondary messenger in Eukarya and Bacteria. cAMP is a universal cell 

energy/metabolism regulator as well as being involved with cell-cell signaling. Soil bacteria 

might have to deal with frequently fluctuating substrate levels so that they would need extra 

regulation rather than interacting with plants. Interestingly, since cAMP is also a subversion 330	
  

mechanism, some bacterial pathogens might also subvert plant cAMP production for their 

own benefit, through injection of adenylate cyclase and/or various toxins that alter adenylate 

cyclase levels (adenylate cyclase is essential to the production of cAMP) (Agarwal et al., 209; 

Akhter et al., 2008). Iron is an essential element for most organisms (Weinberg, 1984), but 

can be a limiting reagent for life (often in oceans, Boyd et al, 2007) due to its insolubility in 335	
  

aerobic environments at neutral pH. In response to this stress, some bacteria possess high-

affinity transport systems (Crosa et al., 2004) and generate high-affinity siderophores that 

complex extracellular iron (Neilands et al, 1980) to optimize its acquisition. The presence of 

Ton related proteins in the soil is likely due to TonB, an energy dependent cell envelope 

protein that assists iron uptake through accommodation of ferric siderophores, too large to 340	
  

cross porins, through the outer membrane (Klebba et al, 2003).  

MG-RAST annotation also revealed the presence of several highly abundant cluster-based 

subsystems (CBSS). These are groups of functionally coupled genes (genes found proximal to 

each other in the genomes of diverse taxa) whose functional attributes are not well 

understood. The relatively high abundance of these subsystems across all Park Grass samples, 345	
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as well as the other sequenced soils, suggests that they play key roles in soil ecosystems 

across the globe, and should be explored in future research efforts to understand the 

composition of soil ecosystems. The CBSS-258594.1.peg.3339, CBSS-269799.3.peg.2220, 

CBSS-83332.1.peg.3803, CBSS-249196.1.peg.364 (Table S2) are thought to be a 

galactoglycan biosynthesis, a molybdenum oxidoreductase, a PKS-related, and a fatty acid 350	
  

metabolism subsystem, respectively. 

The comparison of the runs corresponding to the same DNA sample (M2a/M2b) provided 

important information about the reproducibility of pyrosequence generation in highly 

biodiverse environments. The Fisher’s exact test operated by the STAMP software did 

identify some functions (about 7%) and taxa that varied significantly (at the 95% CI) between 355	
  

replicates. The lower p-value was on the order of 10-7 when comparing M2a and M2b at the 

functional level, so some comparisons between seasons and depths were possible. Based on 

these observations, functional comparisons having at most a minimum p-value of 10-8 (cut-off 

based on the observed technological reproducibility) were considered to have distributions 

that varied significantly. Unfortunately, the technological reproducibility is not the only limit 360	
  

for robust metagenomic comparisons. Even if a stringent p-value is used, the DNA extraction 

approach influenced the experimental conclusions. When comparing the seasonal effect by 

using two different extraction approaches (direct:M1/J1 and indirect M4/J4), some differences 

in relative predominance of different subsystems were found. Based on the comparison of M1 

and J1, sequences related to the type 4 secretion and conjugative transfer and cellulosome 365	
  

subsystems are more represented in March (p-value of 10-8 in the two cases). When comparing 

M4 and J4, the cellulosome subsystem is still detected more in March (p-value<10-15), but the 

type 4 secretion and conjugative transfer is not. In contrast, sequences related to bacterial 

cAMP signaling are more present in July (p-value of 10-12), but only when comparing M4 and 

J4. Thus, only sequences related to cellulosome dominated one season’s metagenome 370	
  

independent of the extraction method applied. Major environmental difference between the 

two studied seasons was temperature (from 6°C in March to 16.6°C in July). In addition, snow 

lay on the ground for weeks in February of the same year, thus limiting active grass growth. 

As a consequence, soluble root exudates were possibly in short supply during this relatively 

cold period and cellulosome from root residues would be the main source of carbon and 375	
  

energy supporting soil microbial communities.   
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On the other hand, depth had more effect with sequences related to genes involved in bacterial 

chemotaxis, Ton and Tol transport systems, flagellum mechanism, D-ribose and L-Arabinose 

utilization represented more in the surface sample (0 to 10 cm) and sequences related to 

selenocysteine metabolism and tRNA aminoacylation represented more at depth (11 to 20 380	
  

cm). However these results were generated using only one DNA extraction method. In 

comparison to depth and seasonal variables, the extraction method was able to influence 

functional distributions (Figure 2), especially when using methods with striking differences in 

cell lysis (e.g., Gram positive kit versus in agarose plug lysis or DNA tissue). Thus, the 

stringency of lysis appears to be a crucial step for soil metagenomic analysis, confirming 385	
  

previous results with RISA and phylogenetic microarray analyses (Delmont et al, 2011b). 

In addition, when studying the distribution of sequences based on their G+C%, clear 

variations were found among the different runs. Direct lysis versus indirect lysis had more 

impact on the G+C% profile than any other variable. The indirect lysis provided more 

sequences possessing a higher G+C ratio (from 60 to 72%), while the direct lysis had a more 390	
  

even distribution with more sequences in the 50 to 58 G+C% range (Figure S1). Both 

metagenomic standard deviations and G+C% ratio profile fluctuations are limited by the 

experiments and variables used. However, this effort provides both significant soil 

metagenomic sequences and data useful to appreciate methodological differences in microbial 

community diversity accessibility.  395	
  

Given the relatively low functional subsystem variations between different soils (figure 2), 

soil microbial community metagenomes from Rothamsted, Puerto Rico, Italy and the Waseca 

farm soil (Tringe et al., 2005) could be compared to metagenomes from oceans and human 

feces. This comparison might help identify some of the soil ecosystem unique functional 

attributes. In order to make the comparison, principal component analysis was generated 400	
  

based on the distribution of general functional subsystem classes with metagenomes 

publically available from these ecosystems (Figure 6). Some general functional classifications 

appear to be relatively more represented in one ecosystem in comparison to the others. 

Sequences related to RNA and protein metabolism, photosynthesis, fatty acids and lipids, and 

macromolecular synthesis are more highly represented in ocean metagenomes. In contrast, 405	
  

phosphorus metabolism and virulence are less represented in ocean metagenomes than in 

those sequenced for soil and human microbiomes. Sulfur and potassium metabolism, 

membrane transport, stress response and regulation, and cell signaling are more represented, 
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and nucleosides and nucleotides, and RNA and protein metabolism are less represented in soil 

metagenomes. In human microbiomes, cell division and cell cycle, DNA and phosphorus 410	
  

metabolism, cell wall and capsule, dormancy and sporulation, carbohydrates are more 

represented than in those of oceans and soils (Figure 6). When comparing the taxonomical 

structure of these metagenomes, Cyanobacteria and Bacteroidetes appear to be more 

represented in the oceans. In addition, Eukaryotic sequences were also detected and represent 

additional specificities of these metagenomes (Figure S2). Actinobacteria, Chloroflexi, 415	
  

Fibrobacteres and Acidobacteria group, Planctomycetes, and Synergistetes are more present in 

soils. Chlorobi, Firmicutes, Spirochaetes, Fusobacteria and the Bacteroidetes Chlorobi group 

are clearly relatively dominant in human digestive tracts. In contrast, Proteobacteria are more 

present in oceans and soils. The metagenomes are clearly grouped as a function of the 

environment based on both general functional and taxonomical distributions. So in spite of 420	
  

important DNA extraction biases and sequencing technology differences (Illumina, 

Pyrosequencing and Sanger), global metagenomic comparisons are possible and provide 

unique information about the functional and taxonomical differences of each environment 

(Delmont et al., 2011a). As an example, sequences related to metabolism of aromatic 

compounds are more abundant in soils possibly due to the presence of these compounds in 425	
  

this environment. However, additional comparisons, such as qPCR and metatranscriptomics, 

need to be performed to confirm which taxa and functions are unusually active in soil to gain 

a better understanding of soil microbial community function.  

The relative percentage of orphan reads decreased continually when accumulating 

pyrosequences.  Therefore, an estimate of the number of reads needed to avoid having orphan 430	
  

reads would possibly provide the absolute minimum number of reads needed to sequence the 

entire soil metagenome. Rarefaction analysis of this sequencing effort (Figure 5) indicated 

that the equivalent of about 320 Titanium runs would be required to create contigs from all of 

the soil pyrosequence reads generated.  Of course, chimeras might be generated due to the 

complexity of communities, and a much larger effort would be needed to assemble the soil 435	
  

metagenome, but as new efficient high-throughput sequencing technologies and valuable 

assembling tools are developed, this goal will become less utopic. Genomes from 

Proteobacteria might be assembled more rapidly than those from Firmicute or 

Verrucomicrobia phyla. The presence of regions that limit assembly (e.g., insertion sequences 

regions) and the complexity of diversity among taxa might explain in part the efficiency 440	
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differences observed between these phyla (4.5x and 30x), but additional experiments are 

needed to understand the two trends observed in the figure 5B. 

Conclusion: 

In this study, more than 12 million reads were generated from the soil of the Rothamsted 

Research Park Grass experiment. These sequences were generated in 13 separate sequencing 445	
  

runs producing over 4x109 bp. The results demonstrated both some DNA extraction biases 

and relatively low seasonal (when comparing March and July months) and vertical soil 

metagenomic functional class fluctuations. In addition, this approach provided a statistical 

view of functional distributions in this soil. This metagenomic study increased our knowledge 

about soil microbial communities at a metagenomic level by integrating both natural and 450	
  

methodological fluctuations. The metagenomic variance so generated represents a global 

picture of the Rothamsted soil metagenome that can be used for specific questions and future 

inter-environmental metagenomic comparisons. However, only 34.5 % of the reads were 

assigned to functions and less than 1% of annotated sequences correspond to already 

sequenced genomes (at 96% similarity), therefore, many soil microorganisms remain elusive 455	
  

and genome constructions are needed. 
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Figure and Table Legends 555	
  

Table 1.  Quality and quantity of DNA extracted from the Rothamsted Parkgrass soil with 

different DNA extraction approaches. 

Figure 1. The sampling and DNA extraction schematic for the thirteen pyrosequencing runs. 

The two pairs, M2a/M2b and J1a10/J1b10, are respectively replicate runs from the same DNA 

extraction and distinct DNA samples extracted sequentially from the same soil sample. 560	
  

Figure 2. Cluster tree confronting the thirteen pyrosequencing runs, two other soil 

metagenomes and a metagenome corresponding to Sargasso Sea environment based on the 

number of reads assigned to each of the 835 metabolic subsystems detected by MG-RAST at 

least in one dataset. The tree was constructed using Euclidean distances, nPCA ordination 

method, and complete cluster method. 565	
  

Figure 3. Relative distribution (in percentage of annotated reads) of the 29 major metabolic 

subsystems (using SEED subsystems in the MG-RAST program) detected in the Rothamsted 

soil metagenome. Standard deviations correspond to the variability among sequencing runs. 

The stars represent the relative distribution among the 100 largest contigs after assembly. 

Figure 4. Relative distribution of microbial classes in the Rothamsted soil metagenome. 570	
  

Standard deviations correspond to the fluctuation of the relative distribution between different 

pyrosequencing runs. The total number of reads annotated by the different methods is not the 

same as the SEED annotation using all annotated reads and the others use only identified 16S 

rRNA genes (rrs). The version of Greengenes database used within MG-RAST was from 

2008. The stars represent the relative distribution among the 100 largest contigs after 575	
  

assembly based on SEED annotation. 

Figure 5. Panel A. Relation between number of 454 sequence reads used in the Newbler 

assembler and the percentage of reads not combined with any other reads (singletons). A best 

fit equation for this relationship is: pSingleton = a*[nbReads]b + c with the following four 

parameters: Estimated value, Std. Error, t value, Pr(>|t|) - for a: -6.714x10-4 , 5.409x10-5 , -580	
  

12.41, 5.06x10-6; for b: 3.703x10-1, 4.446x10-3 , 83.30, 9.46x10-12; for c: 1.047, 2.372x10-3 , 

441.56, < 2x10-16.  
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Panel B. Plot of the number of reads per contig as a function of the length of the contigs 

produced with all the reads from the 13 pyrosequencing runs using the 13 pools of DNA 

extracted from the Park Grass soil at Rothamsted Research. 585	
  

Figure 6. The principal component analysis of three ecosystems using the relative distribution 

of reads in the different metabolic subsystems for the metagenomic sequences available in the 

public database in addition to those produced here. The large metabolic classes as determined 

by MG-RAST are mapped on the same PCA as the ecosystems. 

590	
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Table	
  1.	
  	
  Quality	
  and	
  quantity	
  of	
  DNA	
  extracted	
  from	
  the	
  Rothamsted	
  Parkgrass	
  soil	
  with	
  different	
  590	
  
DNA	
  extraction	
  approaches.	
  

	
  	
  

Quantity	
  of	
  	
  

soil	
  used	
  	
  

Principal	
  type	
  	
  

of	
  lysis	
  

average	
  DNA	
  	
  

length	
  after	
  

extraction	
  

DNA	
  yield	
  per	
  	
  

kilogram	
  of	
  soil	
  	
  

MP	
  BIO1O1	
  rhisosphere	
  
soil	
   0.5	
  g	
   Mechanical	
   10	
  kbp	
   40	
  mg	
  

MP	
  BIO1O1	
  soil	
   0.5	
  g	
   Mechanical	
   10	
  kbp	
   10	
  mg	
  

MoBIO	
  soil	
   0.5	
  g	
   Mechanical	
   10	
  kbp	
   2	
  mg	
  

MP	
  BIO1O1	
  on	
  extracted	
  

cells	
  (Nycodenz)	
   300-­‐400	
  g	
   Mechanical	
   10	
  kbp	
   150	
  µg	
  

In	
  plug	
  on	
  extracted	
  cells	
  
(Nycodenz)	
   300-­‐400	
  g	
   chemio-­‐enzymatic	
   >	
  500	
  kbp	
   120	
  µg	
  

DNA	
  Tissue	
  on	
  extracted	
  
cells	
  (Nycodenz)	
   300-­‐400	
  g	
   chemio-­‐enzymatic	
   20-­‐40	
  kbp	
   30	
  µg	
  

Gram	
  positive	
  on	
  extracted	
  

cells	
  (Nycodenz)	
   300-­‐400	
  g	
   chemio-­‐enzymatic	
   20-­‐40	
  kbp	
   5	
  µg	
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