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Abstract 

Metagenomics applies a suite of genomic technologies and bioinformatics tools to 

directly access the genetic content of entire communities of organisms. The field of 

metagenomics has been responsible for substantial advances in microbial ecology, 

evolution and diversity over the last 5-10 years and many research laboratories are 

actively engaged in it now. With the growing numbers of activities comes also a 

plethora of methodological knowledge and expertise that should guide the future 

developments in the field. This review aims to summarize the current metagenomic 

opinion, provide practical guidance and advice on sample processing, sequencing 

technology, assembly, annotation, experimental design, statistical analysis, data 

storage and sharing. As more metagenome data sets are generated the availability of 

standardized procedures as well as shared data storage and analysis become 

increasingly important to ensure output of individual projects can be assessed and 

compared. 



Introduction 

Arguably, one of the most remarkable events in the field of microbial ecology in the 

last decade has been the advent and development of metagenomics. Metagenomics is 

defined as the direct genetic analysis of all genomes contained with an environmental 

sample. The field initially started with the cloning of environmental DNA followed by 

functional expression screening [1] and was then quickly complemented by direct 

random shotgun sequencing of environmental DNA [2, 3]. These initial projects did 

not only show proof-of-principle of the metagenomic approach, but also uncovered an 

enormous functional gene diversity in the microbial world around us [4]. 

 

Metagenomics provide access to the total functional gene composition of microbial 

communities and thus gives a much broader description than phylogenetic surveys 

that are often based only on the diversity of one gene, for instance, the 16S rRNA 

gene. On its own, metagenomics gives genetic information on potentially novel 

biocatalysts or enzymes, genomic linkages between function and phylogeny as well as 

evolutionary profiles of community function and structure. It can also be 

complemented with metatranscriptomic or metaproteomic approaches to describe 

expressed activities [5, 6]. Metagenomics is also a powerful tool for generating novel 

hypotheses of microbial function and the remarkable discoveries of proteorhodopsin-

based photosynthesis or ammonia-oxidizing Archaea speak to this fact [7, 8]. 

 

The rapid and substantial cost reduction in next-generation sequencing has 

dramatically accelerated the development of sequenced-based metagenomics and in 

fact, the number of metagenome shotgun sequence datasets has exploded in the last 

few years. Now and in the future metagenomics will used in the same manner as 16S 



rRNA gene fingerprinting methods were used to describe microbial community 

profiles. It will therefore become a “standard” tool for many laboratories and 

scientists working in the field of microbial ecology. 

 

This review aims to give an overview for the field of metagenomics, with particular 

emphasize in all steps involved of a “typical” sequence-based, metagenome project. 

We will describe and discuss sample processing, sequencing technology, assembly 

and annotation, experimental design and statistical analysis and finally data storage 

and sharing. Clearly, any kind of metagenomic dataset will benefit from the rich 

information available from other metagenome projects, and it is the hope that 

common, yet flexible, standards and vivid interactions between scientists in the field 

will facilitate this. This review article aims to summarize the current thinking in the 

field and will introduce scientists new to the field to current practices and key issues 

one needs to consider for a successful metagenome project. 

 

Sampling and processing 

Sample processing is the first and most crucial step in any metagenomics project. It 

needs to ensure that the DNA extracted is representative of all cells present in the 

sample and that sufficient amounts of high-quality nucleic acids for subsequent 

library production and sequencing are obtained. This will obviously require specific 

protocols for each sample types and variety of robust methods for DNA extraction are 

available (e.g.[3, 9, 10]). Initiatives are also underway to explore the microbial 

biodiversity from tens of thousands of ecosystems using a single DNA extraction 

technology to ensure comparability [11]. 



If the target community is associated with a host (e.g. an invertebrate or plant), then 

fractionation and/ or selective lysis might be suitable to ensure that minimal host 

DNA is obtained (e.g.[9, 12]). This is particularly important when the host genome is 

large and hence might “overwhelm” the sequences of the microbial community in the 

subsequent sequencing effort. Physical fractionation is also applicable, when only a 

certain part of the community is the target of analysis, for example, viruses, bacteria 

or picoeukaryotes in seawater samples. Here a range of selective filtration or 

centrifugation steps, or even flow cytometry, can be used to enrich the target fraction 

[3, 13, 14]. Importantly, fractionation steps should be checked, to ensure that 

sufficient enrichment of the target is achieved and minimal “contamination” of non-

target material occurs. 

Physical separation and isolation of cells from the samples might also be important to 

maximize DNA yield or avoid co-extraction of enzymatic inhibitors (like humic 

acids) that might interfere with subsequent processing. This situation is particular 

relevant for soil metagenome projects and substantial work has been done in this field 

to address the issue ([10] and reference therein). Direct lysis of cells in the soil matrix 

versus indirect lysis (i.e. after separation of cells from the soil) has a quantifiable bias 

in terms of microbial diversity, DNA yield and fragment length [10]. The extensive 

work on soil highlight the needs to ensure that extraction procedures are well 

benchmarked and multiple methods should be compared to ensure representative 

extraction of DNA. 

Certain type of samples (such as biopsies or ground-water) often only yield very small 

amounts of DNA [15]. Library production for most sequencing technologies require 

high nanograms or micrograms amounts of DNA (see below) and hence amplification 

of starting material might be required. Multiple displacement amplification (MDA) 



with the random hexamers and the phage phi29 polymerase is one option to increase 

DNA yields. This method can amplify femtograms of DNA to produce micrograms of 

product and thus has been widely used in single cell genomics and to a certain extent 

in metagenomics [16, 17]. As with any amplification method, there is sequence bias 

in the amplification and its impact will depend on the amount and type of starting 

material and the required number of amplification rounds to produce sufficient 

amounts of nucleic acids. This amplification bias can have significant impact on 

subsequent metagenomic community analysis [15] and this might make amplification 

permissible when the data from amplified and unamplified samples are compared.  

 

Sequencing technology 

Over the last 10 years metagenomic shotgun sequencing has gradually shifted from 

classical Sanger sequencing technology to next generation sequencing (NGS). Sanger 

sequencing, however, is still considered the gold standard for sequencing due to its 

low error rate, long read length (>700bp) and large insert sizes (e.g. >30Kb for 

fosmids or bacterial artificial chromosomes (BACs)). All these aspects will improve 

assembly outcomes for shotgun data and hence Sanger sequencing might still be 

applicable, if generating close-to-complete genomes in low diversity environment are 

the work’s objective [18]. A drawback of Sanger sequencing is the labor-intensive 

cloning process in its associated bias against genes toxic for the cloning host [19] and 

the overall cost per Gbp (appr. USD 400,000).  

 

Of the NGS technologies both the 454/ Roche and the Illumina/ Solexa systems have 

now been extensively applied to metagenomic samples. Excellent reviews of these 



technologies are available [20, 21], but a brief summary is given here with particular 

attention to metagenomic applications. 

 

The 454/ Roche system applies emulsion polymerase chain reaction (ePCR) to 

clonally amplify random DNA fragments, which are attached to microscopic beads. 

Beads are deposited into the wells of a picotitre plate and then individually and in 

parallel pyrosequenced. The pyrosequencing process involves the sequential addition 

of all four deoxynucleoside triphosphates, which, if complementary to the template 

strand, are incorporated by a DNA polymerase. This polymerization reaction releases 

pyrophosphate, which is converted via two enzymatic reactions to the production of 

light. Light production of ~ 1.2 million reactions is detected in parallel via a charge-

coupled device (CCD) camera and converted to the actual sequence of the template. 

Two aspects are important in this process with respect to metagenomic applications. 

Firstly, the ePCR has been shown to produce artificial replicate sequences, which will 

impact any estimates of gene abundance. Understanding the amount of replicate 

sequences is a crucial part of understanding the data quality of sequencing runs and 

those replicates can be identified and filter out with bioinformatics tools [22, 23]. 

Secondly, the intensity of light produced when the polymerase runs through a 

homopolymer is often difficult to correlate to the actual number of nucleotide 

positions. Typically, this results in insertion or deletion errors of homopolymer 

greater than 6 position and can hence can cause frame-shifts, if open reading frames 

(ORF) are called on a single read. This type of error is, however, somewhat 

predictable and can be incorporated into models of ORF prediction [24]. Despite these 

disadvantages, the much cheaper cost of ~ USD 20,000 per Gbp has made 454/ Roche 

pyrosequencing a popular choice for shotgun-sequencing metagenomics. In addition, 



the 454/ Roche technology produces average read length between 300-400 bp, which 

is long enough to cause only minor loss in the amount of reads that can be annotated 

[25]. Samples preparation has also been optimized so that tens of nanograms of DNA 

are sufficient for sequencing single-end libraries [26, 27], although pair-end 

sequencing might still require micrograms quantities. Finally, the 454/Roche 

sequencing platform offers multiplexing allowing for several samples to be analyzed 

in a single run of ~500 Mbp.  

 

The Illumina/ Solexa technology immobilizes random DNA fragments on a surface 

and then performs solid-surface PCR amplification resulting in cluster of identical 

DNA fragments. Those are then sequenced with reversible terminators in a 

sequencing-by-synthesis process [28]. The cluster density is enormous with hundreds 

of millions of reads per surface channel and 16 channels per run on the HiSeq2000 

instrument. Read length is now approaching 150 bp and clustered fragments can be 

sequenced from both ends. Using overlapping read pairs on a single template, merged 

reads can reach 200bps (from 100bp overlapping) or 300bp from (150bp overlapping). 

Yields of ~60 Gbp can therefore be typically expected in a single channel. Illumina/ 

Solexa has limited systematic errors, however, some data sets have shown high error 

rates at the tail ends of reads [29]. In general, clipping reads has proven a good 

strategy to eliminate the error in “bad” datasets, however data sets quality should also 

be used to detect “bad” sequences. The lower costs of this technology (~ USD 50 per 

Gbp) and recent success in its application to metagenomics, and even the generation 

of draft genome from complex dataset [30, 31], is currently making the Illumina 

technology an increasingly popular choice. As with 454/ Roche sequencing, starting 

material can be as low as a few nanograms, but larger amounts are required when 



jump-libraries for longer insert libraries are made. The limited read length of the 

Illumina/ Solexa technology means that a larger proportion of unassembled reads than 

with 454/ Roche technology might be too short for functional annotation [25]. While 

some researchers assume that assembly of data is therefore advisable, we very much 

suggest to not use assembly as this has the potential to introduces biases by e.g. 

suppressing low abundance species since they can not be assembled and the fact that 

current software (e.g. MG-RAST) is capable of analyzing unassembled Illumina reads 

of 100bp and longer. Multiplexing of samples is also available for individual 

sequencing channel, with more than 500 samples multiplexed per lane. Another 

important factor to consider is run time, with a 2x100bp paired-end sequencing 

analysis taking approx. 10 days instrument time, in contrast to one day for the 454/ 

Roche technology. However, faster runtime (albeit at higher cost per Gbp of approx. 

USD 1000) can be achieved with the new Illumina MiSeq instrument. This smaller 

version of Illumina/ Solexa technology can also be used to “test-run” sequencing 

libraries, before analysis on HiSeq instrument for deeper sequencing. 

 

There are a few additional sequencing technologies available that might prove 

themselves useful for metagenomic application, now or in the near future. Applied 

Biosystems SOLiD sequencer is one of them. The system has been extensively used, 

for example, in genome re-sequencing [32]. SOLiD arguably provides the lowest 

error rate of any current NGS sequencing technology, however does not achieve 

reliable read length much beyond 50 nucleotides. This will limit it applicability for 

direct gene annotation of unassembled reads or assembly to large contigs. However 

for the purpose of assembly or mapping of metagenomic data against a reference 

genome recent work showed encouraging outcome [33]. Roche is also marketing a 



smaller-scale sequencer based on pyrosequencing with about 100 Mbp output and low 

per-run costs. This system might be useful, as relatively low coverage of 

metagenomes can establish meaningful gene profile [34]. Ion Torrent is another 

emerging technology and is based on the principle that nucleotide incorporation can 

be detected by protons release during DNA polymerization. These system promises 

read length of >100 bp and throughput in the order of magnitude of the 454/ Roche 

sequencing systems. Pacific Biosciences (PacBio) has released a sequencing 

technology based on single-molecule, real time detection in zero-mode waveguide 

wells. Theoretically, this technology on its RS1 platform should provide much greater 

read length than the other technologies mentioned, which would facilitate annotation 

and assembly. In addition a process called “strobing” will mimic pair-end reads. 

However accuracy of single reads for PacBio is current only at 85% and random reads 

are “dropped” making the instrument unusable in its current form for metagenomic 

sequencing [35]. Complete Genomics is offering a technology based on sequencing 

DNA nanoballs with combinatorial probe-anchor ligation [36]. Its read length of 35 

nucleotides is rather limited and so might be its utility for de novo assemblies. While 

none of the emerging sequencing technologies have been thoroughly applied and 

tested to metagenomics samples, they offer however promising alternatives and even 

further reduction of costs.  

 

Assembly 

If the research aims at recovering the genome of uncultured organisms rather than a 

functional description of the community, then assembly of short read fragments will 

be performed to obtain longer genomic contigs. All current assembly programs we 



design to assemble clonal “genomes” and their utility for complex pan-genomic 

mixtures should be approached with caution and critical evaluation.  

Two strategies can be employed for metagenomics samples, reference-based 

assembly (co-assembly) and de novo assembly. Reference-based assembly can be 

done using the software packages like Newbler (Roche), AMOS 

(http://sourceforge.net/projects/amos/) or Mira [37]. These software package include 

algorithms that are fast and memory-efficient and hence can often been performed on 

laptop-sized machines in a couple of hours. Reference-based assembly works well if 

the metagenomic dataset contains sequences where closely related reference genomes 

are available. However slight difference in the true genome of the sample to the 

reference, such as large insertion, deletion or polymorphisms, can introduce 

substantial biases in the analysis.  

 

De novo assembly typical requires larger computational resources and thus a whole 

class of assembly tools based on the deBruijn graphs was specifically created to 

handle the very large amounts of data [38, 39]. Machine requirements for the deBruijn 

assembler Velvet [40]or SOAP [41] are still significantly higher than for co-assembly, 

often requiring hundreds of gigabytes of memory in a single machine and runtimes 

frequently being days.  

 

The fact most (if not all) microbial communities include significant variation on a 

strain and species level makes the use of any existing assembly algorithm risky. The 

“clonal” assumptions built into most assemblers might lead to suppression of contig 

formation for certain heterogeneous taxa at specific parameter settings. This problem 

can be however be identified during the analysis. For example, varying k-mer length 



in Velvet assembler might lead to completely different contigs being formed and this 

would warning sign that the assembly process impacts on the representation of 

diversity in the assembled contigs.  

 

There are several points that need be considered when exploring the reasons for 

assembling metagenomic data. However, these can be condensed down to the 

following. Firstly, what is the length of the sequencing reads used to generate your 

metagenomic dataset and are longer sequences required for annotation? Pipelines like 

MG-RAST [42] only require 75bp or longer for gene prediction or similarity analysis 

that provides taxonomic binning and functional classification. However, on the whole, 

the longer the sequence information, the better is the ability to obtain accurate 

information from it. One obvious impact is on annotation, i.e. the longer the sequence, 

the more information and hence the easier it compare it to known genetic data e.g. via 

homology searches [25]. Annotation issues will be discussed in the next section. 

Binning and classification of DNA fragments for phylogenetic or taxonomic 

assignment also benefit from long contiguous sequences and certain tools  (e.g. 

Phylopythia) work only reliably over specific cut-off (e.g. 1Kb)[43]. Secondly, is the 

dataset assembled to reduce data processing requirements? Here as an alternative to 

assembling reads into contigs, clustering near-identical reads with cd-hit [44] or 

uclust [45] will provide clear benefits in data reduction. The MG-RAST pipeline uses 

also clustering as a data reduction strategy. 

 

Fundamentally, assembly is also driven by the specific problem that single reads have 

generally lower quality and hence lower confidence in the accuracy than multiple 

reads which cover the same segment of genetic information. Therefore, merging reads 



increases the quality of information. Obviously in a complex community with low 

sequencing depth/coverage it is unlikely to actually get many reads which cover the 

same fragment of DNA. Hence assembly may be of limited value for metagenomics.  

 

Unfortunately without assembly, longer and more complex genetic elements (e.g. 

CRISPRS) cannot be analyzed. Hence there is a need for metagenomic assembly to 

obtain high-confidence contigs that enable the study of, for example, major repeat 

classes. However none of the current assembly tools is bias-free. Several strategies 

have been proposed to increase assembly accuracy [38], however strategies such as 

removal of rare k-mers are now no longer considered adequate, as rare k-mers do not 

represent sequence errors (as initially assumed), but reads from less abundant pan-

genomes in the metagenomic mix. 

 

Annotation 

There are two distinct paths that the annotation of metagenomics can follow. Firstly, 

reconstructed genomes are the objective of the study and assembly has been 

successful in obtaining large contigs. In this case, it is preferable to use existing 

pipelines for genome annotation, such as RAST [46] or IMG [47]. For this approach 

to be successful, minimal contigs length of 30,000bp or longer are required. Secondly, 

annotation can be performed on the entire community and relies on unassembled 

reads or short contigs. Here the tools for genome annotation are significantly less 

useful than those specifically developed for metagenomic analyses.  

 

Annotation is the single, biggest computational challenge for most metagenomic 

projects and therefore deserves much attention now and over the next years. Current 



estimates are that only between 20-50% of a metagenomic sequences can be 

annotated [48], leaving the immediate question of importance and function of the 

remaining genes. It should be noted that annotation is not done de novo, but via 

mapping to gene or protein libraries with existing knowledge (i.e. a non-redundant 

database). Any sequences that cannot be mapped to the known sequence space are 

referred to as orphans. These “orphan” are responsible for the seemingly never-ending, 

genetic novelty in microbial metagenomics (e.g.[49]). Two hypotheses exist for the 

roles of this unknown fraction. Firstly, the vast number of orphan genes encode for 

unknown biochemical functions. Secondly, orphan genes have no sequence homology 

with known genes, but potentially structural homology with known protein thus 

representing known protein families or folds. Future work will probably reveals that 

the truth lies somewhere between these two hypotheses [50]. Improving annotation of 

orphan genes we will rely on the challenging and labor-intensive task of protein 

structure analysis (e.g. via NMR and X-ray crystallography) and biochemical 

characterization.  

 

Currently, metagenomic annotation relies on classifying sequences to known 

functions or taxonomic units based on homology searches against available 

“annotated” data. The process of annotation is based on predicting features associated 

with genes, which either based on intrinsic (i.e. not similarity-based and based on 

algorithm described, for example, in [24, 51-53]) or extrinsic (i.e. based on similarity 

searches with, for example, BLAST[54]) characters. Conceptually, the annotation is 

relatively simple and for small datasets (<10 000 sequences) manual curation can be 

used increase the accuracy of any automated annotation. Metagenomic dataset are 

typically very large, so that the latter is not possible. Automated annotation therefore 



has to become more accurate and computationally inexpensive. Running a BLASTX 

similarity search is computationally expensive and thus require finances as much as 

ten time the cost of sequencing [55]. Computationally less demanding methods 

involving detecting feature composition in genes [43] have however limited success 

for short reads. With growing dataset sizes faster algorithms are urgently needed and 

several programs for similarity searches have been developed to resolve this issue [45, 

56-58].  

 

Several large-scale databases are available that process and deposit metagenomic 

dataset and IMG/M and MG-RAST are two prominent systems [42, 59]. MG-RAST 

alone contains more than 7000 users and >28,000 uploaded and analyzed 

metagenomes (of which 4300 are publicly accessible). This statistics demonstrate a 

move by the scientific community to centralize resources and standardize annotation. 

Both IMG/M and MG-RAST provide the ability to use stored computational results 

for comparison, enabling comparison of novel metagenomes to a rich body of other 

datasets without requiring the end-user to provide the computational means for re-

analysis of all data sets involved in their study. 

 

Other systems, such as CAMERA[60], offer more flexible annotation schema, but 

require that individual researchers understand the annotation of data and analytical 

pipeline well enough to be confident on their interpretation. MEGAN is another tool 

used for visualizing annotation results derived form BLAST searches in an functional 

or taxonomic dendrogram [61]. The use of dendrograms to display metagenomic data 

provides a collapsible network of interpretation, which makes analysis of particular 

functional or taxonomic groups visually quite easy. 



 

Many reference databases are available to give functional context to metagenomic 

datasets, such as KEGG [62], COG/KOG [63], PFAM [64], TIGRFAM [65] to name 

a few. However, as no reference database covers all biological functions, the ability to 

visualize and merge the interpretations of all database searches within a single 

framework as implemented in the most recent version of MG-RAST and IMG-M is 

important. Thus it is essential that metagenome analysis platforms are able to share 

data in way that map and visualize them in the framework of other platforms. These 

metagenomic exchange languages should also reduce the burden associated with 

processing large datasets, as redundancy of search will be minimized and annotations 

are shared and mapped to different ontologies and nomenclatures to allow 

multifaceted interpretations. The Genomic Standards Consortium (GSC) with the M5 

project is providing a prototypical standard for exchange of computed metagenome 

analysis results, one cornerstone of these exchange languages. 

 

Experimental design and statistical analysis 

Owing to the high costs, many of the early metagenomic shotgun sequencing projects 

were not replicated or were focused on targeted exploration of microbial diversity. 

Reduction of sequencing cost (see above) and a much wider appreciation of the utility 

of metagenomics to address fundamental questions in microbial ecology, now require 

proper experimental designs with appropriate replication and statistical analysis. This 

design and statistical aspects, while obvious, are often not properly implemented in 

the field of microbial ecology [66]. However, many suitable approaches and strategies 

are readily available from the many decades of research in quantitative ecology of 

higher organisms (e.g. animals, plants). In a simplistic way, the data from multiple 



metagenomic shotgun-sequencing projects can be reduced to tables, where the 

columns represent samples and the rows indicate either a taxonomic group or a gene 

function (or groups thereof), and the fields containing abundance or presence/ absence 

data.  This is analogous to species-sample matrices in ecology of higher organisms 

and hence many for the statistical tools available to identify correlations and 

statistically significant patterns are readily transferable. The Primer-E package [67] is 

such a well-established tool allowing for a range of multivariate statistical analysis, 

including the generation of multi-dimensional scaling (MDS) plots, analysis of 

similarities (ANOSIM) and identification of the species or functions that contribute to 

the  difference between two samples (SIMPER). Recently, multivariate statistics was 

also incorporated in a web-based tools, called Metastats [68], which revealed with 

high confidence discriminatory function between the replicated metagenome dataset 

of the gut microbiota of lean and obese mice [69]. In addition, the 

ShotgunFunctionalizeR package provides several statistical procedures for assessing 

functional differences between samples, both for individual genes and for entire 

pathways using the popular R statistical package [70]. 

 

Ideally and in general, experimental design should be driven by the question asked 

(rather than technical or operational restriction). For example, if a project aims to 

identify unique taxa or functions in a particular habitat, then suitable reference 

samples for comparison should be taken and ideally processed in consistent manner. 

In addition, variation between sample types can be due to true biological variation 

(something biologist would be most interested in) and technical variation and this 

should be carefully considered when planning the experiment. One should also be 

aware that many microbial systems are highly dynamic, so temporal aspects of 



sampling can have a substantial impact on data analysis and interpretation. While the 

question of the number of replicates is often difficult to predict prior to the final 

statistical analysis and a often boils down to rule of thumb “the more, the better” [66]. 

Also the level at which replication takes place is something that should not lead to 

false interpretation of the data. For example, if one is interested in the level of 

functional variation of the microbial community in habitat A, then multiple samples 

from this habitat should be taken and processed completely separately, but in the 

same manner. Taking just one sample and splitting it up prior to processing, will only 

provide information about technical, but not biological variation in habitat A. Taking 

multiple samples and then pooling them, will lose all information on variability and 

hence will be of little use for statistical purposes. Ultimately, good experimental 

design of metagenomic projects will facilitate integration of data set into new or 

existing ecological theories [71]. 

 

As metagenomic is gradually moving through a range of explorative biodiversity 

surveys it will also prove itself extremely valuable for manipulative experiments. This 

will allow for observation of treatment impact on the functional and phylogenetic 

composition of microbial communities. Initial experiments already showed promising 

results [72], however careful experimental planning and interpretations should be 

paramount in this field. 

 

One of the ultimate aims of metagenomics is to link functional and phylogenetic 

information to the chemical, physical and other biological parameters that 

characterize an environment. While measuring all these parameters can be time- and 

cost-intensive, it allows retrospective correlation analysis of metagenomic data that 



were perhaps not part of the initial aims of the project or might be of interest for other 

research questions. The value of such metadata cannot be underestimated for future 

research and, in fact, has become mandatory or optional for deposition of 

metagenomic data into some databases [59, 60]. 

 

Sharing and Storage of Data 

Data sharing has a long tradition in the field of genome research, but for metagenomic 

data this will require a whole new level of organization and collaboration to provide 

metadata and centralized services (e.g. IMG/M, CAMERA and MG-RAST) as well as 

sharing of both data and computational results. To enable sharing of computed results, 

some aspects of the various analytical pipelines mentioned above will need to be 

coordinated -a process, currently under way under the auspices of the GSC. Once this 

has been achieved, researchers will be able to download intermediate and processed 

results from any one of the major repositories for local analysis and/or comparison. 

The question of centralized versus de-centralized storage is also one of “who pays for 

the storage”, a matter with no simple answer. The US National Center for 

Biotechnology Information (NCBI) is mandated to store all metagenomic data, 

however, the sheer volume of data being generated means there is an urgent need for 

appropriate ways of storing vast amounts of sequences. As cost of sequencing 

continues to drop, while the cost for analysis and storing remains more or less 

constant, selection of data storage in either biological (i.e. the sample that was 

sequenced) or digital form in (de-) centralized archives might be required. Ongoing 

work and successes in compression of (meta-)genomic data [73] however might mean 

that digital information can still be stored cost-efficiently in the near future. 

 



 

Conclusion 

Metagenomics has benefited in the last few years from many visionary investments 

both in financial and intellectual terms. To ensure that those investments are utilized 

in the best possible way, the scientific community should aim to share, compare and 

critically evaluate the outcomes of metagenomic studies. As data sets will become 

increasingly more complex and comprehensive, novel tools for analysis, storage and 

visualization will be required. This will ensure the best use of the metagenomics as a 

tool to address fundamental question of microbial ecology, evolution and diversity 

and to derive and test new hypotheses. Metagenomics will also be a tool as commonly 

and frequently employed as any other laboratory method and “metagenomising” a 

sample might become as colloquial as “PCRing”. It is therefore also important that 

metagenomics will be taught to students and young scientists in the same way as other 

techniques and approaches have been in the past.  
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