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Abstract

Automatic performance tuning of computationally inteesker-
nels in scientific applications is a promising approach tiedng
good performance on different computing architecturedenbie-
serving the kernel implementation’s readability and puatity. A
major bottleneck in automatic performance tuning is the oot
tion time required to test a large number of possible codants,
which grows exponentially with the number of tuning paraenst
Consequently, the design, development, and analysis e€tafé
search techniques capable of quickly finding high-perfagma-
rameter configurations have gained significant attentioreaent
years. An important element needed for this research is a
lection of test problems that allow performance enginepénd
mathematical optimization researchers to conduct rigomlgo-
rithmic development and experimental studies. In this papede-
scribe a set of extensible and portasdarchproblems inautomatic
performancetuning GPAPT) whose goal is to aid in the develop-
ment and improvement of search strategd®APT contains repre-
sentative serial code implementations from a number ofidexee|
performance-tuning tasks in scientific applications. Wespnt an
illustrative experimental study on a number of problemsrifine
test suite. We discuss important issues such as modeliag;hse
space characteristics, and performance objectives.

co

Keywords autotuning, performance tuning, benchmark, test suite,
kernels

1. Introduction

The landscape of scientific application programming is ugale
ing rapid changes as a result of increasingly complex coimgut
architectures and the quest for high performance on thes$g-ar
tectures. Chasing performance gains through manual tupéng
comes a complex and time-consuming process that is neither s
able nor portable. Automatic performance tuning (in shautp-
tuning), or empirical performance tuning, is a promising and vi-
able approach to address the limitations of manual tuningoA
tuning involves three major phases: identifying code ojgétion

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

techniques that are relevant to the given code and architecs-
signing a range of parameter values using hardware expentid
application-specific knowledge, and searching the pammsgace
to find the best-performing parameter configuration for tiverg
architecture. In recent years, this has emerged as anieffeq-
proach to tune scientific kernels for both serial and mutéqaro-
cessors [10, 11, 18, 19, 32, 33].

A major bottleneck in large-scale autotuning is the prahibly
large computation time required when searching for higtiepming
parameter configurations in a large search space. Hencalapop
search algorithms such as random search, Nelder-Meadlasédu
annealing, and genetic algorithms are used to examine d smal
subset of possible configurations. In [7], the authors slothat
the search problem arising in autotuning can be formulated a
mathematical optimization problem and illustrated theeptal
for mathematical optimization algorithms to find high-merhing
tuning parameters in a short computation time.

The primary obstacle for the mathematical optimization eom
munity to contribute algorithms for performance tuninghie high
startup cost associated with developing mathematicaldtations
of performance problems and subsequently transformingpde
ing, and running the corresponding codes. In fact, recesttesses
of performance tuning in mathematical optimization haveused
on obtaining parameters for other optimization algorithfag.,
[5]), these codes being what optimizers are most familidin.wi

On the other hand, a rich history in mathematical optimarati
of sets of benchmark problems exists. Examples include thi&M
Garbow-Hillstrom problems for unconstrained optimizati@3];
the more general CUTEr set [14] (a subset of which was usdtkas t
inputs in [5]); and the smooth, noisy, and nonsmooth problém
[24]. These benchmarks are attractive for several reasoclsd-
ing (1) providing a rigorous definition of a set of easily ab&al
problems; (2) absolving algorithm developers from corgrsial
decisions related to problem formulation, scaling, andiimaram-
eter decisions; (3) mitigating particularly unusual bebeve.g.,
seen on only a single problem), and (4) defining a self-coathi
fixed set to avoid criticisms of including problems only tishbw
favorable aspects of an algorithm. In addition to theseatttaris-
tics, an ideal set would be large enough to yield diverselprob
(rather than containing a single problem) but not too lamg®d
prohibitively expensive, which would prevent one from ringithe
benchmark set in its entirety.

As evidenced by their citation counts, these benchmarkasets
used extensively by the optimization community. The usealdh-
marking caveats apply: performance of an optimization rétigm
on the set is not a guarantee that it will perform similarlyah
other problems, and hence one should avoid both “overfitang
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making extrapolations far beyond the set. However, resuitthe
benchmark sets can still provide valuable feedback to dpees
on the algorithmic features expected to be most importatt cae
a first step in developing, for example, specialized alpari for
classes of performance-tuning problems.

In this paper, we present a collection of extensible ancdajbst
search problems inautomatic performancetuning GPAPT). It
comprises representative problems from a number of loexet|
serial performance tuning tasks in scientific applicatidngartic-
ular, we focus on kernels in scientific codes. We implemeabpr
lems in a format that can be readily processed by Orio [16, 25]
recently developed empirical-performance tuning sofewfaame-
work. By making Orio explicitly part of the set and definingesp
cific search problems, our first goal is to attract the mathieala
optimization community to help advance the field of perfonca
tuning. With the benchmark set, our second goal is to enaisfep
mance engineering and mathematical optimization reseesdo
conduct rigorous algorithmic development and experimesttal-
ies on search algorithms in autotuning.

SPAPT comprises kernel codes that run on a single node. There
are two main reasons for this design choice. First, we wanted

SPAPT to be an easily usable and testable test suite from the per-

spective of the mathematical optimization community. Wb ratbt
want to restrict its applicability to parallel codes on krgom-
putational clusters and/or leadership-class machineausecthe
mathematical optimization researchers might have limétecess
to these machines. However, given that most of the singlie-no
machines—including desktops and laptops—come with multi-
cores, search problems 8PAPT contain OpenMP directives as
code transformation techniques. Second, single-nodenpeahce
tuning is highly relevant in a number of kernels where the icam
nication cost between the processor and the memory higraeh
bottleneck for the performance.

The rest of the paper is organized as follows. In Section 2 we
review related work on test suites for autotuning. In Sec8owve
give a high-level overview 8PAPT. We briefly give an account on
each class of kernels, application context, and tunablenpeters.

In Section 4, using an illustrative experimental study orumber
of problems from the benchmark, we discuss some importanéss
related to modeling, optimization, and performance objest

2. Related Work

Balaprakash et al. [7], Kisuki et al. [20], Qasem et al. [Zgymour
et al. [28], Shin et al. [29], and Tiwari et al. [32] used a n&nb
of linear algebra kernels for autotuning. Pouchet [26] aeldm
collection of reference implementations, which compribesar
algebra kernels, solvers, stencils, and data mining cotlesse
codes have pragma delimiters for OpenMP and loop bounds for
autotuning with a polyhedral model. Norris et al. [25] andtdao
et al. [16] used a collection of linear algebra kernels, edyand
stencils. These are parameterized codes that were usest thae
effectiveness of Orio. In all these works, the kernels artemf
parameterized to illustrate the effectiveness of autoirtiut there
is limited empirical analysis of the search algorithms &aplto
kernels with a large number of parameters that have wideesang
of input sizes. Recently, Kaiser et al. [17] proposed the TBR
testbed, a set of reference kernels to enable software adduee
co design. These kernels are broadly classified into linkgabea,
grid, spectral, particle, Monte Carlo, graphs, and soméks: The
authors discuss possible code optimization strategigsctrabe
applied to these kernels. Nevertheless, parameterizatidrsearch
problem specifications are not part of the testbed.

Kaiser et al. [17] argue that a number of existing test suites
can be seen as reference implementations of one or morelkerne
from TORCH. Examples include EEMBC [1], HPC Challenge

[2], ParBoil [3], SPEC [4], NAS Parallel test suites [6], PBRC
[8], Rodinia [9], LINPACK [13], STREAM [21], STAMP [22],
SPLASH [30], and pChase [31]. Although in principle thesst te
suites can be parameterized and used for autotuning, ncherof
are developed specifically for evaluating the performarfcéhe
search problem in autotuning. Hence, there is a noticealitein
the literature of test suite sets of well-formulated seqmaiblems
in autotuning.

The SPAPT set that we propose in this paper is based on [16,
17, 25, 26] and comprises representative examples fronwenito
ing in scientific applications. HoweveSPAPT differs from other
test suites in the following way: it is the only test suite lre tau-
totuning literature that is exclusively designed for depihg and
benchmarking optimization algorithms. 8PAPT, we make only
the search problem as a transparent entity—one can easifyrae
an optimization algorithm to tackle the search problem atith
knowing the nitty-gritty details related to the code tramsfation
techniques, compiler specifics, and the target architecitire par-
ticularity of a search problem iBPAPT is that it is a well-defined
mathematical optimization problem composed of a kerneihjput
size, a set of tunable decision parameters, a feasible pesstble
parameter values, and an initial configuration of theserpaters
and constraints.

3. Test Suite

In this section we provide a high-level overview of the testesand
the chosen tuning directives. We then discuss their impheatiens
in Orio.

3.1 Reference kernels and search problems

We use the terrkernelsto refer to (deeply) nested loops that arise
frequently in a number of scientific application codes. Rseahey
contribute significantly to the overall execution time,ingthese
kernels can result in significant overall application perfance
improvements [12]. A range of transformations can be agplie
leading to better utilization of the memory hierarchy andirag in
exploiting shared-memory parallelism on multicore amttitires.
TheSPAPT benchmark that we propose in this paper comprises 18
such kernels. These kernels are grouped into four groups[26]:
linear algebra computation kernels, linear algebra sdteenels,
stencil code kernels, and data-mining kernels.

Linear algebra computation kernels. These kernels involve a set
of mathematical computations performed on scalars, vector
and matrices. Because of the wide range of applications that
adopt these kernels, autotuning these kernels is a popyiir t
of research and development. In this group we have ten ker-
nels that involve elementary linear algebra operations sisc
vector/matrix/tensor multiplications and transposes Eable
1 for a summary of the operations involved.

Linear algebra solver kernels. Linear algebra solvers find solu-
tions to a system of linear equations. In this group, we have
kernels from the BiCGStab linear solv&i€G) andLU, which
decomposes a matrix into a product of lower and upper triangu
lar matrices.

Stencil code kernels.Stencil codes follow a regular pattern to ac-
cess and update array elements. They are commonly used inim-
plicitly and explicitly solving partial differential eqtians [18].

In this group, we have four kernels from ADI preconditioners
(ADI), Jacobi 1-D facobi-1d), Seidel stencil§eidel), and
3-D stencils computation$tencil3d).

Data mining kernels. In this group, we have two kernels: corre-
lation (COR) and covarianceCQV) computations. They involve
finding statistical relationships among a number of randari v
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Table 1. Collection of test suite kernels.
Transformations
Kernel Operation n; np |D|
Linear algebra kernels
ATAX matrix transpose & vector multiplication 13  UJ,CT,RT,LPM 6 SR,AC,LV,OMP | 1.65e+14
DGEMV scalar, vector & matrix multiplication 38 UJ,CT,RT,LPM 11 SR,AC,LV,OMP | 2.73e+30
FDTD4d2d finite-difference time-domain kernel 25 UJ,CT,RT,LPM 5 SR,AC,LV,OMP | 7.06e+24
GEMVER vector multiplication & matrix addition 18 UJ,CT,RT,LPM 6 SR,AC,LV,OMP | 7.26e+17
GESUMMV scalar, vector, & matrix multiplication 8 UJ,CT,RT,LPM 3 SR, LV,OMP 1.56e+08
HMC Hessian matrix computation kernel 7 UJ,CT,RT,LPM 8 SR,AC,LV,OMP | 1.01e+08
MM matrix multiplication 10 UJ,CT,RT,LPM 4 SR,AC,LV,OMP | 1.83e+12
MVT matrix vector product & transpose 6 UJ,CT,RT,LPM 6 SR,AC,LV,OMP | 1.38e+08
Tensor tensor matrix multiplication 17 UJ,CT,RT,LPM 3 SR, LV,OMP 5.49e+16
TRMM triangular matrix operations 20 UJ,CT,RT,LPM 5 SR, LV,OMP 5.33e+19
Linear algebra solvers
BiCG subkernel of BICGStab linear solver 9 UJ,CT,RT,LPM 4  SR,AC,LV,OMP | 9.33e+09
LU LU decomposition 9 UJ,CT,RT,LPM 5 SR,AC,LV,OMP | 1.86e+10
Stencil codes
ADI matrix subtraction, multiplication, & division| 16 UJ, CT, RT, LPM 4 SR,AC,LV,OMP | 6.05e+15
Jacobi-1d  1-D Jacobi computation 8 UJ,CT,RT,LPM 3 SR, LV,OMP 1.55e+08
Seidel matrix factorization 12 UJ,CT,RT,LPM 3 SR, LV,OMP 6.86e+11
Stencil3d  3-D stencil computation 24 UJ,CT,RT,LPM 5 SR,AC,LV,OMP | 2.35e+23
Data mining

COR correlation computation 16 UJ,CT,RT,LPM 4  SR,AC,LV,OMP | 6.05e+15
cov covariance computation 20 UJ,CT,RT,LPM 5 SR,AC,LV,OMP | 5.33e+19

ables, which is central to many statistical packages. Tfe-re  Hidden constraints. These constraints are attributed to unsuccess-

ence implementations are obtained from [26]. ful code evaluations that occur due to transformation, daamp
tion, and run-time errors. While failure at the code transfa-
We take a seargbroblemin SPAPT to mean a specific combina- tion phase is relatively cheap, failure due to run-time m@ris
tion of a kernel, an input size, a set of tunable decisionmpatars, expensive. In all these cases, a nonbinary measure of iviolat
a feasible set of possible parameter values, and a defetidd/con- is not available; hence, dealing with these constraintsbean
figuration of these parameters for use by search algoritiiviren difficult.

combined with a specific architecture and a single perfooaar-
jective f, both discussed further in Section 4, this search problem  From each tunable kernel, we generate four search prob-

is equivalent to the mathematical optimization problem lems. For example, for thaTAX kernel, we haveATAX.01.N,
) ATAX.02.N, ATAX.04.N, and ATAX.01.N.nb. The naming con-
min f(@) ventions take the following meaningy! is the (reference) input size
r = (zp,27) € Q, 1) in ATAX.01.N; 2 x N anc_i4 x N are the input sizes IATAX.02.N
suchthat zg, € {0,1}, j=1,..., ns, and{\T{\X.04.1\{, respgctlvely. Note that the.reference input size is
vz, € {lj, - uit, j=1,..0,n, not I|_m_|ted to snngl_e-dlme_nsmnal or square inputs; for sgumare or
multidimensional inputs, instead of, we have{ N1, N2, N, ...}.
where3 andZ denote a partitioning of the parameter vectanto ATAX.01.N.nb is obtained fromATAX.01.N by fixing the value of

np binary andn; integer scalars, respectively. Details on modeling  all binary parameters to 0 (so that only integer decisiomipaters
and formulating problems such as (1) are given in [7]. We &&no  are consideredib refers to “no binary parameters”). The reason for
the collective feasible set for a given problem By which is explicitly includingnb problems is that they can facilitate adoption
defined by three classes of constraints: of advanced continuous numerical optimization algorithimet
treat integer parameters similar to real-valued ones.

We define the initial configuration of a problem as that ol&din
by setting each integer variable to its lower bound and eacryp
variable to O (false). Note that this corresponds to the émgan-
tation without any code transformation and optimizationatidi-
Known constraints. We have two subclasses of known constraints. tion to the goals discussed in Section 1, these problemdesnalo

Bound constraints. All the parameters of the search problems are
bounded. Examples of these constraints include loop unroll
jam, where the values are positive and take integer values up
to an upper bound.

First are algebraic constraints, where the time requiree iy study the impact of input size on performance tuning and ayae

the feasibility ¢ €’ D) of an arbitrary point: € R™ is negligi- the smoothness in the search space (e.g., binary decisiohsas
ble relative to the time required to evaluate the objecfive): enabling or disabling OpenMP create discontinuities insarch
for example, limiting two register tiling parameteRy;, RT, space).

to certain values satisfyinB7T; « RT; < 150. Second are gen- Table 1 gives a high-level overview of the kernels and tun-
eral constraints that require execution of the code andidoeil ing transformations considered for each kernel. Wheneppli-a
as expensive to evaluate as the objective: for exanmoleer cable, we adopt the following general-purpose, paranzsteiun-
consumption of a code run < 90 W. In all these constraints a  ing directives: loop unroll/jamming.y), cache tiling CT), register
quantifiable measure of constraint violation is availaBlem tiling (RT), loop permutationl(PM), scalar replacemensR), ar-

a mathematical optimization perspective, this is an imgrart ray copy optimizationAC), loop vectorizationI{v), and multicore
measure as it can help the optimization algorithm move away parallelization using OpenMPOMP). The Orio implementations
from regions of infeasibility. of these transformations are described in [15, 16].
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3.2 Orio-specific implementations def performance_params

Orio [16, 25] is a recently developed extensible and poetalblft- {# Cache tiling
ware framework for empirical performance tuning. It take©aio- param T1_I[1 = [1,16,32,64,128,256,512];
annotated C or Fortran implementation of a problem as input, gen- param 110 [1: 16:32:64: 128:256:512]
erates multiple transformed code variants of the annotebee, - [1,64,128,256,512,1024,2048] ;
empirically evaluates the performance of the generateds;aghd [1:64: 128:256:512:1024:2048]
has the ability to select the best-performing code variaihg!

some popular heuristic search algorithms. Orio annotatimm- # Array-copy
sist of semantic comments that encode the computation. & atp param ACOPY_A[]
tuning specification contains various parameterized perdioce- -
tuning directives and sizes of inputs to consider. In additb the
general-purpose tuning directives suchuas CT, RT, LPM, SR,
AC, LV, andOMP, Orio supports a number of architecture-specific
optimizations (e.g., generating calls to SIMD intrinsicslotel and
Blue Gene/P architectures). We refer the reader to [16,25 tle- # Scalar replacement

tailed account on annotation parsing and code generatlemnses param SCREP[] = [False,Truel;
in Orio.

SPAPT is intended to be used for evaluating the search ap-
proaches in any autotuning system. By integrating it witfo@re
provide an immediate demonstration of its use and enableefut
use by other autotuning packages as interfaces to them desl ad

param T2_I[]
param T2_J[]

= [False,True]l;

# Unroll-jam
param U_I[]
param U_J[]

range(1,31);
range(1,31);

# Loop Vectorization
param VEC[] = [False,Truel;

# Parallelization

during Orio development (Orio already interfaces to a nunde param OMP[] = [False,Truel;
third-party transformation and search tools and will comdi to add ’ ’
more). . . . # Constraints

From an optimization perspective, for a given search proble constraint tilel = ((T2.I == 1)
one needs to know the tunable parameters, possible values fo or (T2. I % T1.I == 0))T
each parameter, and a starting parameter configurationnérete constraint tileJ = ((T2’J = 1)
annotation example is shown in Figure 1. Note that for byevit or (T2.J % T1.J == 0))T
we skip other important regions of the annotation such as the constraint reg_capacity’= (2%U_T*U_J +
tuning directives, kernel, and compiler options in the aation. 24U T + 2%U_J <= 130): -7
The example shows tunable performance parameter§TpAC, } - - ’
UJ, SR, LV, and OMP; their possible values together with the
constraints oi€ T anduJ; and the input size. In Table 1, the column let SIZE = 1000;

|D| shows, for each kernel, the number of feasible decisiontpoin

which ranges betweeh0le + 08 and2.73e + 30. def input_params

SPAPT is made available for download with Orio at {
trac.mcs.anl.gov/projects/performance/wiki/Orio. Read- param MSIZE = SIZE;
ers can also browse the benchmark set at = .
http://trac.mcs.anl.gov/projects/performance/browser/ parant ﬂSEZgI£E§IZE’
orio/testsuite/SPAPT.v.01. parat N~ ’

param N = SIZE;
}

. . /*@ begin Loop(
4. lllustrative Experiments g P

In this section, we present an illustrative experimentatigton /* transform module */
several problems from the benchmark set. We use the re$tittis o
study to discuss some of the characteristics of problers®APT /* kernel code */

that are highly relevant for autotuning.

Experiments are carried out on dedicated nodes of the Fusion) @*/
cluster at Argonne National Laboratory. Each node of Fusmm /%@ end @x/
tains two Intel Nehalem series quad-core 2.53 GHz procesédr
KB L1 cache/core, 256 KB L2 cache/core, and 36 GB of memory Figure 1. Parameter specification and constraint example in Orio.
running the stock Linux kernel version 2.6.18 provided bylRat.

4.1 Effect of cache misses and the impact of performance heavily on the target architecture and the choice of theopesdnce
metric choice metric (e.g., runtime, flops, or power).

When a code is transformed and compiled with respect to agive In O‘rJlr expt))lloratory studie?, we consider minimizing the et
parameter configuration, typically it has to be run on thgaar  [of €ach problem. Many performance metrics can serve astan op

machine a number of times to overcome variations resultiognf ~ Mization objective in (1), including

factors such as operating system noise and compulsorygitgpa 1

and conflict cache misses. Hence, modeling decisions detate flz) = — ri(x),

the performance objective can play a significant role in theng m =

process, in particular, when we hgaa/p(lorl knowledge on t.he data flz median—r.... m7i(z),
access patterns of the given applicationrSAPT we intentionally )

do not specify a fixed form of the objective, because it careddp flz) = T (),
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Table 2. Estimated mean and standard deviation of the runtime fol mean over 35 runs 5
35 runs at the initial parameter configuration. A G- median over 35 runs a
min over 35 runs i
Problem finit Ginit -4~ third run g
ATAX 0.0052 2.05e-05 . H
BiCG 0.0040 5.68e-06 » ©7
COR 0.0009 1.62e-06 @
DGEMV ~ 0.0100 5.33e-06 £
GEMVER  0.0328 3.71e-04 S <
GESUMMV  0.0259  4.54e-05 c
Jacobi 0.0004 1.45e-06
MM 0.0211  3.58e-06 o -
MVT 0.0017  7.18e-06
o L — T T T T
Fz) = ra(a) 0 1000 2000 3000 4000 5000

where{ri(z),...,rm(z)} denote a sequence of runtime real-
izations for parameter configuration and these objectives denote
the mean, median, minimum, and third realized time, regmdgt
Performance objectives other than the mean, includingethoen
above and quantile-based metrics, can be adopted based ah th
timate goals of the performance tuning process.

Next we discuss various considerations related to perfocma
objectives givenn = 35 consecutive replications, without flush-

Configurations sorted by mean

Figure 3. Comparison of performance objectives on 8®APT
problemstencil-34.01.N.

and 5 show the percentage of configurations with maximum run-
time for each replication number. FOTAX.01.N, in 80% of 5,000
configurations, the first run has the maximum runtime, wtenea
stencil3d this drops to 25%. Figure 6 shows the runtime realiza-

ing the data from cache, for each run. The sample mean runtimetions as a function of the replication number for the initiahfigu-

is often used to approximate uniform system conditions beedt
can asymptotically reduce nondeterministic variationtharuns.

In Table 2, we show the sample meapn,;: and standard devia-
tion &4+ Of the runtime for 35 runs at the initial parameter con-
figuration for some problems with input siZé. The mean is sta-
ble to three or four significant digits considering the riglanoise

(Ginit /v 3D finit)-

Runtime (s)

mean over 35 runs : A B
1-©- median over 35 runs a g
min over 35 runs 5
[ee) P a
O |-~ third run &
= »
0H
) N a ol@
v aAA Amg"
o | an sty MG
© VNN m_z#mm
A W A%G
) WA 4 o
e R 5 5 A B o
o _om smsnamans
C)_ = T T st AN SN ARSENSIMIMNNA A O A o8 o
o T T T T T T
0 1000 2000 3000 4000 5000

Configurations sorted by mean

Figure 2. Comparison of performance objectives on 8®APT
problemATAX.01.N.

Figures 2 and 3 show a comparison of the mean, median, mini-
mum, and third runtime values of 5,000 random parameter gonfi
urations in|D|. Note that all the configurations in theaxis are
sorted with respect to the mean, so that the mean is monatene i
creasing. The results show that in a large number of paraoete
figurations fromATAX . 01.N (Figure 2), the median, minimum, and
third runtime differ significantly from the mean. Howevenese
metrics are similar to each other on the results for the prabl
stencil-3d.01.N (Figure 3). SinCAATAX and stencil3d ker-
nels are memory- and computation-bound, respectivelyfdhe
mer is more sensitive to cache misses than the latter. Fglire

ration of ATAX.01.N. As expected, the execution times of the first
few runs are longer than those of the other runs. Note thgtehe
formance objective of the third runtime value is explicitgsigned
to take this into account.

From the modeling perspective, these results imply tharvehe
kernel is highly sensitive to cache misses, one has to bé&taith
the choice of the performance objective. Inside an apjidinaif the
data required for a particular kernel is normally not présenache
when the kernel is executed, the tuning process must refflisdby
flushing the cache for each replication. On the other hareh év
the kernel is highly sensitive to cache misses but it is knthahthe
required data is present in cache when the kernel is invaked,
we must ignore first few repetitions during tuning. Furthvenen
the kernel is compute-bound and not sensitive to cache misse
tuning with a large number of repetitions results in a wadte o
resources. In such cases, the third runtime value is a gooidech
In the rest of this section, we use the widely adopted meatinnen
(in 30 replications) as the performance metric.

4.2 Impact of the target machine

We now analyze the impact of different architectures on tleam
runtime of the parameter configurations fréddRAPT problems.

In addition to Fusion, we use two large-scale leadershippem
ing machines: Intrepid (IBM Blue Gene/P) from Argonne Natib
Laboratory and Hopper (Cray XE6) from the National Energy Re
search Scientific Computing Center. Each node of Intrepiat co
tains IBM PowerPC 850 MHz quad-core processors with 32 KB
L1 cache, 4 128 byte-line buffers L2 cache, 8 MB L3 cache, and 2
GB of memory running Compute Node Kernel OS. Each node of
Hopper contains 2 twelve-core AMD MagnyCours 2.1 GHz pro-
cessors with 64 KB L1 cache, 512 KB L2 cache, 6 MB L3 cache,
and 32 GB of memory running Cray Linux Environment OS.

Figure 7 shows the mean runtime correlation between the con-
figurations fromATAX.01.N on Intrepid and Fusion. We observe
that high-performing parameter configurations for Fusioregn
runtime between 0.001 and 0.005 seconds) obtain poor mean ru
times (between 0.02 and 0.04 seconds) on Intrepid and visave
We found that enabling OpenMP in Fusion degrades the perfor-
mance of the code because of the OpenMP overhead. However, in
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Figure 4. Effect of cache misses on th6PAPT problem
ATAX.01.N: percentage of configurations with maximum runtime
as a function of replication number.
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Figure 5. Effect of cache misses on th8PAPT problem
stencil3d.01.N: percentage of configurations with maximum
runtime as a function of replication number.

Intrepid it leads to performance improvements becausepithas
slower processors and a smaller L1, L2, and memory per ctie. T
two distinct clusters of configurations in Figure 7 corraspto the
codes with OpenMP enabled and disabled. NeverthelesgrFissi
closer to Hopper in terms of computing power and memory. From
Figure 8, we can observe that the mean runtime of the paramete
configurations run on Fusion and Hopper exhibit high cotiafa

4.3 Performance objective density

A naive way to assess the difficulty of an optimization prob-
lem in SPAPT consists of sampling parameter configurations at
random and measuring the density of their performance ebjec
tives. In Figures 9, 10, 11, and 12, we show histograms of the
objective values obtained on 5,000 random parameter coafigu
tions on different problems from the benchmark set. We oleser
that for ADI.01.N and DGEMV.01.N problems, the number of
high-performing parameter configurations is low comparéth w
that for theGEMVER.01.N and SEIDEL.01.N. We expect that a
simple random search can find high-performing configuration
for GEMVER.01.N and SEIDEL.01.N, for which there are many
high-performing parameter configurations, whergzs. 01 . N and

Figure 6. Effect of cache misses on th6PAPT problem
ATAX.01.N: runtime realization as a function of replication num-
ber.

I
x

XX

Intrepid runtime (s)
0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.04 0.06
Fusion runtime (s)
Figure 7. Mean runtime correlation between the configurations
from Intrepid and Fusion on tH&PAPT problemATAX.01.N.

o©
o
S

DGEMV.01.N problems might require sophisticated search algo-
rithms. Given the large search space of the optimizatioblpros
and the number of random parameter configurations considere
the density results should be treated as baseline resétsshould
not be taken as an exhaustive metric for assessing the tiffwiu
solving a particular search problem in the benchmark.

4.4

Another factor that plays a crucial role in autotuning is $iee of
the arrays involved in the computation. In most cases, tuhams
to be performed for a number of different input sizes becdlse
best parameter configuration obtained for one input sizetisec-
essarily the best for a different input size. In some caseseber,
parameter configurations can be generalized. This isrdtesd in
Figures 13 and 14, which shows the correlation between tjee-ob
tives for different instance sizes. In problems based onAth&
kernel (see Figure 13), a large number of high-performimaipe-
ter configurations for input siz& become less effective for input
size4N. This result occurs because transformations targeting dif
ferent levels of the memory hierarchy would not produce draes
effect on a computation that can fit in registers or L1 as theyld/
on an instance that does not fit in any level of cache. Neveshge

Impact of input size

2011/9/29



Hopper runtime (s)
0.04 0.06 0.08

0.02

0.04 0.06
Fusion runtime (s)

0.02

Percent of total

05 10

Mean runtime (s)

0.0

Figure 8. Mean runtime correlation between the configurations
from Hopper and Fusion on tI$*APT problemATAX.01.N.
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0.4 06 0.8

Mean runtime (s)

Figure 9. Histogram of mean runtime from 5,000 random
variants inD on theGEMVER.. 01.N problem.

0.0 02

code

the results for problems based on #i€G kernel (see Figure 14)
show that high-performing parameter configurations areiggiz-
able for certain types of computations.

5. Conclusions and Future Directions

Motivated by a lack of a test suite of search problems in auiag,
we developedPAPT. Each problem ir6PAPT is a well-defined
mathematical optimization problem based on a represeatatir-
nel from a scientific application, parameterized tuningdives,
acceptable values for each parameter, input sizes, andital in
configuration for search algorithms. To the best of our keadlgk,
SPAPT is the first test suite in the autotuning literature that is de
signed for analyzing and benchmarking mathematical opétion
algorithms. We implemented all these problems in an aniootat
based language that can be processed by Orio, a recentlppeste
performance tuning software framework. We conductedtilaise
experiments to show performance impacts of problem chetiaet
tics such as choice of performance objectives, noise,teffeache
misses, target machines, and input sizes.

SPAPT has the potential to improve the state of the art in au-
totuning. On the one hand, our easily accessible, portabie O
implementation of the test suite can encourage matherhaiica

Figure 10. Histogram of mean runtime from 5,000 random code
variants inD on theSEIDEL. 01.N problem.

Percent of total

0.7 08 09

Mean runtime (s)
Figure 11. Histogram of mean runtime from 5,000 random code
variants inD on theADI.01.N problem.

06

timization researchers to develop optimization algorghmithout
knowing the fine details of compiler optimization and penfiance
tuning. On the other hand, it can help the autotuning comtpuni
conduct systematic experimental studies of the existirtgripa-
tion algorithms and better understand the role that diffeteans-
formations play.

In addition to the limitations of any test suite describe®ac-
tion 1,SPAPT has the following limitations at present. It deals only
with codes that run on a single node and does not provide aigsco
that run on parallel machines. As a starting point, we foduzse
some of the widely used scientific kernels in the autotuniteg-|
ature. A possible bias in the test suite is that a large nurober
problems deal with linear algebra-related computations.uséd
only the set of parameterized code transformations supgdry
Orio. While these transformations are highly relevant fiogke-
node performance, distributed-memory parallel codes demlé-
ferent set of transformations.

We plan to continue to extend the application space and rumer
ical and scientific problem domain coverage of the test stite
particular, we will define search problems using additid@ahels
from TORCH. We will useSPAPT to understand the search prob-
lem characteristics, to benchmark existing optimizatigodthms,
and to develop efficient optimization algorithms for autong. We

2011/9/29



o
20- S
8
w X
- O
515 3
i=4 £ ©
5 5 © : T
= e, .
é 1.0 T =
[0) o ©
) 0.5 £ SV *
' S o
o
0.0 f 0.10
0.005 0.010 0.015
Mean runtime (s) Runtime (s) for input size N
Figure 12. Histogram of mean runtime from 5,000 random code Figure 14. Mean runtime correlation between the configurations
variants inD on theDGEMV .01 .N problem. from theBiCG.01.N andBiCG.04.N problems.
Acknowledgments
This work was supported in part by the Office of Advanced Scien
tific Computing Research, Office of Science, U.S. Dept. ofrgye
under Contract DE-AC02-06CH11357. We are grateful to Paul D
Hovland for helpful discussions and to the Laboratory Cotimgu
Resource Center at Argonne National Laboratory.
©
o

0.12

0.08

Runtime (s) for input size 4N

0.04

Runtime (s) for input size N

Figure 13. Mean runtime correlation between the configurations
from theATAX.01.N andATAX.04.N problems.

will investigate further the impact of different target rhaes on
the performance objectives of teRAPT problems. We also intend
to build a database of tabulated execution times to furthelitate
benchmarking of search algorithms.
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