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Abstract We describe a set of extensions to the AMPL modeling language to con-
veniently model mixed–integer optimal control problems for ODE or DAE dynamic
processes. These extensions are realized as AMPL user functions and suffixes. Hence,
no intrusive changes to the AMPL language standard or implementation itself are re-
quired. We describe and provide TACO, a toolkit for optimal control in AMPL that
reads AMPL stub.nl files and detects the optimal control problem’s structure. This
toolkit is designed to facilitate the coupling of existing optimal control software pack-
ages to AMPL. We discuss requirements, capabilities, and the current implementa-
tion. Using the example of the multiple shooting code for optimal control MUSCOD-
II, a direct and simultaneous method for DAE-constrained optimal control, we access
the problem information provided by the TACO toolkit in order to interface this solver
with AMPL. Moreover, we show how the MS-MINTOC algorithm for mixed–integer
optimal control can be used to efficiently solve mixed–integer optimal control prob-
lems modeled in AMPL. Three exemplary control problems are modeled using the
proposed AMPL extensions to discuss how these affect the representation of optimal
control problems. Solutions to these problems are obtained using MUSCOD-II and
MS-MINTOC inside the AMPL environment. A collection of further AMPL control
models is provided on the web site mintoc.de. Using the TACO toolkit to enable
input of AMPL models, MUSCOD-II and MS-MINTOC are made available on the
NEOS Server for Optimization.
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1 Introduction

This paper is concerned with a set extensions to the AMPL modeling language that
aims at extending AMPL’s applicability to mathematical optimization problems in-
cluding dynamics. The mission is to describe and implement AMPL syntax elements
for convenient modeling of ODE- and DAE-constrained optimal control problems.

We consider the class (1) of mixed–integer optimal control problems on the time
horizon [0,T ]. Our goal is to minimize an objective function comprising an integral
Lagrange term L on [0,T ], a Mayer term E at the end point T of the time hori-
zon, and a point least-squares term with Nlsq possibly nonlinear residuals li on a grid
{ti}1≤i≤Nlsq of time points. All objective terms depend on the trajectory (x(·),z(·)) :
[0,T ]→ Rnx ×Rnz of a dynamic process described in terms of a system of ordinary
differential equations (ODEs, 1b) or differential–algebraic equations (DAEs, 1b, 1c).
This system is affected by continuous controls u(·) : [0,T ]→Rnu and integer–valued
controls w(·) : [0,T ]→ Ωw from a finite discrete set Ωw := {w1, . . . ,wnΩw} ⊂ Rnw ,
|Ωw| = nΩw < ∞ (1h). Both control profiles are subject to optimization. Moreover,
we allow the end time T (1g), the continuous model parameters p ∈ Rnp , and the
discrete–valued model parameters ρ ∈Ωρ := {ρ1, . . . ,ρnΩρ } ⊂ Rnρ , |Ωρ |= nρ < ∞

(1i) to be subject to optimization as well. Control, parameters, and process trajec-
tory may be constrained by inequality path constraints c(·) (1d), equality constraints
req

c (·) and inequality constraints rin
c (·) coupled in time (1e), and decoupled equality

and inequality constraints req
i (·), rin

i (·), 1≤ i≤ nr (1f), imposed on a grid {ti}1≤i≤Nr
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of time points on time horizon [0,T ]. This constraint grid need not coincide with
the point least-squares grid. Constraints (1d–1f) include initial- and boundary values,
mixed state–control constraints, periodicity constraints, and simple bounds on states,
controls, and parameters.

minimize
x(·),u(·),w(·),

p,ρ,T

∫ T

t=0
L(t,x(t),z(t),u(t),w(t), p,ρ) dt +E(T,x(T ),z(T ), p,ρ) (1a)

+∑
Nlsq
i=1 ||li(ti,x(ti),z(ti),u(ti),w(ti), p,ρ)||22, ti ∈ [0,T ],

subject to ẋ(t) = f (t,x(t),z(t),u(t),w(t), p,ρ), t ∈ [0,T ], (1b)
0 = g(t,x(t),z(t),u(t),w(t), p,ρ), t ∈ [0,T ], (1c)

0≤ c(t,x(t),z(t),u(t),w(t), p,ρ), t ∈ [0,T ], (1d)
0 = req

c (x(0),z(0),x(T ),z(T ), p,ρ), (1e)

0≤ rin
c (x(0),z(0),x(T ),z(T ), p,ρ),

0 = req
i (x(ti),z(ti), p,ρ), ti ∈ [0,T ], 1≤ i≤ Nr, (1f)

0≤ rin
i (x(ti),z(ti), p,ρ),

Tmin ≤ T ≤ Tmax, (1g)

w(t) ∈Ωw, t ∈ [0,T ], (1h)
ρ ∈Ωρ . (1i)

Direct and simultaneous methods for attacking the class (1) of optimization prob-
lems posed in function spaces are based on the first–discretize–then–optimize ap-
proach. A discretization scheme is chosen and applied to objective (1a), dynamics
(1b, 1c), and path constraints (1d) of the optimization problem in order to obtain a
finite-dimensional counterpart problem accessible to mathematical programming al-
gorithms. This counterpart problem will usually be a high-dimensional and highly
structured nonlinear problem (NLP) or mixed-integer nonlinear problem (MINLP).
As such, it readily falls into the domain of applicability of many mathematical op-
timization software packages already interfaced with AMPL, such as e.g. filterSQP
[19], IPOPT [45], or SNOPT [22] for nonlinear programming, and e.g. Bonmin [9]
or FilMINT [1] for mixed-integer nonlinear programming. More citations

here?

The AMPL Modeling Language described by Fourer et al [21] was designed as a
mathematical modeling language for linear programming problems, and has later
been extended to integer and mixed–integer linear problems, to mixed–integer non-
linear problems, to complementarity problems [] , and to semidefinite problems [] . (citation)

(citation)AMPL’s syntax closely resembles the symbolic and algebraic notation used to present
mathematical optimization problems, and allows for fully automatic processing of
optimization problems by a computer system. The availability of a symbolic problem
representation enabled by AMPL’s approach to modeling mathematical optimization
problems has a number of significant advantages. These include the possibility for
automatic differentiation, extended error checking facilities, automated analysis of
model parts for certain structural properties such as linearity or convexity, and the
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opportunity for automatically generating model code for lower-level languages [] .(does someone
do this? cita-
tion)

The long–standing popularity and success of AMPL is underlined by the wealth of
mathematical optimization software packages available on the NEOS Server for Op-
timization [23] that provide interfaces to read and solve problems modeled using the
AMPL language.

Benefits Hence it appears desirable to extend the AMPL modeling language by a
facility that conveys the notion of ODE and DAE constraints (1b, 1c) to a nonlin-
ear or mixed–integer nonlinear problem solver. If given a generic description of a
selected discretization method, the solver would apply this discretization to obtain
an (MI)NLP with discretized objective and constraints to work on. This approach
would effectively remove the need for tedious explicit encoding of fixed discretiza-
tion schemes in the AMPL model, as is e.g. done for collocation schemes in [17].
Adaptive choice and iterative refinement of the discretization, see e.g. [24], would
become possible. At the same time, this idea would open up the possibility of us-
ing alternative and more involved discretization schemes that preclude themselves
from straightforward encoding in AMPL. One example are direct multiple–shooting
methods, see [8], that enable the use of state-of-the-art ODE and DAE solvers, see
e.g. [4, 35], with increased opportunities for exploiting structure and adaptivity. Vice
versa, the envisioned approach would open up a generic way of tackling challenging
mixed-integer dynamic optimization problems with the most recent and up-to-date
methods developed in the MINLP community.

Related Efforts The idea of a high-level modeling language for dynamic simulation
and optimization problems is by all means not a new one. Driven by demands mostly
arising out of the industrial and engineering communities, several efforts have lead to
the creation of commercial development environments for simulation and partly also
for optimization of dynamic processes, some examples being gPROMS [5], Tomlab’s
PROPT [39], Dymola [18], Modelica [31], and recently the open-source initiative
JModelica/Optimica [3]. In contrast to the approach we envision, these development
environments however mainly focus on the end-user’s convenience of interaction with
the development environment, while often being closely tied to one or a few selected
discretization schemes and solvers only.

1.1 Contributions and Structure

In this paper we describe a set of extensions to the AMPL modeling language that
aims at extending AMPL’s applicability to mathematical optimization problems con-
strained by ODE and DAE dynamics, i.e. optimal control problems. All proposed
extensions are realized as either AMPL user functions or AMPL suffixes. Both user
functions and suffixes are integral parts of the existing AMPL language standard.
Hence, no intrusive changes to the AMPL language standard or implementation itself
are required to realize the proposed extensions.

We describe an open–source implementation of the proposed extensions that we
refer to as TACO, the Toolkit for AMPL Control Optimization. TACO is designed
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to facilitate the coupling of existing optimal control software packages, as it allows
us to read AMPL stub.nl files and detect the optimal control problem’s structure. We
use TACO to interface the two codes MUSCOD-II and MS-MINTOC with AMPL.
MUSCOD-II, the multiple shooting code for optimal control described by [27, 28]
and [8, 15], is a direct and simultaneous method for DAE-constrained optimal control.
MS-MINTOC extends this software package by multiple–shooting mixed–integer
optimal control algorithms [40, 42].

The applicability of the proposed and implemented extensions is shown using
three examples of ODE-constrained control problems. A larger collection of AMPL
models for ODE and DAE-constrained mixed-integer optimal control is made avail-
able on the web site mintoc.de [42]. Using the TACO interface, the two solvers
MUSCOD-II and MS-MINTOC are made available on the NEOS Server for Opti-
mization [23].

The remainder of this paper is structured as follows. In §2 we propose several ex-
tensions to the AMPL modeling language and realize them through AMPL user func-
tions and suffixes. Two exemplary AMPL models are discussed in §3, and a collection
of further AMPL models available from the web site mintoc.de is described. Con-
sistency and smoothness checks performed by TACO and possible errors that may be
encountered in this phase are described in §4. Here, we also discuss the communica-
tion of optimal solutions of time-dependent variables to AMPL. In §5 we show how
to use the information provided by TACO to realize an interface coupling the optimal
control software package MUSCOD-II and the mixed-integer optimal control algo-
rithm MS-MINTOC to AMPL. The use of AMPL’s automatic derivatives within an
ODE/DAE solver is discussed. In §6, limitations and possible future extensions of
the considered problem class are addressed. Finally, §7 concludes this paper with a
brief summary.

Three appendix sections hold technical information about the TACO implemen-
tation that may be of interest to developers of optimal control codes who wish to
interface their codes with AMPL.

2 AMPL Extensions for Optimal Control

The modeling language AMPL has been designed for finite-dimensional optimization
problems. When attempting to model optimal control problems for DAE dynamic
processes in AMPL without encoding a discretization of the dynamics in the model
itself, one is confronted with several challenges. First, variables representing trajec-
tories on a time horizon [0,T ] require a notion of time dependency. Second, certain
constraints model ODE or DAE dynamics, and this knowledge must be conveyed
to the solvers. Finally, objectives and constraints containing trajectory–representing
variables may either refer to the entire trajectory, or to an evaluation of that trajectory
in a certain point in time.

In this section we describe extensions to the AMPL syntax that address these
points and allow for a convenient formulation of optimal control problems from class
(1). All extensions are realized either as user functions or via AMPL suffixes, and do
not require modifications of the AMPL system itself. Hence, they are readily appli-
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cable in any development or research environment that provides access to an AMPL
installation. A first example of the proposed AMPL extensions is shown in Fig. 1 for
a nonlinear toy problem found in [14].

minimize
x(·),u(·),p

∫ 3

0
x(t)2 +u(t)2 dt

subject to ẋ(t) = (x(t)+ p)x(t)−u(t),

x(0) =−0.05,

−1≤ x(t)≤ 1,

−1≤ u(t)≤ 1.

var t;
var x >= -1, <= 1, := -0.05;
var u >= -1, <= 1, := 0 suffix type "u0";
param p := 1.0;

minimize Lagrange: integral (x^2 + u^2, 3);
subject to
ODE: diff (x, t) = (x + p) * x - u;

IC: eval (x, 0) = -0.05;

Fig. 1 Exemplary use of the proposed AMPL extensions integral, diff, and eval in the AMPL model
(right) for an ODE-constrained optimal control problem (left). Initial guesses for p and for x(t) and u(t)
on [0,T ] found in the AMPL model are not given in the mathematical problem formulation.

2.1 Modeling Optimal Control Problem Variables

We first address the modeling of optimal control problem variables. A major task in
detecting the optimal control problem’s structure is to automatically infer the role
AMPL variables should play in problem (1). We introduce the AMPL suffix type
required to help here, and describe the rules of inference.

Independent Time In the following we expect any optimal control problem to declare
a variable representing independent time t in (1). For consistency, we assume this
variable to always be named t in this paper. There is, however, no restriction to the
naming or phyiscal interpretation of this variable in an actual AMPL model. The
independent time variable is detected by its appearance in a call to the user-function
diff. Use of the same variable in all calls to diff is enforced for well-posedness.

For the end point T of the time horizon [0,T ], occasionally named T in AMPL
models in this paper, the user is free to either introduce a variable, e.g. if T is free
and subject to optimization, or to use a numerical constant (as in Fig. 1) or a defined
variable if T is fixed.

Differential State Variables are denoted by x(·) or xi(·) in this paper. They are de-
tected by their appearance in a call to the user-function diff (see Fig. 1) which
defined the differential right hand side for this state. Only one such call may be made
for each differential state variable.
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Algebraic State Variables are denoted by z(·) or zi(·) in this paper. As any DAE
constraint may involve more than one algebraic state variable, there is, unlike in the
ODE case, no one–one correspondence between DAE constraints and DAE variables.
Hence, we propose to detect DAE variables by flagging them as such using an AMPL
suffix named type, which is let to the symbolic value "dae".

Continuous and Integer Control Variables Control variables are detected by flagging
them as such using the proposed AMPL suffix type, which is let to the one of sev-
eral symbolic values representing choices for the control discretization (see Fig. 1).
The current implementation offers the piecewise constant (type assumes the value
"u0"), piecewise linear ("u1"), piecewise linear continuous ("u1c"), piecewise cu-
bic ("u3"), and piecewise cubic continuous ("u3c") discretizations. Integer controls
may simply be declared by making use of existing AMPL syntax elements such as
the keywords integer and binary.

Continuous and Integer Parameters Any AMPL variable not inferred to be indepen-
dent or final time, a differential or algebraic state, or a control according to the rules
described above is considered a model parameter pi or ρi that is constant in time but
may be subject to optimization e.g. in parameter estimation problems. Again, integer
parameters may be declared by making use of the existing AMPL syntax elements
integer and binary.

2.2 Modeling Optimal Control Problem Constraints

In this section we address the various types of constrains found in problem class (1).

Dynamics: ODE Constraints We propose a user-function diff(var,t) that is used
in equality constraints to denote the left–hand side of an ODE (1b). The first argu-
ment var denotes the differential state variable for which a right–hand side is to be
defined. The second argument t is expected to denote the independent time variable.
Currently, only explicit ODEs are supported, i.e. the diff expression in ODE con-
straints must appear isolated on one side of the constraint.

That point of interest here is the mere appearance of a call to diff in an AMPL
constraint expression that allows to distinguish an ODE constraint from other con-
straint types. The actual implementation of diff is bare of any functionality and may
simply return the value zero.

Dynamics: DAE Constraints An equality constraint that calls neither eval nor diff
is understood as a DAE constraint (1c).

Most DAE solvers will expect the DAE system to be of index 1. This means
that the number of DAE constraints (1c) must match the number nz of algebraic
states declared by suffixes, and the common Jacobian of all DAE constraints w.r.t. the
algebraic states must be regular in a neighborhood of the DAE trajectory t ∈ [0,T ] 7→
(x(t),z(t)). The first requirement can be enforced. The burden of ensuring regularity
is put on the modeler creating the AMPL model, but can be verified locally by a DAE
solver during runtime.
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Path Constraints An inequality constraint that calls neither eval nor diff is under-
stood as an inequality path constraint (1d).

Point Constraints impose restrictions on the values of trajectories only in certain
points ti ∈ [0,T ]. To this end, we propose a user function eval(expr,time) that
denotes the evaluation of a state or control trajectory, more generally an analytic
expression expr referring to such trajectories, at a given fixed point time on [0,T ].
This allows to model point constraints (1e, 1f) in a straightforward way. Fig. 1 shows
an initial-value constraint.

A Note on Evaluation Time Points For problems with fixed end-time T , time points
time in calls to eval obviously are absolute values in the range [0,T ]. Negative
values and values exceeding T are forbidden.

For problems with free final time T , i.e. for problems using an AMPL variable T
representing the final time T properly introduced and free to vary between its lower
and upper bound, all time points necessarily need to be understood as relative times
on the normalized time horizon [0,1]. For such problems it is neither possible nor
desirable to specify absolute time points other than the boundaries t = 0 and t = T .

2.3 Modeling Optimal Control Problem Objectives

Problem class (1) uses an objective function consisting of a Lagrange–type integral
term L and a Mayer–type end–point term E. In addition, it is of advantage to de-
tect least–squares structure of the integral Lagrange–term to be exploited after dis-
cretization. We also support a point least–squares term in the objective, arising e.g. in
parameter estimation problems.

Lagrange–Type and Integral Least–Squares–Type Objective Terms We propose a
user function integral(expr,T) to denote an integral–type objective function. The
first argument expr is the integrand, the second one T is expected to denote the final
time variable or value T , see Fig. 1. We always assume integration with respect to the
independent time t, starting in t = 0. If expr is a sum of squares, the Lagrange–type
objective is treated as an integral least–squares one.

Mayer– and Point Least–Squares–Type Objective Terms The proposed user function
for evaluating trajectory variables, eval(expr,time), can be used to model both
Mayer–type (time is T ) and point least–squares–type objective terms (expr is a sum
of squares, and time is an arbitrary point ti ∈ [0,T ] or ti ∈ [0,1]). Note that for well-
posedness, the Mayer type objective function must not depend on control variables,
a restriction that can be enforced.
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2.4 A Universal Header File for Optimal Control Problems

For convenience, necessary AMPL declarations of the proposed user functions diff,
eval, and integral as well as of the suffix type and its possible symbolic values
are collected in a header file named OptimalControl.mod that may be included in
the first line of an AMPL optimal control model. Its contents are shown in Fig. 2

suffix type symbolic IN;

option type_table ’\
1 u0 piecewise constant control\
2 u1 piecewise linear control\
3 u1c piecewise linear continuous control\
4 u3 piecewise cubic control\
5 u3c piecewise cubic continuous control\
6 dae DAE algebraic state variable\
7 Lagrange Prevent least-squares detection in an objective\
’;

function diff;
function eval;
function integral;

Fig. 2 Convenience declaration of user functions and suffixes in the header file OptimalControl.mod.

3 Examples of Optimal Control Models in AMPL

In this section we give two examples of using the proposed AMPL extensions to
model dynamic optimization problems. The first problem is an ODE boundary value
problem from the COPS library [17]. The second one is an ODE-constrained mixed-
integer control problem due to [40].

3.1 An Example from the COPS Library of Optimal Control Problems

Analyze the flow of a fluid during injection into a long vertical channel, assuming
that the flow is modeled by the boundary value problem

u(4)(t) = R
(

u(1)(t)u(2)(t)−u(t)u(3)(t)
)
, (2a)

u(0) = 0, u(1) = 1, (2b)

u(1)(0) = 0, u(1)(1) = 0, (2c)

where u is the potential function, u(1) is the tangential velocity of the fluid, and R > 0
is the Reynolds number. This problem due to [17] is a feasibility problem for the
boundary constraints. Fig. 5 shows the optimal solution obtained with MUSCOD-II
for R = 104.
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include OptimalControl.mod

var t; # independent time
param tf; # ODEs defined in [0,tf]
var u{1..4} := 0; # differential states
param R >= 0; # Reynolds number

subject to

d1: diff(u[1],t) = u[2];
d2: diff(u[2],t) = u[3];
d3: diff(u[3],t) = u[4];
d4: diff(u[4],t) = R*(u[2]*u[3] - u[1]*u[4]);

u1s: eval(u[1],0) = bc[1,1];
u2s: eval(u[2],0) = bc[2,1];
u1e: eval(u[1],tf) = bc[1,2];
u2e: eval(u[2],tf) = bc[2,2];

Fig. 3 The fluid flow in a channel problem of the COPS library, using the proposed AMPL extensions.

Fig. 3 shows the AMPL mode of this problem using the proposed extensions.
For comparison, the unchanged model as found in the COPS library is shown in
Fig. 4. Clearly, removal of the discretization scheme leads to a shorter (14 versus 32
lines) and more readable model code. Making use of an include statement admit-
tedly hides parts of the AMPL code here. Being able to do so actually is an advan-
tage, though, and would not be possible at all with the original COPS library code of
Fig. 4 as the discretization scheme cannot easily be isolated from the remainder of
the model.

3.2 A Mixed–Integer ODE–Constrained Example

The following Lotka–Volterra–type fishing problem with binary restriction on the
fishing activity is due to [40] and not part of the COPS library, which contains con-
tinuous problems only. The goal is to minimize the deviation x2 of predator and prey
amounts from desired target values x̄0, x̄1 over a horizon of T = 12 time units by re-
peated decisions of whether or not to fish off proportional amounts of both predators
and prey at every instant in time. The problem reads

minimize
x(·),w(·)

x2(T ) (3a)

subject to ẋ0(t) = x0(t)− x0(t)x1(t)− p0w(t)x0(t), t ∈ [0,T ], (3b)
ẋ1(t) =−x1(t)+ x0(t)x1(t)− p1w(t)x1(t), t ∈ [0,T ], (3c)

ẋ2(t) = (x0(t)− x̄0)
2 +(x1(t)− x̄1)

2, t ∈ [0,T ], (3d)
x(0) = (0.5,0,7,0), (3e)

0≤ x0(t), 0≤ x2(t), t ∈ [0,T ], (3f)
w(t) ∈ {0,1}, t ∈ [0,T ], (3g)
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param nc > 0, integer; # number of collocation points
param nd > 0, integer; # order of the differential equation
param nh > 0, integer; # number of partition intervals

param rho {1..nc}; # roots of k-th degree Legendre polynomial
param bc {1..2,1..2}; # boundary conditions
param tf; # ODEs defined in [0,tf]
param h := tf/nh; # uniform interval length
param t {i in 1..nh+1} := (i-1)*h; # partition

param fact {j in 0..nc+nd} := if j = 0 then 1 else (prod{i in 1..j} i);

param R >= 0; # Reynolds number

# The collocation approximation u is defined by the parameters v and w.
# uc[i,j] is u evaluated at the collocation points.
# Duc[i,j,s] is the (s-1)-th derivative of u at the collocation points.

var v {i in 1..nh,j in 1..nd};
var w {1..nh,1..nc};

var uc {i in 1..nh, j in 1..nc, s in 1..nd} =
v[i,s] + h*sum {k in 1..nc} w[i,k]*(rho[j]^k/fact[k]);

var Duc {i in 1..nh, j in 1..nc, s in 1..nd} =
sum {k in s..nd} v[i,k]*((rho[j]*h)^(k-s)/fact[k-s]) + h^(nd-s+1)*
sum {k in 1..nc} w[i,k]*(rho[j]^(k+nd-s)/fact[k+nd-s]);

minimize constant_objective: 1.0;

subject to bc_1: v[1,1] = bc[1,1];
subject to bc_2: v[1,2] = bc[2,1];
subject to bc_3:

sum {k in 1..nd} v[nh,k]*(h^(k-1)/fact[k-1]) + h^nd*
sum {k in 1..nc} w[nh,k]/fact[k+nd-1] = bc[1,2];

subject to bc_4:
sum {k in 2..nd} v[nh,k]*(h^(k-2)/fact[k-2]) + h^(nd-1)*
sum {k in 1..nc} w[nh,k]/fact[k+nd-2] = bc[2,2];

subject to continuity {i in 1..nh-1, s in 1..nd}:
sum {k in s..nd} v[i,k]*(h^(k-s)/fact[k-s]) + h^(nd-s+1)*
sum {k in 1..nc} w[i,k]/fact[k+nd-s] = v[i+1,s];

subject to collocation {i in 1..nh, j in 1..nc}:
sum {k in 1..nc} w[i,k]*(rho[j]^(k-1)/fact[k-1]) =
R*(Duc[i,j,2]*Duc[i,j,3] - Duc[i,j,1]*Duc[i,j,4]);

Fig. 4 The fluid flow in a channel problem as found in the COPS library.

Fig. 5 Optimal solution of the flow in a channel problem for R= 104, computed with MUSCOD-II running
inside the AMPL environment. nshoot=20.



12 C. Kirches and S. Leyffer

with p0 := 0.4, p1 := 0.2, x̄0 = 1, x̄1 = 1. The AMPL model using the proposed exten-
sions is given in Fig. 6. MS-MINTOC obtains the optimal solution shown in Fig. 7
by applying Partial Outer Convexification, and solving the convexified and relaxed
optimal control problem. A rounding strategy with ε−optimality certificate is ap-
plied to find the switching structure, which is refined by switching time optimization
afterwards. For details, we refer to [40, 42].

include OptimalControl.mod;

var t;
var xd0 := 0.5, >= 0, <= 20;
var xd1 := 0.7, >= 0, <= 20;
var dev := 0.0, >= 0, <= 20;

var u := 1, >= 0, <= 1 integer suffix type "u0";

param p0 := 0.4;
param p1 := 0.2;
param ref0 := 1.0;
param ref1 := 1.0;

# Minimize accumulated deviation from reference after 12 time units
minimize Mayer: eval(dev,12);

subject to

# ODE system
ODE_0: diff(xd0,t) = xd0 - xd0*xd1 - p0*u*xd0; # prey
ODE_1: diff(xd1,t) = -xd1 + xd0*xd1 - p1*u*xd1; # predator
ODE_2: diff(dev,t) = (xd0-ref0)^2 + (xd1-ref1)^2; # deviation from reference

# initial value constraints
IVC_0: eval(xd0,0) = 0.5;
IVC_1: eval(xd1,0) = 0.7;
IVC_2: eval(dev,0) = 0.0;

Fig. 6 The predator-prey mixed-integer problem modeled in AMPL, using the proposed extensions.

Fig. 7 Optimal integer control (blue) and optimal differential state trajectories (red) of the mixed-integer
predator-prey problem, computed with MUSCOD-II and MS-MINTOC running inside the AMPL envi-
ronment.
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3.3 AMPL Models of Optimal Control Problems in the mintoc.de Collection

An online library of mixed-integer optimal control problems has been described in
[41] and is available from the web site http://mintoc.de. This site holds a wiki-
based publicly accessible library, and is actively encouraging the optimal control
community to contribute interesting problems modeled in various languages. So far,
models in C, C++, JModelica, and AMPL (using encoded collocation schemes) can
be found together with best known optimal solutions and optimal control and state
profiles.

We contributed to this web site 18 optimal control and parameter estimation prob-
lems modeled using the proposed AMPL extensions, as shown in Tab. 1. These in-
clude ODE-constrained problems and a DAE-constrained control problem as well
as continuous problems and a mixed-integer control problem. Among them are 10
dynamic control and parameter estimation problems found in the COPS library [17].

Name nx nz nu +nw npf Type(1) References

batchdist 11(2) – 1 – OCP [16]
brac 3 – 1 – OCP [7]
catmix 2 – 1 – OCP [17], [43]
cstr 4 – 2 2 OCP [14]
fluidflow 4 – – – BVP [17]
gasoil 2 – – 3 PE [17], [44]
goddart 3 – – 1 OCP [17]
hangchain 3 – 1 – OCP [17], [12]
lotka 3 – 1 – MIOCP [40]
marine 8 – – 15 PE [17], [38]
methanol 3 – – 5 PE [17], [20], [30]
nmpc1 1 – 1 – OCP [14]
particle 4 – 1 1 OCP [17], [11]
pinene 5 – – 5 PE [17], [10]
reentry 3 – 1 1 OCP [36, 26, 37]
robotarm 6 – 3 1 OCP [17], [33]
semibatch 5 1 4 – OCP [25, 32]
tocar1 2 – 1 1 OCP [13, 29]

Table 1 List of AMPL optimal control problems modeled using the proposed AMPL extensions and
contributed to the mixed-integer optimal control problem library at http://mintoc.de.
(1) OCP: optimal control, BVP: boundary value, PE: parameter estimation, MIOCP: mixed-integer OCP.
(2) batchdist is a 1-dimensional PDE and nx can be increased by choosing a finer spatial discretization.

4 The TACO Toolkit for AMPL Control Optimization

This section describes the design and usage of the TACO toolkit for AMPL control
optimization. Its purpose is to infer the role AMPL variables, objectives, and con-
straints play in problems of the class (1), to verify that the AMPL model conforms
to this problem class, and finally to build a database of its findings for later use by
optimal control problem solvers.
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Fig. 8 Data flow between AMPL, the proposed TACO toolkit, and an optimal control problem solver.

Details about data structures and function calls found in the C implementation
of TACO that may be of interest to developers of optimal control codes, wishing to
interface their code with AMPL, can be found in the appendix to this paper.

4.1 Implementations of the Proposed User Functions

For the three proposed user functions diff, eval, and integral, two sets of imple-
mentations need to be provided. The first set is used during parsing of AMPL model
files and writing the stub.nl file. It serves to indicate the names of the user functions
and the number and type of their respective arguments. AMPL expects these imple-
mentations to be provided in a shared object (.so) or dynamic link library (.dll) named
amplfunc.dll on all systems. Hence, these implementations are readily provided
along with the optimal control frontend.

The second set of implementations is used during evaluation of AMPL objectives
and constraints by the optimal control problem solver. Here, diff shall return the
value zero as ODE constraints are explicit. eval shall access the solver’s current it-
erate to return the expression’s current value at the specified point in time. integral
shall return the integrand’s value in the same way. Consequentially, the second set
of user function implementations is solver dependent and must be carried out sepa-
rately for each solver to be interfaced with the optimal control frontend. We provide
implementations for MUSCOD-II and MS-MINTOC.

4.2 Consistency Checks

In this section we address automated checks for consistency and smoothness of an
AMPL optimal control problem formulation, performed by the TACO toolkit before
passing the model on to a solver.

Checks for Sufficient Smoothness Most numerical algorithms applied in optimal con-
trol as well as in mixed-integer nonlinear programming assume all functions to be suf-
ficiently smooth. In particular, this means that the objective terms L, E, ri, 1≤ i≤ nlsq,
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and the constraints c, rc, rs, re have to be twice continuously differentiable with re-
spect to the continuous variables t, x(t), z(t), u(t), and p. This guarantees a continuous
Hessian of the Lagrangian of the discretized optimization problems, see e.g. [34]. De-
pending on the numerical methods applied to solve the DAE system, a higher order
of continuous differentiability may be required for the ODE dynamics f (1b), though
this is not enforced. The algebraic constraint function g (1c) may need to be invertible
w.r.t. z(t) in the neighborhood of trajectories (t,x(t),z(t)), t ∈ [0,T ], a property that
can be checked by a DAE solver only during the runtime.

Consistency Checks for AMPL Extensions For each objective and constraint the op-
timal control frontend accesses the directed acyclic graph (DAG) representing the
AMPL expression of the objective or constraint’s body. This allows to detect which
variables are part of the expression, to learn about calls to one of the three proposed
user functions, and to check for sufficient smoothness of the expression. The follow-
ing structural properties of the optimal control problem are currently verified auto-
matically by the optimal control frontend during examination of the DAGs:

Dynamic constraints
– There is exactly one call to diff present per differential state variable.
– All ODE constraints are explicit, i.e. diff appears isolated on either the left-

hand or right-hand side.
– The time variable in calls to diff is the same for all such calls.
– The state variables in calls to diff have not already been declared to be con-

trol or algebraic variables by means of the suffix type.
– All ODE and DAE constraints are equality constraints.
– The number of DAE constraints matches the number of algebraic variables.
– Calls to eval do not appear in ODE or DAE constraints.

Objective functions
– Calls to diff do not appear in objectives.
– All objective functions conform to one of the four types Lagrange, Mayer,

integral- or point-least-squares.
– Expressions evaluated in calls to integral are time-dependent and not con-

stants.
– The end-time in calls to integral agrees with the end-time variable or value

T .
– The Mayer-type objective must not depend on control variables.

Path- and point constraints
– Calls to integral do not appear in constraints.
– Expressions evaluated in calls to eval are time-dependent and not constants.
– Evaluation time points in calls to eval are on [0,T ] if T is fixed, and on [0,1]

if T is free.
Miscellaneous

– Absence of logical, relational, or other non-smooth operators in the bodies of
functions that are assumed to be twice continuously differentiable.

– The integer and binary attributes are applied to control and parameter vari-
ables only.
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– Calls to diff, eval, or integral are not nested into one another.

Violations are detected before the optimal control problem solver itself is invoked.
They terminate the solution process and are reported back to the user in a human-
readable way, quoting the name of the offending variable, objective, or constraint.

4.3 User Diagnosis of the Detected Optimal Control Problem Structure

In addition to automated consistency checks, TACO provides the AMPL solver option
verbose that may be invoked (e.g. option muscod_solver "verbose=1";) to
obtain diagnostic output of the types, names, and further properties of all variables,
constraints, and objectives that are part of the optimal control problem, see Fig. 9.
This has proven helpful for narrowing down the source of modeling errors.

# name svar lbnd init ubnd scale
t t 2 - - - -
tf tf 6 12 12 12 1
Differential States
# name svar lbnd init ubnd scale fix
0 xd0 3 0 0.5 20 1 IVC_0 4
1 xd1 4 0 0.7 20 1 IVC_1 5
2 dev 1 0 0 25 1 IVC_2 6
Controls
# name svar lbnd init ubnd scale discr int
0 u 5 0 1 1 1 u0 yes
ODE Constraints
# name scon factor scale
0 ODE_0 1 1 1
1 ODE_1 2 1 1
2 ODE_2 3 1 1
Objectives
# name sobj type dpnd scale parts
0 - 1 Mayer .x... 1 -

Fig. 9 Exemplary diagnostic output for the predator-prey example of §3.2 invoked by the solver option
verbose. The output allows to learn about the automatically detected associations of the different types of
optimal control problem variables, constraints and objectives in problem (1) with their AMPL counterparts.

4.4 Output of Time–Dependent Solution Variables

Following the solution of an optimal control problem using our extensions to AMPL,
we must also provide a way to return this solution to the user. Currently, every AMPL
variable can assume a single scalar value only, possibly augmented by scalar valued
suffixes. Hence, communication of the values of discretized trajectories is not pos-
sible in a straightforward way. For the AMPL optimal control frontend, we opted in
favor of writing a separate plain-text solution file holding newline-separated values
with the following layout:
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– Optimal objective function value
– Remaining infeasibility (exact meaning depends on solver)
– Optimal final time T
– Number N of trajectory output points
– Output grid times (N values)
– Optimal values of free model parameters p (np values)
– Optimal differential state trajectories (nx×N values, row-wise)
– Optimal algebraic state trajectories (nz×N values, row-wise)
– Optimal control trajectories (nu×N values, row-wise)

Future solvers may expand this file format. This data format is designed to be read
back into the AMPL environment easily using existing AMPL language elements
such as data and read. Example AMPL code that accomplishes this is given in
Fig. 10. This functionality is of vital importance as it allows to solve multiple related
optimal control problems in a loop, each one based on the solution of the previous
ones.

model;
param obj;
param infeas;
param tf;
param ndis integer;
var t_sol{1..ndis}
var p_sol{1..np};
var x_sol{1..nx, 1..ndis};
var z_sol{1..nz, 1..ndis};
var u_sol{1..nu, 1..ndis};

data;
read obj < filename.sol;
read inf < filename.sol;
read tf < filename.sol;
read ndis < filename.sol;
read{j in 1..ndis} (t_sol[j]) < filename.sol;
read{j in 1..np} (p_sol[j]) < filename.sol;
read{i in 1..nx, j in 1..ndis} (x_sol[i,j]) < filename.sol;
read{i in 1..nz, j in 1..ndis} (z_sol[i,j]) < filename.sol;
read{i in 1..nu, j in 1..ndis} (u_sol[i,j]) < filename.sol;

Fig. 10 A universal AMPL script for reading a discretized optimal control problem’s solution from a file
filename.sol back to AMPL. Variables nx, nz, nu, and np denote dimensions of the differential and
algebraic state vectors and the control vector, and are assumed to be known.

5 Using TACO to Interface the Software Packages MUSCOD-II and
MS-MINTOC

Here we describe the use of TACO to interface the multiple shooting code for opti-
mal control MUSCOD-II [27, 28] with AMPL. MUSCOD-II is based on a multiple
shooting discretization in time [8], and implements a direct and all–at–once approach
to solving DAE-constrained optimal control problems. Moreover, MUSCOD-II has
been extended by the MS-MINTOC algorithm for DAE–constrained mixed–integer
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optimal control, see [40, 42]. For more details on these solvers, we refer to the User’s
Manual [15].

5.1 The Direct Multiple Shooting Method for Optimal Control

This section briefly sketches the direct multiple shooting method, first described by
[8] and extended in a series of subsequent works (see e.g. [28, 40]). With the opti-
mal control software package MUSCOD-II [15], an efficient implementation of this
method is available.

The purpose of this method is to transform the infinite-dimensional problem (1)
into a finite-dimensional (mixed-integer) nonlinear program by discretization of the
control functions on a time grid t0 < t1 < .. . < tNshoot = T . For this, let bi j : [0,T ]→
Rnu , 1≤ j≤ nqi be a set of sufficiently often continuously differentiable base function
of the control discretization for the shooting interval [ti, ti+1] ⊂ [0,T ]. Further, let
qi ∈ Rnqi be the corresponding set of control parameters, and define

ûi(t,qu
i ) :=

nqu
i

∑
j=1

qu
i j bi j(t) t ∈ [ti, ti+1], 0≤ i < Nshoot. (4)

The control space is hence reduced to functions that can be written as in (4), depend-
ing on finitely many parameters qi. For integer controls w(·) we usually choose a
piecewise constant discretization, i.e. we have nqw

i
= 1 and bi1(t) = qw

i1, leading to
ŵi(t,qw

i ) = qw
i1. For continuous controls u(·), more elaborate discretizations based on

e.g. linear or cubic base functions bi j(·) are easily found.
The right-hand side functions f , g, and the constraint functions c, req

c , rin
c , req

i ,
and rin

i are assumed to be adapted accordingly. Multiple shooting variables si are
introduced on the time grid to parameterize the differential states. The node values
serve as initial values for an ODE or DAE solver computing the state trajectories
independently on the shooting intervals.

ẋi(t) = f (t,xi(t), ûi(t,qi), ŵi(t,qi), p,ρ), t ∈ [ti, ti+1], 0≤ i < Nshoot, (5a)
0 = g(t,xi(t),zi(t), ûi(t,qi), ŵi(t,qi), p,ρ), (5b)

xi(ti) = si, 0≤ i≤ Nshoot. (5c)

One advantage of the multiple shooting approach is the ability to use state-of-the-
art adaptive integrator methods. In MUSCOD-II, the solution of the arising ODE and
DAE initial-value problems is carried out using the code DAESOL [6]. Obviously, we
obtain from the above IVPs Nshoot trajectories, which in general will not combine to
a single continuous trajectory, see Fig. 11. Thus, continuity across shooting intervals
needs to be ensured by additional matching conditions entering the NLP as equality
constraints,

si+1 = xi(ti+1; ti,si,zi,qu
i ,q

w
i , p,ρ) 0≤ i < Nshoot. (6)

Here we denote by xi(ti+1; ti,si,zi,qu
i ,q

w
i , p,ρ) the solution of the IVP on shooting

interval i, evaluated in ti+1, and depending on the initial values si, zi, control param-
eters qu

i , qw
i , and model parameters p, ρ . Finally, path constraints c(·) are discretized
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on an appropriately chosen grid. To ease the notation, we assume in the following
that all constraint grids match the shooting grid.

Fig. 11 A multiple shooting discretization in time. A constant initialization of state nodes si, 0≤ i≤ N is
shown on the left, and a continuous solution after convergence on the right. Continuity is required in the
optimal solution only, ensured by matching conditions.

Structured Nonlinear Programming From this discretization and parameterization
results a highly structured (MI)NLP of the form

min
ξC,ξI

Nshoot

∑
i=0

Φi
(
si,zi, ûi(ti,qu

i ), ŵi(ti,qw
i ), p,ρ

)
(7a)

s.t. 0 = xi(ti+1;si,zi,qu
i ,q

w
i , p,ρ)− si+1, 0≤ i < Nshoot, (7b)

0 = g
(
ti,si,zi, ûi(ti,qu

i ), ŵi(ti,qw
i ), p,ρ

)
, 0≤ i≤ Nshoot, (7c)

0≤ c
(
ti,si,zi, ûi(ti,qu

i ), ŵi(ti,qw
i ), p,ρ

)
, 0≤ i≤ Nshoot, (7d)

0 = req
c
(
s0,sNshoot , p,ρ

)
, (7e)

0≤ rin
c
(
s0,sNshoot , p,ρ

)
,

0 = req
i

(
si,zi, ûi(ti,qu

i ), ŵi(ti,qw
i ), p,ρ

)
, 0≤ i≤ Nshoot, (7f)

0≤ rin
i
(
si,zi, ûi(ti,qu

i ), ŵi(ti,qw
i ), p,ρ

)
, 0≤ i≤ Nshoot,

qw
i ∈Ωw, ρ ∈Ωρ , (7g)

where the vectors ξC, ξI shall contain all unknowns of the problem

ξC =
(
s0, . . . ,sNshoot ,q

u
0, . . . ,q

u
Nshoot−1, p

)
, ξI =

(
qw

0 , . . . ,q
w
Nshoot−1,ρ

)
. (8)

For the ease of notation in (7d, 7f) we write

ûNshoot(tNshoot ,qNshoot) := ûNshoot−1(tNshoot ,qNshoot−1).

and analogously for ŵ. We may then continue to solve this large-scale structured
(MI)NLP using one of the solvers mentioned in the introduction. To be efficient,
this usually requires extensive exploitation of the arising NLP structures. Possible
approaches include e.g. SQP methods with block-wise high-rank updates of Hessian
approximations, partial reduction using the algebraic constraints to eliminate the zi
from the problem, and condensing algorithms for a reduction of the size of the arising
quadratic subproblems. For details, we refer to e.g. [8, 27, 28].
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5.2 Sensitivity Computation and Automatic Derivatives

From the structured NLP (7) is becomes clear that AMPL objectives and most AMPL
constraints can be evaluated as usual, and this also holds true for gradients or Jaco-
bians. The exception to this are ODE and DAE constraint functions as they do not
directly enter (7). Evaluation of these functions occurs during solution and sensitiv-
ity computation for the multiple shooting IVPs, carried out by an ODE/DAE solver
called to evaluate the residual or a derivative of the matching constraint (7b).

We exemplarily consider the ODE case and look in more detail at the computa-
tion of a directional derivative X ·d of differential state trajectory with respect to the
problem’s unknowns,

X =
dx(ti+1; ti,si,zi,qi, p,ρ)

d(si,qi, p)
∈ Rnx×(nx+nq+np) (9)

being the Jacobian of the solution of the IVP on [ti, ti+1] with respect to the unknowns
(si,qi, pi) of the problem in the shooting node at ti. For a direction d = (ds,dq,p) ∈
Rnx+nq+np this may e.g. be done by solving the system (10) of so-called variational
differential equations,

ẋd(t) = fx(t) · xd(t)+ fq,p(t) ·dq,p, t ∈ [ti, ti+1], (10a)
xd(ti) = ds, (10b)

simultaneously and using the same scheme (e.g. choice of method, step sizes, orders,
etc.) with the IVP itself. Basic calculus then shows xd(ti+1) = X · d. In (10), time-
dependent Jacobians of the ODE constraint are denoted by

fx(t) =
∂ f
∂x

(t,x(t), û(t),w(t), p,ρ), fq,p(t) =
∂ f

∂ (q, p)
(t,x(t), û(t),w(t), p,ρ)

Much in the same spirit, directional derivatives of z(t) and derivatives into direc-
tions containing the shooting node algebraic unknowns zi can be computed for partial
reduction of DAE systems, see [27].

For direct multiple shooting NLPs, typically a significant amount of total the
runtime, easily in excess of 80%, is spent on computing sensitivities of IVP solutions.
Hence, it is vitally important to exploit the availability of automatic sparse derivatives
of the ODE and DAE constraints in AMPL when computing fx and fq,p. Here, our
approach of modeling dynamic constraints in AMPL has the additional advantage of
not requiring a separate automatic differentiation tool, while at the same time being
faster and more precise than finite difference approximations. In the MUSCOD-II
interface to AMPL, we provide both dense and sparse Jacobians as well as directional
derivatives formed from sparse matrix-vector products to the DAE solver DAESOL.

5.3 MUSCOD-II Specific Solver Options and AMPL Suffixes

This section addresses the specification of shooting discretizations, of interpolated
initial guesses, of scaling factors, and of slope constraints in AMPL models to be
solved by MUSCOD-II.
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Specifying a Discretization MUSCOD-II applies a multiple shooting discretization
in time to control trajectories, differential- and algebraic state trajectories, path con-
straints, and Lagrange- and integral least-squares-type objectives, cf. [27]. The num-
ber of multiple shooting intervals can be chosen using the solver option nshoot. For
point least-squares objectives as well as for point constraints, the MUSCOD-II back-
end ensures the introduction of shooting nodes in the respective time points. Hence,
the solver option nshoot specifies a minimum number of shooting intervals only.
Moreover, adaptive refinement of the shooting discretization may be triggered by
several mixed–integer strategies of the MS-MINTOC algorithms, cf. [40]. The final
number of shooting intervals used for computation of the optimal solution is available
from the solution file written by the frontend, see §4.4.

Initial Guesses, Scaling, and Slope Constraints For MUSCOD-II we provide several
additional suffixes that allow to model more elaborate initializations, to apply scale
factors to variables, objective, and constraints, and to impose constraints on the slope
of linear or cubic spline controls.

interp_to Specifies a second initializer for a differential state at the end of the time
horizon. Let α be the initial guess and β be the value of suffix interp_to. The
initialization of the state trajectory shall be a linear interpolation between the first
and the second initializer,

x(t) =
T − t

T
α +

t
T

β , t ∈ [0,T ]. (11)

Since AMPL does not provide a means of telling whether a suffix is uninitialized,
and since interpreting β = 0 as uninitialized is not a viable option, the dedicated
solver option s_spec has to be set in order to enable the interp_to. In this case,
suffix interp_to has to be set for all differential state variables.

scale Specifies scale factors for variables, constraint, and objectives. The default
value 0 means to infer the scale factor from the initial guess. If none is provided,
a default scale factor of 1 is assumed.

slope_max and slope_min Specify upper and lower bounds on the slopes of piece-
wise linear or cubic controls. Since AMPL does not allow for non-zero default
values of suffices, this suffix must be set for all controls that are not of piecewise
constant type.

Solver Options Solver options recognized by the MUSCOD-II backend comprise the
following keywords:

nshoot The minimum number of multiple shooting intervals to use. As already de-
scribed above, constraint grids, point least-squares objective grids, and also MS-
MINTOC strategies may increase this.

itmax The maximum number of SQP iterations allowed.
atol The acceptable KKT tolerance for termination of the SQP solver.
levmar Levenberg-Marquardt regularization for the Hessian of the Lagrangian.
bflag The MS-MINTOC strategy code, see [40].
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stiff Set to use the BDF-type solver DAESOL [6] which can cope with stiff DAE
systems. Unset to use a faster Runge-Kutta-Fehlberg–type method for non-stiff
ODEs.

deriv Set to sparse to use sparse Jacobians of the ODE/DAE provided by AMPL.
Set to dense to use dense Jacobians of the ODE/DAE provided by AMPL. Set
to finitediff to approximate derivatives by finite differences, ignoring AMPL
derivatives.

solve Selects the globalization method for the SQP solver. Available methods in-
clude solve_fullstep (no globalization), solve_slse (a line search method),
and solve_tbox (a box-shaped trust region method).

hess Selects the Hessian approximation method to use. Available options include
hess_const (constant Hessian), hess_update (a BFGS Hessian approxima-
tion), hess_limitedmemoryupdate (a limited memory BFGS Hessian approx-
imation), hess_gaussnewton (Gauß–Newton approximation of the Hessian),
and hess_finitediff (finite difference exact Hessian).

Usage in AMPL Fig. 12 shows two lines of exemplary AMPL code that demonstrate
how to load the MUSCOD-II solver and pass algorithmic options from an AMPL
model file.

option solver muscod;
option muscod_options "nshoot=20 atol=1e-8 itmax=200 hess=hess_gaussnewton";
option muscod_auxfiles "rc";

Fig. 12 Exemplary AMPL code to load the MUSCOD-II solver and pass solver options and row and
column names.

6 Limitations and Possible Further Extensions

The extensions to the AMPL modeling language presented so far suffice to treat the
class (1) of mixed-integer DAE-constrained optimal control problems. However, a
number of possible extensions of this problem class are discussed next: Modeling of
fully implicit ODE and DAE systems of the form

0 = f (t,x(t), ẋ(t),z(t),u(t),w(t), p,ρ) t ∈ [0,T ],
0 = g(t,x(t),z(t),u(t),w(t), p,ρ),

or alternatively of a semi-implicit form which is preferred by many DAE solver im-
plementations,

A(t,x(t),z(t),u(t),w(t), p,ρ)ẋ(t) = f (t,x(t),z(t),u(t),w(t), p,ρ) t ∈ [0,T ],
0 = g(t,x(t),z(t),u(t),w(t), p,ρ),

might be realized using a more sophisticated diff user function. As the current im-
plementation of the AMPL solver library does not provide sufficient information to
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associate ẋ(t) arguments with x(t) arguments, this would require manipulation of
AMPL expression DAGs for all ODE constraints.

For convenience, the functionality of diff() could also be extended to allow
higher-order ODEs to be formulated by passing the differential’s order as a third
argument, e.g. write diff(x,t,2) for ẍ(t). This would further reduce the number of
lines required for the presented COPS fluid flow problem of §3.1.

For some DAE problems, in order to promote sparsity, automatic introduction of
defined variables as additional algebraic states might be preferred over the in-place
evaluation of defined variables that is currently carried out.

The use of non-smooth operators such as max, min, | · |, or conditional statements
could be allowed inside ODE constraints. This would open the possibility for mod-
eling hybrid and implicitly switched systems in a quick and convenient way, given
an ODE and DAE capable of computing derivatives of switching ODEs’ solutions.
The use of certain logical and non-smooth operators could also be allowed in path
and point constraints, leading e.g. to optimal control problems with complementarity
constraints [] or vanishing constraints [2]. citations

Certain optimal control problems of practical relevance require a multi–stage
setup. Here, the number of differential and/or algebraic states and the number of con-
trols may change at a certain, possibly implicitly determined point in time. Modeling
multi–stage optimal control problems currently appears difficult using the extensions
described in this report. Here AMPL’s syntax provides insufficient contextual infor-
mation about the stage a certain variable or constraint should be assigned to.

7 Summary and Outlook

We described an extension to the AMPL modeling language that extends the applica-
bility of the AMPL modeling language beyond the domain of MINLPs by allowing
to conveniently model mixed-integer DAE-constrained optimal control problems in
AMPL. Contrary to prior approaches at modeling such problems in AMPL by ex-
plicitly encoding a discretization scheme for the dynamic parts of the model, our
approach separates model equations and discretization scheme.

We showed that the proposed extensions do not require intrusive changes to the
AMPL language standard or implementation itself, as they consist of a set of three
AMPL user functions and an AMPL suffix. The TACO toolkit for AMPL control
optimization was presented and serves as an interface between AMPL stub.nl files
and an optimal control code. TACO is open–source and designed to facilitate the
coupling of existing optimal control software packages to AMPL.

To demonstrate the applicability of TACO, we used this new toolkit to implement
an AMPL interface for the optimal control software packages MUSCOD-II and its
mixed–integer optimal control extension MS-MINTOC.

The modeling and solution of two exemplary control problems in AMPL using the
proposed extensions showed the benefits of the proposed approach, namely shorter
model code, improved readability, flexibility in the choice of a discretization scheme,
and the possibility to adaptively modify and refine such a scheme.
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In the future, it would be desirable to have implementations of a number of al-
ternative schemes for evaluation of ODE and DAE constraints available, e.g. vari-
ous collocation schemes. This would enable the immediate use of NLP and MINLP
solvers.
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Appendix

The following appendix sections contain supplementary material intended to guide
software developers interested in using the presented TACO toolkit to interface their
optimal control codes with AMPL. Section A explains the most important data struc-
tures that hold information about the mapping from the optimal control point of view
to the AMPL one. Section B lists functions available to optimal control codes for
evaluating AMPL functions. Section C explains error codes emitted by the TACO
toolkit, and mentions possible remedies.

A TACO Data Structures Exposed to Optimal Control Problem Solvers

This sections lists TACO data structures exposed to developers of codes for solv-
ing optimal control problems. We discuss several snippets taken from the header file
ocp_frontend.h, which should be consulted for additional details.

A.1 Data Structures Mapping from AMPL to Optimal Control

The optimal control frontend provides a collection of fields that hold the optimal
control problem interpretation of every AMPL variable passed to the solver. They are
laid out as follows:

enum vartype_t {
vartype_AMPL_defined = -2, // AMPL "defined" variable
vartype_unknown = -1, // type not yet known
vartype_t = 0, // independent variable ("time")
vartype_x = 1, // differential state of an ODE/DAE
vartype_z = 2, // algebraic state of a DAE
vartype_u = 3, // control function to be discretized
vartype_p = 4, // global model parameter
vartype_tend = 5 // end time variable

};

enum vartype_t *vartypes; // OCP types assigned to AMPL variables
int *varindex; // OCP vector indices assigned to AMPL variables

The field vartypes gives the OCP variable type of an AMPL variable, i.e.,
whether the variable is t, T , a component of vector p, or a component of one of
the vector trajectories x, z, or u and w. For the case of it being a vector component,
the field varindex holds the index into the OCP variable or trajectory vector. For
AMPL constraints and objectives, no mapping information from AMPL to the OCP
perspective is provided.

A.2 Data Structures Mapping from Optimal Control to AMPL

The AMPL optimal control frontend provides a collection of structures holding the
AMPL perspective for every component of an optimal control problem according to
problem class (1). Starting with information about problem dimensions, the following
variables are provided and should be self-explanatory.
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int nx; // number of differential states
int nz; // number of algebraic states
int nu; // number of control functions
int np; // number of model parameters
int npc; // number of inequality path constraints
int ncc_eq; // number of coupled equality constraints
int ncc_in; // number of coupled inequality constraints

Information about both the independent time variable and the end-time variable
is held in a structured variable named endtime of the following layout.

struct ocp_time_t {
int index; // AMPL index of the final time variable, or -1
const char *name; // AMPL name of the final time variable
int fixed; // flag indicating whether tf is fixed, index may be -1 then
real init; // initial or fixed end time, even if idx_tf=-1
real scale; // scale factor for tf
real lbnd; // lower bound for tf
real ubnd; // upper bound for tf

int idx_t; // AMPL index of the free time variable t
const char *name_t; // AMPL name of the free time variable

};

struct ocp_time_t endtime; // time horizon information

For a fixed-endtime scenario, endtime.index is −1, the field endtime.init
holds the fixed end time. For a variable end-time scenario, endtime.index is non-
negative and the field endtime.init holds the initial guess for the free end time if
available, and is set to 1.0 otherwise.

The following structured variable xstates holds information about differential
state trajectory variables, and associated right hand side functions.

struct ocp_xstate_t {
int index; // AMPL index of differential state trajectory variable
const char *name; // AMPL name of the differential state trajectory variable
int fixed; // AMPL index of initial value constraint, -1 if none
real init[2]; // initializers at t=0 and t=tf
real scale; // scale factor
real lbnd; // lower bound
real ubnd; // upper bound

int ffcn_index; // AMPL index of ODE constraint
const char *ffcn_name; // AMPL name of ODE constraint
real ffcn_scale; // scale factor
real rhs_factor; // constant factor in front of diff()

};

struct ocp_xstate_t *xstates; // differential state trajectories information

Here, the field fixed holds the AMPL index of the initial value constraint for
this ODE state. It is −1 if the ODE state’s initial value is free. The initializer init
provides two values for linear interpolation (see suffix .interp_to).

The field ffcn_index holds the AMPL constraint index of the right hand side
function associated with a differential state. Even though we currently support ex-
plicit ODEs only, AMPL-internal rearrangement of constraint expressions may cause
a negative sign on the diff() call. Hence the field rhs_factor is introduced to
compensate for AMPL-internal representations of the form −ẋ(t) = f (t,x(t), . . .).

Similar to differential states, the structured variable zstates holds information
about algebraic state trajectories.
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struct ocp_zstate_t {
int index; // AMPL index of algebraic state trajectory variable
const char *name; // AMPL name of algebraic state trajectory variable
real init; // constant initial guess for algebraic state trajectory
real scale; // scale factor
real lbnd; // lower bound
real ubnd; // upper bound

// we keep gfcn() information here as well, but keep in mind that the relation-
// ship between z[] and gfcn() is fully implicit, i.e. no 1-1 correspondence!

int gfcn_index; // AMPL index of DAE constraint
const char *gfcn_name; // AMPL name of DAE constraint
real gfcn_scale; // scale factor for DAE constraint

};

struct ocp_zstate_t *zstates; // algebraic state trajectories information

It is important to keep in mind that DAE constraints are not associated with al-
gebraic state trajectory variables by a one–one mapping. We merely keep both in the
same array for simplicity, as their numbers must match.

Information about integer and continuous control trajectories is kept in a struc-
tured variable named controls with the following layout.

struct ocp_control_t {
int index; // AMPL indices of control trajectory variable
const char *name; // AMPL name of control trajectory variable
int type; // control discretization type
int integer; // flag indicating integer controls
real init; // initial guess for all control parameters on the horizon
real scale; // scale factor for control
real lbnd; // lower bound for control
real ubnd; // upper bound for control

// slope information for linear or cubic elements
real slope_init; // initial guess for control slope
real slope_scale; // scale factor for control slope
real slope_lbnd; // lower bound for control slope
real slope_ubnd; // upper bound for control slope

};

struct ocp_control_t *controls; // control trajectories information

Herein, the field type denotes the (solver-dependent) discretization type to be
applied to this control trajectory The field integer is set to 1 if the control is a
binary or integer control, and to 0 if it is a continuous control. For piecewise linear
and piecewise cubic discretization types, additional information about slope limits
and initial guesses is provided.

Finally, model parameters information is provided in a structured variable named
params, with layout as follows. This concludes AMPL variables information.

struct ocp_param_t {
int index; // AMPL indices of free model parameters
const char *name; // AMPL name of free model parameters
real init; // initial value for free parameter
real scale; // scale factors for free parameter
real lbnd; // lower bound for free parameter
real ubnd; // upper bound for free parameter
int integer; // 1 if integer, 0 if real

};

struct ocp_param_t *params; // free parameters information
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Information about Mayer-type, Lagrange-type, and integral least-squares-type
objective functions (1a) is found in structured variables named mayer, lagrange,
and clsq. Their layout is presented below.

struct ocp_objective_t {
int index; // AMPL index of objective function
const char *name; // AMPL name of objective function
int dpnd; // dependency flags from enum vartype_t
int maximize; // 1 for maximization, 0 for minimization
real scale; // scale factor

// additional information for least-squares type objectives
int nparts; // number of residuals
expr **parts; // residual AMPL expressions

};

struct ocp_objective_t mayer; // Mayer type objective function information
struct ocp_objective_t lagrange; // Lagrange type objective function information
struct ocp_objective_t clsq; // Integral least-squares type objective information

Herein, dpnd is a bit field with bit k (k ≥ 0) set if and only if the objective func-
tion’s AMPL expression depends on an AMPL variable with vartypes entry set to
value k (see enum vartype_t). This allows for quick dependency checks that may
save run time e.g. in derivative approximation. The field maximize is set to 1 if the
objective function is to be maximized, and to 0 if it is to be minimized. Note that
least-squares functions are recognized only if they are to be minimized. The fields
nparts and parts hold information about the AMPL expression DAGs associated
with the individual least-squares residual expressions of a least-squares objective.

Path constraints (1d) and coupled constraints (1e) information is held in structured
variables named pathcon, cpcon_eq, and cpcon_in with the following layout.

struct ocp_constraint_t {
int index; // AMPL index of constraint
const char *name; // AMPL name of constraint
int side; // side of inequality constraint (0=lower, 1=upper)
int dpnd; // dependency flags from enum vartype_t
real scale; // scale factor

};

struct ocp_constraint_t *pathcon; // inequality path constraints
struct ocp_constraint_t *cpcon_eq; // coupled equality constraints
struct ocp_constraint_t *cpcon_in; // coupled inequality constraints

Path constraints (1d) always are inequality constraints. For coupled constraints (1e),
equality and inequality constraints are stored in separate arrays. For two-sided in-
equality constraints l ≤ c(x)≤ u, the field side indicates which side of the constraint
should be evaluated.

Information about decoupled point constraints (1f) and point least-squares ob-
jectives (1a) is stored in a structured variable named grid. For each objective or
constraint evaluation time, a grid node is introduced and holds information about the
associated objective or constraint. Grid nodes are guaranteed to be unique, i.e. no
two nodes share the same time point, and are sorted in ascending order. The grid is
guaranteed to contain at least two nodes: The first grid node will always be at time 0,
and the last grid node will always be at time tf.

struct ocp_grid_node_t {
int n_eq; // number of equality point constraints
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struct ocp_constraint_t *con_eq; // equality point constraint information
int n_in; // number of inequality point constraints
struct ocp_constraint_t *con_in; // inequality point constraint information
int ncc_eq; // number of equality coupled constraints
int *ccidx_eq; // indices of equality coupled constraints
int ncc_in; // number of inequality coupled constraints
int *ccidx_in; // indices of inequality coupled constraints
struct ocp_objective_t lsq; // node least-squares objective information

};

struct ocp_grid_t {
int n_nodes; // number of grid nodes
real *times; // it’s more practical to have the times here
struct ocp_grid_node_t *nodes; // information about what is on a grid node

};

struct ocp_grid_t grid; // constraint and node-least-squares grid information

For equality and inequality point constraints (1f) on a grid node, the fields n_eq
and n_in hold the dimensions and the fields con_eq and con_in the constraint in-
formation, respectively. For coupled constraints (1e), we do not store pointers to con-
straint information structures, but rather indices into the global lists cpcon_eq and
cpcon_in. For solvers requiring linear separability of coupled constraints, this lay-
out eases the setup of the coupled constraints’ block structure. Finally, the field lsq
holds information about the point least-squares objective contribution in a node; again
index −1 indicates that no point least-squares objective is present.

B TACO Functions Exposed to Optimal Control Problem Solvers

This sections lists TACO functions exposed to developers of codes for solving opti-
mal control problems.

Reading of the AMPL Model For reading and verifying the AMPL mode as well as
creation of management of the database the optimal control frontend provides the
following functions:

allocate_mappings allocates memory for the database to be created, prior to read-
ing the stub.nl file provided by AMPL.

read_mappings calls the AMPL solver library to read the stub.nl file. Afterwards,
the DAGs of all AMPL objectives and constraints are examined for appearance
of variables, calls to user functions, and nonsmooth operators. The role of AMPL
variables, constraints, and objectives in (1) is determined, and the database is
filled with appropriate information.

free_mappings frees memory allocated for the database after the optimal control
problem has been solved.

A developer wishing to interface his optimal control problem solver with AMPL
is provided with a number of functions that infer the optimal control problem’s struc-
ture from a stub.nl file. The following listing shows a framework that could serve as
a starting point for development of a solver interface.

// allocate memory for the "fg" reader of AMPL stub files
ASL_alloc (ASL_read_fg);
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asl->i.want_xpi0_ = 1; // indicate that we want the initial guesses
asl->p.need_funcadd_ = 1; // indicate that we need to add user functions

// get AMPL stub file name and allocate memory for AMPL data structures
nl_name = getstub (&argv, &Oinfo);
nl = jac0dim (nl_name, (fint) strlen (nl_name));
if (nl == NULL)

error_out (error_readfile, nl_name);

// declare AMPL OCP frontend suffixes
declare_suffixes ();

// read AMPL stub file
if (fg_read(nl, ASL_return_read_err|ASL_findgroups) != 0)

error_out (error_readfile, nl_name);

Oinfo.option_echo &= ~ASL_OI_echo; // don’t echo options
Oinfo.option_echo |= ASL_OI_badvalue; // but report bad option values

// read solver options
if (getopts(&xargv[3], &Oinfo))

error_out (error_solverOptions);

allocate_mappings (); // allocate memory of AMPL OCP frontend data
read_mappings (); // infer OCP structure from AMPL stub file

// call optimal control problem solver here
// use frontend information to set up problem and evaluate problem functions

free_mappings (); // free memory of AMPL OCP frontend data

Evaluating Problem Functions Once the database has been successfully filled with
the optimal control problem representation of the AMPL model, an appropriate opti-
mal control problem solver can be called. This solver will have to evaluate problem
functions. For conveniently doing so, the optimal control frontend provides a set of
functions that wrap around the conival and objival functions provided by AMPL’s
solver library:

evaluate_ode_rhs(i,y) evaluates the ODE right hand side ẋi(t) = fi(·) for a dif-
ferential state xi(t), 0 ≤ i < nx. The vector y here is the plain vector of current
AMPL variable values.

evaluate_dae_rhs(i,y) evaluates the residual of DAE constraint gi(·), 0 ≤ i <
nz.

evaluate_scaled_mayer(y) evaluates and scales the value of the Mayer objective
term, if a Mayer term exists.

evaluate_scaled_lagrange(y) evaluates and scales the value of the Lagrange
objective term’s integrand, if a Lagrange objective exists.

evaluate_scaled_clsq(y,res) evaluates and scales the value of the Lagrange
objective term’s integrand, if the integrand has least-squares structure and if a
Lagrange objective exists. Upon return the vector res holds the least-squares
residuals, i.e. the individual values of each squared summand.

evaluate_scaled_node_lsq(n,y,res) evaluates one summand of a point least-
squares objective term, if one exists. The integer n specified the number 0 < n <
Nlsq of the measurement point to be evaluated.

evaluate_path_con(i,y) evaluates and scales the residual of an inequality path
constraint.



TACO — A Toolkit for AMPL Control Optimization 33

evaluate_coupled_eq_con(i,y) evaluates and scales the residual of a coupled
equality constraint.

evaluate_coupled_ineq_con(i,y) evaluates and scales the residual of a cou-
pled inequality constraint.

evaluate_point_eq_con(n,i,y) evaluates and scales the residual of an equality
point constraint.

evaluate_point_ineq_con(n,i,y) evaluates and scales the residual of an in-
equality point constraint.

Writing Solutions from a Solver For writing a solution file of the proposed format,
the optimal control frontend provides three function calls to be used by a backend
interfacing an optimal control problem solver with AMPL:

alloc_solution allocates a solution structure given a discretization grid length.
write_solution writes a solution file according to the proposed format and fills it

with the solution data found in the solution structure. The solver backend should
have queried the solver itself for this solution and copied it over to this solution
structure.

free_solution free a previously allocated solution structure after it has been writ-
ten to a solution file.

C TACO Toolkit Error Messages

This section lists all possible error messages emitted by the TACO toolkit during
analysis and verification of the optimal control problem structure. If option solver-
name_auxfiles is set to contain the characters “r” and “c”, error messages will
show the name of the offending variable, objective, or constraint.

1. to 5. are reserved for internal errors.
6. “AMPL error reading stub.nl file filename”. AMPL could not read the

stub.nl file.
7. “AMPL error getting solver options”. AMPL could not read the solver

options. Make sure your solver options string contains known keywords and valid
values only.

8. “I/O error writing solution file filename”. AMPL could not write the
solution file. Make sure that the current working directory is writeable and that
the volume is not full.

9. “AMPL network variables are not supported”. The AMPL model con-
tains network variables. Network modelling is currently not supported.

10. “AMPL piecewise linear terms are not supported”. The AMPL model
contains piecewise linear terms. Nonsmooth models are currently not supported.

11. “diff() must be called exactly once for each differential
state variable”.
You called diff() more than once for the same variable. Every differential state
variable is associated with exactly one right hand side function, tough. Most
likely, this is a typo in your model.



34 C. Kirches and S. Leyffer

12. “Logical operator operator not permitted”. The shown constraint or ob-
jective make use of a logical operator. Nonsmooth models are currently not sup-
ported.

13. “Relational operator operator not permitted”. The shown constraint or
objective make use of a relational operator. Nonsmooth models are currently not
supported.

14. “Nonsmooth operator operator not permitted”. The shown constraint or
objective make use of a nonsmooth operator. Nonsmooth models are currently
not supported.

15. “ODE constraints must be equality constraints”. You called diff()
in an inequality constraint. All ODE constraints must be equality constraints,
though.

16. “Cannot determine type of objective functions”. The shown object-
ive cannot be determined to be of Mayer, Lagrange, integral least-squares, or
point least-squares type. Please refer to Section 2.3 to learn about the structure of
supported objective functions.

17. “Mayer objective function must not depend on controls”. The indi-
cated objective is of Mayer type, and hence must not depend on control trajectory
variables.

18. “The number of DAE constraints does not match the apparent
number of algebraic variables”. The number of DAE constraints found in
your model does not match the number of algebraic variables you have declared
by letting suffix .type to value "dae". Make sure you’ve set the suffix of all
algebraic state variables, and make sure all your DAE constraints are equality
constraints.

19. “Invalid value for suffix .type”. A variable, constraint, or objective has
suffix .type set to an unrecognized value. This should not happen unless you’re
using an incompatible OptimalControl.mod file.

20. “Missing independent time variable or end time variable”. TACO
could not determine which AMPL variables represent independent time or end
time. Make sure that the independent time variable appears as second argument
to all diff() calls, and that the end-time variable appears as second argument to
integral() in Lagrange-type objectives, or to eval() in Mayer-type objectives
or end-point constraints. If your AMPL model uses a time horizon of fixed length,
make sure the end-time value shows up consistently in these places.

21. “Nesting a call to function name inside another is not
allowed”. You nested two calls to functions diff(), eval(), or integral().
This should never be necessary.

22. “As of now, diff() must be explicit. Try to write your ODE as
diff(var, t) = ...;”. The AMPL optimal control frontend currently sup-
ported explicit ODEs only, i.e. the permitted formulation is ẋ(t) = f (t,x(t), . . .)
instead of the more general 0 = f (t,x(t), ẋ(t), . . .). Try to rewrite your model to
use explicit ODEs only.

23. “First argument to eval() must not be a constant”. The shown con-
straint or objective calls eval() with two constant arguments. This is not sensi-
ble. Either remove the calls to eval(), or make sure the expression to be eval-
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uated references independent time or at least one state or control trajectory vari-
able.

24. “Second argument to eval() must be >= 0.0, or the final time
variable”. The shown constraint or objective calls eval() with a time point
that a) evaluates to a negative value, or b) is not a simple constant and not the
end-time variable.

25. “First argument to integral() must not be a constant”. An objec-
tive calls integral() with two constant arguments. This is not sensible. Either
remove the call to integral(), or make sure the expression to be integrated
references independent time or at least one state or control trajectory variable.

26. “Second argument to integral() must be the final time
variable”. The second argument of a call to integral() must be the final time
variable, or the final time itself.

27. “Second argument to diff() must be the independent time
variable”. The second argument of a call to diff() must be the independent
time variable.

28. “Function diff() expects differential state variable and
independent time variable as arguments”. The first argument to diff
must be a differential state trajectory variable, and the second argument of a call
to diff() must be the independent time variable.

29. “Calls to integral() not allowed in constraints”. The function in-
tegral() was called inside a constraint expression. Calls to integral() are
only allowed in a Lagrange-type or integral least-squares-type objective.

30. “Function call to name must enclose entire expression”. Calls to
eval() and integral() must enclose the entire expression to be evaluated or
integrated.

31. “Only controls or parameters can be binary/integer variables”.
AMPL’s binary or integer restriction may be applied to control trajectory vari-
ables and model parameter variables only. Time as well as differential and alge-
braic state trajectory variables must be continuous.

32. “Invalid grid node position, must be within [0,1] (tf free)
or [0,tf] (tf fixed)”. A call to eval() used an invalid evaluation time.
Allowed times are constants 0 to 1, being relative times on the time horizon [0, tf]
if tf is free, absolute times 0 to tf if tf is fixed, or the end-time variable tf itself.

33. “Duplicate objective of name-type”. At most one objective of Mayer-,
Lagrange-, and least-squares type is allowed per problem.

34. “Calls to eval() not allowed in ODE constraints”. The function
eval() was called inside an ODE constraint expression. This is not allowed.

35. “Calls to diff() not allowed in objective functions”. The
function diff() was called inside an objective function expression. This is not
allowed.
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