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Abstract
Automatic performance tuning of computationally intensive ker-
nels in scientific applications is a promising approach to achieving
good performance on different computing architectures while pre-
serving the kernel implementation’s readability and portability. A
major bottleneck in automatic performance tuning is the computa-
tion time required to test a large number of possible code variants,
which grows exponentially with the number of tuning parameters.
Consequently, the design, development, and analysis of effective
search techniques capable of quickly finding high-performing pa-
rameter configurations have gained significant attention inrecent
years. An important element needed for this research is a col-
lection of test problems that allow performance engineering and
mathematical optimization researchers to conduct rigorous algo-
rithmic development and experimental studies. In this paper, we de-
scribe a set of extensible and portablesearchproblems inautomatic
performancetuning (SPAPT) whose goal is to aid in the develop-
ment and improvement of search strategies.SPAPT contains repre-
sentative serial code implementations from a number of lower-level
performance-tuning tasks in scientific applications. We present an
illustrative experimental study on a number of problems from the
test suite. We discuss important issues such as modeling, search
space characteristics, and performance objectives.

Keywords autotuning, performance tuning, benchmark, test suite,
kernels

1. Introduction
The landscape of scientific application programming is undergo-
ing rapid changes as a result of increasingly complex computing
architectures and the quest for high performance on these archi-
tectures. Chasing performance gains through manual tuningbe-
comes a complex and time-consuming process that is neither scal-
able nor portable. Automatic performance tuning (in short,auto-
tuning), or empirical performance tuning, is a promising and vi-
able approach to address the limitations of manual tuning. Auto-
tuning involves three major phases: identifying code optimization
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techniques that are relevant to the given code and architecture, as-
signing a range of parameter values using hardware expertise and
application-specific knowledge, and searching the parameter space
to find the best-performing parameter configuration for the given
architecture. In recent years, this has emerged as an effective ap-
proach to tune scientific kernels for both serial and multicore pro-
cessors [10, 11, 18, 19, 32, 33].

A major bottleneck in large-scale autotuning is the prohibitively
large computation time required when searching for high-performing
parameter configurations in a large search space. Hence, popular
search algorithms such as random search, Nelder-Mead, simulated
annealing, and genetic algorithms are used to examine a small
subset of possible configurations. In [7], the authors showed that
the search problem arising in autotuning can be formulated as a
mathematical optimization problem and illustrated the potential
for mathematical optimization algorithms to find high-performing
tuning parameters in a short computation time.

The primary obstacle for the mathematical optimization com-
munity to contribute algorithms for performance tuning is the high
startup cost associated with developing mathematical formulations
of performance problems and subsequently transforming, compil-
ing, and running the corresponding codes. In fact, recent successes
of performance tuning in mathematical optimization have focused
on obtaining parameters for other optimization algorithms(e.g.,
[5]), these codes being what optimizers are most familiar with.

On the other hand, a rich history in mathematical optimization
of sets of benchmark problems exists. Examples include the Moré-
Garbow-Hillstrom problems for unconstrained optimization [23];
the more general CUTEr set [14] (a subset of which was used as the
inputs in [5]); and the smooth, noisy, and nonsmooth problems in
[24]. These benchmarks are attractive for several reasons,includ-
ing (1) providing a rigorous definition of a set of easily obtained
problems; (2) absolving algorithm developers from controversial
decisions related to problem formulation, scaling, and input param-
eter decisions; (3) mitigating particularly unusual behavior (e.g.,
seen on only a single problem), and (4) defining a self-contained,
fixed set to avoid criticisms of including problems only thatshow
favorable aspects of an algorithm. In addition to these characteris-
tics, an ideal set would be large enough to yield diverse problems
(rather than containing a single problem) but not too large to be
prohibitively expensive, which would prevent one from running the
benchmark set in its entirety.

As evidenced by their citation counts, these benchmark setsare
used extensively by the optimization community. The usual bench-
marking caveats apply: performance of an optimization algorithm
on the set is not a guarantee that it will perform similarly onall
other problems, and hence one should avoid both “overfitting” and
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making extrapolations far beyond the set. However, resultson the
benchmark sets can still provide valuable feedback to developers
on the algorithmic features expected to be most important, and are
a first step in developing, for example, specialized algorithms for
classes of performance-tuning problems.

In this paper, we present a collection of extensible and portable
search problems in automatic performancetuning (SPAPT). It
comprises representative problems from a number of lower-level,
serial performance tuning tasks in scientific applications. In partic-
ular, we focus on kernels in scientific codes. We implement prob-
lems in a format that can be readily processed by Orio [16, 25], a
recently developed empirical-performance tuning software frame-
work. By making Orio explicitly part of the set and defining spe-
cific search problems, our first goal is to attract the mathematical
optimization community to help advance the field of performance
tuning. With the benchmark set, our second goal is to enable perfor-
mance engineering and mathematical optimization researchers to
conduct rigorous algorithmic development and experimental stud-
ies on search algorithms in autotuning.

SPAPT comprises kernel codes that run on a single node. There
are two main reasons for this design choice. First, we wanted
SPAPT to be an easily usable and testable test suite from the per-
spective of the mathematical optimization community. We did not
want to restrict its applicability to parallel codes on large com-
putational clusters and/or leadership-class machines because the
mathematical optimization researchers might have limitedaccess
to these machines. However, given that most of the single-node
machines—including desktops and laptops—come with multi-
cores, search problems inSPAPT contain OpenMP directives as
code transformation techniques. Second, single-node performance
tuning is highly relevant in a number of kernels where the commu-
nication cost between the processor and the memory hierarchy is a
bottleneck for the performance.

The rest of the paper is organized as follows. In Section 2 we
review related work on test suites for autotuning. In Section 3 we
give a high-level overview ofSPAPT. We briefly give an account on
each class of kernels, application context, and tunable parameters.
In Section 4, using an illustrative experimental study on a number
of problems from the benchmark, we discuss some important issues
related to modeling, optimization, and performance objectives.

2. Related Work
Balaprakash et al. [7], Kisuki et al. [20], Qasem et al. [27],Seymour
et al. [28], Shin et al. [29], and Tiwari et al. [32] used a number
of linear algebra kernels for autotuning. Pouchet [26] adopted a
collection of reference implementations, which compriseslinear
algebra kernels, solvers, stencils, and data mining codes.These
codes have pragma delimiters for OpenMP and loop bounds for
autotuning with a polyhedral model. Norris et al. [25] and Hartono
et al. [16] used a collection of linear algebra kernels, solvers, and
stencils. These are parameterized codes that were used to test the
effectiveness of Orio. In all these works, the kernels are often
parameterized to illustrate the effectiveness of autotuning, but there
is limited empirical analysis of the search algorithms applied to
kernels with a large number of parameters that have wide ranges
of input sizes. Recently, Kaiser et al. [17] proposed the TORCH
testbed, a set of reference kernels to enable software and hardware
co design. These kernels are broadly classified into linear algebra,
grid, spectral, particle, Monte Carlo, graphs, and sort kernels. The
authors discuss possible code optimization strategies that can be
applied to these kernels. Nevertheless, parameterizationand search
problem specifications are not part of the testbed.

Kaiser et al. [17] argue that a number of existing test suites
can be seen as reference implementations of one or more kernels
from TORCH. Examples include EEMBC [1], HPC Challenge

[2], ParBoil [3], SPEC [4], NAS Parallel test suites [6], PARSEC
[8], Rodinia [9], LINPACK [13], STREAM [21], STAMP [22],
SPLASH [30], and pChase [31]. Although in principle these test
suites can be parameterized and used for autotuning, none ofthem
are developed specifically for evaluating the performance of the
search problem in autotuning. Hence, there is a noticeable void in
the literature of test suite sets of well-formulated searchproblems
in autotuning.

The SPAPT set that we propose in this paper is based on [16,
17, 25, 26] and comprises representative examples from autotun-
ing in scientific applications. However,SPAPT differs from other
test suites in the following way: it is the only test suite in the au-
totuning literature that is exclusively designed for developing and
benchmarking optimization algorithms. InSPAPT, we make only
the search problem as a transparent entity—one can easily integrate
an optimization algorithm to tackle the search problem without
knowing the nitty-gritty details related to the code transformation
techniques, compiler specifics, and the target architecture. The par-
ticularity of a search problem inSPAPT is that it is a well-defined
mathematical optimization problem composed of a kernel, aninput
size, a set of tunable decision parameters, a feasible set ofpossible
parameter values, and an initial configuration of these parameters
and constraints.

3. Test Suite
In this section we provide a high-level overview of the test suite and
the chosen tuning directives. We then discuss their implementations
in Orio.

3.1 Reference kernels and search problems

We use the termkernels to refer to (deeply) nested loops that arise
frequently in a number of scientific application codes. Because they
contribute significantly to the overall execution time, tuning these
kernels can result in significant overall application performance
improvements [12]. A range of transformations can be applied
leading to better utilization of the memory hierarchy and aiding in
exploiting shared-memory parallelism on multicore architectures.
TheSPAPT benchmark that we propose in this paper comprises 18
such kernels. These kernels are grouped into four groups as in [26]:
linear algebra computation kernels, linear algebra solverkernels,
stencil code kernels, and data-mining kernels.

Linear algebra computation kernels. These kernels involve a set
of mathematical computations performed on scalars, vectors,
and matrices. Because of the wide range of applications that
adopt these kernels, autotuning these kernels is a popular topic
of research and development. In this group we have ten ker-
nels that involve elementary linear algebra operations such as
vector/matrix/tensor multiplications and transposes. See Table
1 for a summary of the operations involved.

Linear algebra solver kernels.Linear algebra solvers find solu-
tions to a system of linear equations. In this group, we have
kernels from the BiCGStab linear solver (BiCG) andLU, which
decomposes a matrix into a product of lower and upper triangu-
lar matrices.

Stencil code kernels.Stencil codes follow a regular pattern to ac-
cess and update array elements. They are commonly used in im-
plicitly and explicitly solving partial differential equations [18].
In this group, we have four kernels from ADI preconditioners
(ADI), Jacobi 1-D (Jacobi-1d), Seidel stencil (Seidel), and
3-D stencils computations (Stencil3d).

Data mining kernels. In this group, we have two kernels: corre-
lation (COR) and covariance (COV) computations. They involve
finding statistical relationships among a number of random vari-
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Table 1. Collection of test suite kernels.
Transformations

Kernel Operation ni nb |D|

Linear algebra kernels
ATAX matrix transpose & vector multiplication 13 UJ, CT, RT, LPM 6 SR, AC, LV, OMP 1.65e+14
DGEMV scalar, vector & matrix multiplication 38 UJ, CT, RT, LPM 11 SR, AC, LV, OMP 2.73e+30
FDTD4d2d finite-difference time-domain kernel 25 UJ, CT, RT, LPM 5 SR, AC, LV, OMP 7.06e+24
GEMVER vector multiplication & matrix addition 18 UJ, CT, RT, LPM 6 SR, AC, LV, OMP 7.26e+17
GESUMMV scalar, vector, & matrix multiplication 8 UJ, CT, RT, LPM 3 SR, LV, OMP 1.56e+08
HMC Hessian matrix computation kernel 7 UJ, CT, RT, LPM 8 SR, AC, LV, OMP 1.01e+08
MM matrix multiplication 10 UJ, CT, RT, LPM 4 SR, AC, LV, OMP 1.83e+12
MVT matrix vector product & transpose 6 UJ, CT, RT, LPM 6 SR, AC, LV, OMP 1.38e+08
Tensor tensor matrix multiplication 17 UJ, CT, RT, LPM 3 SR, LV, OMP 5.49e+16
TRMM triangular matrix operations 20 UJ, CT, RT, LPM 5 SR, LV, OMP 5.33e+19

Linear algebra solvers
BiCG subkernel of BiCGStab linear solver 9 UJ, CT, RT, LPM 4 SR, AC, LV, OMP 9.33e+09
LU LU decomposition 9 UJ, CT, RT, LPM 5 SR, AC, LV, OMP 1.86e+10

Stencil codes
ADI matrix subtraction, multiplication, & division 16 UJ, CT, RT, LPM 4 SR, AC, LV, OMP 6.05e+15
Jacobi-1d 1-D Jacobi computation 8 UJ, CT, RT, LPM 3 SR, LV, OMP 1.55e+08
Seidel matrix factorization 12 UJ, CT, RT, LPM 3 SR, LV, OMP 6.86e+11
Stencil3d 3-D stencil computation 24 UJ, CT, RT, LPM 5 SR, AC, LV, OMP 2.35e+23

Data mining
COR correlation computation 16 UJ, CT, RT, LPM 4 SR, AC, LV, OMP 6.05e+15
COV covariance computation 20 UJ, CT, RT, LPM 5 SR, AC, LV, OMP 5.33e+19

ables, which is central to many statistical packages. The refer-
ence implementations are obtained from [26].

We take a searchproblem in SPAPT to mean a specific combina-
tion of a kernel, an input size, a set of tunable decision parameters,
a feasible set of possible parameter values, and a default/initial con-
figuration of these parameters for use by search algorithms.When
combined with a specific architecture and a single performance ob-
jectivef , both discussed further in Section 4, this search problem
is equivalent to the mathematical optimization problem

min
x

f(x)

x = (xB, xI) ∈ Ω,
such that xBj

∈ {0, 1}, j = 1, . . . , nb,
xIj

∈ {lj , · · · , uj}, j = 1, . . . , ni,

(1)

whereB andI denote a partitioning of the parameter vectorx into
nb binary andni integer scalars, respectively. Details on modeling
and formulating problems such as (1) are given in [7]. We denote
the collective feasible set for a given problem byD, which is
defined by three classes of constraints:

Bound constraints. All the parameters of the search problems are
bounded. Examples of these constraints include loop unroll
jam, where the values are positive and take integer values up
to an upper bound.

Known constraints. We have two subclasses of known constraints.
First are algebraic constraints, where the time required toverify
the feasibility (x ∈? D) of an arbitrary pointx ∈ Rn is negligi-
ble relative to the time required to evaluate the objectivef(x):
for example, limiting two register tiling parametersRTI , RTJ ,
to certain values satisfyingRTI ∗RTJ ≤ 150. Second are gen-
eral constraints that require execution of the code and could be
as expensive to evaluate as the objective: for example,power
consumption of a code run < 90 W. In all these constraints a
quantifiable measure of constraint violation is available.From
a mathematical optimization perspective, this is an important
measure as it can help the optimization algorithm move away
from regions of infeasibility.

Hidden constraints. These constraints are attributed to unsuccess-
ful code evaluations that occur due to transformation, compila-
tion, and run-time errors. While failure at the code transforma-
tion phase is relatively cheap, failure due to run-time errors is
expensive. In all these cases, a nonbinary measure of violation
is not available; hence, dealing with these constraints canbe
difficult.

From each tunable kernel, we generate four search prob-
lems. For example, for theATAX kernel, we haveATAX.01.N,
ATAX.02.N, ATAX.04.N, andATAX.01.N.nb. The naming con-
ventions take the following meaning:N is the (reference) input size
in ATAX.01.N; 2×N and4×N are the input sizes inATAX.02.N
andATAX.04.N, respectively. Note that the reference input size is
not limited to single-dimensional or square inputs; for nonsquare or
multidimensional inputs, instead ofN , we have{N1, N2, N3, . . .}.
ATAX.01.N.nb is obtained fromATAX.01.N by fixing the value of
all binary parameters to 0 (so that only integer decision parameters
are considered;nb refers to “no binary parameters”). The reason for
explicitly includingnb problems is that they can facilitate adoption
of advanced continuous numerical optimization algorithmsthat
treat integer parameters similar to real-valued ones.

We define the initial configuration of a problem as that obtained
by setting each integer variable to its lower bound and each binary
variable to 0 (false). Note that this corresponds to the implemen-
tation without any code transformation and optimization. In addi-
tion to the goals discussed in Section 1, these problems enable us to
study the impact of input size on performance tuning and to analyze
the smoothness in the search space (e.g., binary decisions such as
enabling or disabling OpenMP create discontinuities in thesearch
space).

Table 1 gives a high-level overview of the kernels and tun-
ing transformations considered for each kernel. Whenever appli-
cable, we adopt the following general-purpose, parameterized tun-
ing directives: loop unroll/jamming (UJ), cache tiling (CT), register
tiling (RT), loop permutation (LPM), scalar replacement (SR), ar-
ray copy optimization (AC), loop vectorization (LV), and multicore
parallelization using OpenMP (OMP). The Orio implementations
of these transformations are described in [15, 16].
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3.2 Orio-specific implementations

Orio [16, 25] is a recently developed extensible and portable soft-
ware framework for empirical performance tuning. It takes an Orio-
annotated C or Fortran implementation of a problem as input, gen-
erates multiple transformed code variants of the annotatedcode,
empirically evaluates the performance of the generated codes, and
has the ability to select the best-performing code variant using
some popular heuristic search algorithms. Orio annotations con-
sist of semantic comments that encode the computation. A separate
tuning specification contains various parameterized performance-
tuning directives and sizes of inputs to consider. In addition to the
general-purpose tuning directives such asUJ, CT, RT, LPM, SR,
AC, LV, andOMP, Orio supports a number of architecture-specific
optimizations (e.g., generating calls to SIMD intrinsics on Intel and
Blue Gene/P architectures). We refer the reader to [16, 25] for a de-
tailed account on annotation parsing and code generation schemes
in Orio.

SPAPT is intended to be used for evaluating the search ap-
proaches in any autotuning system. By integrating it with Orio we
provide an immediate demonstration of its use and enable future
use by other autotuning packages as interfaces to them are added
during Orio development (Orio already interfaces to a number of
third-party transformation and search tools and will continue to add
more).

From an optimization perspective, for a given search problem,
one needs to know the tunable parameters, possible values for
each parameter, and a starting parameter configuration. A concrete
annotation example is shown in Figure 1. Note that for brevity,
we skip other important regions of the annotation such as the
tuning directives, kernel, and compiler options in the annotation.
The example shows tunable performance parameters forCT, AC,
UJ, SR, LV, and OMP; their possible values together with the
constraints onCT andUJ; and the input size. In Table 1, the column
|D| shows, for each kernel, the number of feasible decision points,
which ranges between1.01e + 08 and2.73e + 30.

SPAPT is made available for download with Orio at
trac.mcs.anl.gov/projects/performance/wiki/Orio. Read-
ers can also browse the benchmark set at
http://trac.mcs.anl.gov/projects/performance/browser/
orio/testsuite/SPAPT.v.01.

4. Illustrative Experiments
In this section, we present an illustrative experimental study on
several problems from the benchmark set. We use the results of this
study to discuss some of the characteristics of problems inSPAPT

that are highly relevant for autotuning.
Experiments are carried out on dedicated nodes of the Fusion

cluster at Argonne National Laboratory. Each node of Fusioncon-
tains two Intel Nehalem series quad-core 2.53 GHz processors, 64
KB L1 cache/core, 256 KB L2 cache/core, and 36 GB of memory
running the stock Linux kernel version 2.6.18 provided by RedHat.

4.1 Effect of cache misses and the impact of performance
metric choice

When a code is transformed and compiled with respect to a given
parameter configuration, typically it has to be run on the target
machine a number of times to overcome variations resulting from
factors such as operating system noise and compulsory, capacity,
and conflict cache misses. Hence, modeling decisions related to
the performance objective can play a significant role in the tuning
process, in particular, when we havea priori knowledge on the data
access patterns of the given application. InSPAPT we intentionally
do not specify a fixed form of the objective, because it can depend

def performance_params
{
# Cache tiling
param T1_I[] = [1,16,32,64,128,256,512];
param T1_J[] = [1,16,32,64,128,256,512];
param T2_I[] = [1,64,128,256,512,1024,2048];
param T2_J[] = [1,64,128,256,512,1024,2048];

# Array-copy
param ACOPY_A[] = [False,True];

# Unroll-jam
param U_I[] = range(1,31);
param U_J[] = range(1,31);

# Scalar replacement
param SCREP[] = [False,True];

# Loop Vectorization
param VEC[] = [False,True];

# Parallelization
param OMP[] = [False,True];

# Constraints
constraint tileI = ((T2_I == 1)
or (T2_I % T1_I == 0));
constraint tileJ = ((T2_J == 1)
or (T2_J % T1_J == 0));
constraint reg_capacity = (2*U_I*U_J +
2*U_I + 2*U_J <= 130);

}

let SIZE = 1000;

def input_params
{

param MSIZE = SIZE;
param NSIZE = SIZE;
param M = SIZE;
param N = SIZE;

}
/*@ begin Loop(

/* transform module */

/* kernel code */

) @*/
/*@ end @*/

Figure 1. Parameter specification and constraint example in Orio.

heavily on the target architecture and the choice of the performance
metric (e.g., runtime, flops, or power).

In our exploratory studies, we consider minimizing the runtime
for each problem. Many performance metrics can serve as an opti-
mization objective in (1), including

f(x) =
1

m

m∑

i=1

ri(x),

f(x) = mediani=1,...,mri(x),

f(x) = min
i=1,...,m

ri(x),
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Table 2. Estimated mean and standard deviation of the runtime for
35 runs at the initial parameter configuration.

Problem µ̂init σ̂init

ATAX 0.0052 2.05e-05
BiCG 0.0040 5.68e-06
COR 0.0009 1.62e-06
DGEMV 0.0100 5.33e-06
GEMVER 0.0328 3.71e-04
GESUMMV 0.0259 4.54e-05
Jacobi 0.0004 1.45e-06
MM 0.0211 3.58e-06
MVT 0.0017 7.18e-06

f(x) = r3(x),

where{r1(x), . . . , rm(x)} denote a sequence ofm runtime real-
izations for parameter configurationx, and these objectives denote
the mean, median, minimum, and third realized time, respectively.
Performance objectives other than the mean, including those given
above and quantile-based metrics, can be adopted based on the ul-
timate goals of the performance tuning process.

Next we discuss various considerations related to performance
objectives givenm = 35 consecutive replications, without flush-
ing the data from cache, for each run. The sample mean runtime
is often used to approximate uniform system conditions because it
can asymptotically reduce nondeterministic variations inthe runs.
In Table 2, we show the sample meanµ̂init and standard devia-
tion σ̂init of the runtime for 35 runs at the initial parameter con-
figuration for some problems with input sizeN . The mean is sta-
ble to three or four significant digits considering the relative noise
(σ̂init/

√
35µ̂init).

Figure 2. Comparison of performance objectives on theSPAPT

problemATAX.01.N.

Figures 2 and 3 show a comparison of the mean, median, mini-
mum, and third runtime values of 5,000 random parameter config-
urations in|D|. Note that all the configurations in thex axis are
sorted with respect to the mean, so that the mean is monotone in-
creasing. The results show that in a large number of parameter con-
figurations fromATAX.01.N (Figure 2), the median, minimum, and
third runtime differ significantly from the mean. However, these
metrics are similar to each other on the results for the problem
stencil-3d.01.N (Figure 3). SinceATAX and stencil3d ker-
nels are memory- and computation-bound, respectively, thefor-
mer is more sensitive to cache misses than the latter. Figures 4

Figure 3. Comparison of performance objectives on theSPAPT

problemstencil-3d.01.N.

and 5 show the percentage of configurations with maximum run-
time for each replication number. ForATAX.01.N, in 80% of 5,000
configurations, the first run has the maximum runtime, whereas in
stencil3d this drops to 25%. Figure 6 shows the runtime realiza-
tions as a function of the replication number for the initialconfigu-
ration ofATAX.01.N. As expected, the execution times of the first
few runs are longer than those of the other runs. Note that theper-
formance objective of the third runtime value is explicitlydesigned
to take this into account.

From the modeling perspective, these results imply that when a
kernel is highly sensitive to cache misses, one has to be careful with
the choice of the performance objective. Inside an application, if the
data required for a particular kernel is normally not present in cache
when the kernel is executed, the tuning process must reflect this by
flushing the cache for each replication. On the other hand, even if
the kernel is highly sensitive to cache misses but it is knownthat the
required data is present in cache when the kernel is invoked,then
we must ignore first few repetitions during tuning. Further,when
the kernel is compute-bound and not sensitive to cache misses,
tuning with a large number of repetitions results in a waste of
resources. In such cases, the third runtime value is a good choice.
In the rest of this section, we use the widely adopted mean runtime
(in 30 replications) as the performance metric.

4.2 Impact of the target machine

We now analyze the impact of different architectures on the mean
runtime of the parameter configurations fromSPAPT problems.
In addition to Fusion, we use two large-scale leadership comput-
ing machines: Intrepid (IBM Blue Gene/P) from Argonne National
Laboratory and Hopper (Cray XE6) from the National Energy Re-
search Scientific Computing Center. Each node of Intrepid con-
tains IBM PowerPC 850 MHz quad-core processors with 32 KB
L1 cache, 4 128 byte-line buffers L2 cache, 8 MB L3 cache, and 2
GB of memory running Compute Node Kernel OS. Each node of
Hopper contains 2 twelve-core AMD MagnyCours 2.1 GHz pro-
cessors with 64 KB L1 cache, 512 KB L2 cache, 6 MB L3 cache,
and 32 GB of memory running Cray Linux Environment OS.

Figure 7 shows the mean runtime correlation between the con-
figurations fromATAX.01.N on Intrepid and Fusion. We observe
that high-performing parameter configurations for Fusion (mean
runtime between 0.001 and 0.005 seconds) obtain poor mean run-
times (between 0.02 and 0.04 seconds) on Intrepid and vice versa.
We found that enabling OpenMP in Fusion degrades the perfor-
mance of the code because of the OpenMP overhead. However, in
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Figure 4. Effect of cache misses on theSPAPT problem
ATAX.01.N: percentage of configurations with maximum runtime
as a function of replication number.

Figure 5. Effect of cache misses on theSPAPT problem
stencil3d.01.N: percentage of configurations with maximum
runtime as a function of replication number.

Intrepid it leads to performance improvements because Intrepid has
slower processors and a smaller L1, L2, and memory per core. The
two distinct clusters of configurations in Figure 7 correspond to the
codes with OpenMP enabled and disabled. Nevertheless, Fusion is
closer to Hopper in terms of computing power and memory. From
Figure 8, we can observe that the mean runtime of the parameter
configurations run on Fusion and Hopper exhibit high correlation.

4.3 Performance objective density

A naive way to assess the difficulty of an optimization prob-
lem in SPAPT consists of sampling parameter configurations at
random and measuring the density of their performance objec-
tives. In Figures 9, 10, 11, and 12, we show histograms of the
objective values obtained on 5,000 random parameter configura-
tions on different problems from the benchmark set. We observe
that for ADI.01.N and DGEMV.01.N problems, the number of
high-performing parameter configurations is low compared with
that for theGEMVER.01.N and SEIDEL.01.N. We expect that a
simple random search can find high-performing configurations
for GEMVER.01.N and SEIDEL.01.N, for which there are many
high-performing parameter configurations, whereasADI.01.N and

Figure 6. Effect of cache misses on theSPAPT problem
ATAX.01.N: runtime realization as a function of replication num-
ber.

Figure 7. Mean runtime correlation between the configurations
from Intrepid and Fusion on theSPAPT problemATAX.01.N.

DGEMV.01.N problems might require sophisticated search algo-
rithms. Given the large search space of the optimization problems
and the number of random parameter configurations considered,
the density results should be treated as baseline results; they should
not be taken as an exhaustive metric for assessing the difficulty of
solving a particular search problem in the benchmark.

4.4 Impact of input size

Another factor that plays a crucial role in autotuning is thesize of
the arrays involved in the computation. In most cases, tuning has
to be performed for a number of different input sizes becausethe
best parameter configuration obtained for one input size is not nec-
essarily the best for a different input size. In some cases, however,
parameter configurations can be generalized. This is illustrated in
Figures 13 and 14, which shows the correlation between the objec-
tives for different instance sizes. In problems based on theATAX
kernel (see Figure 13), a large number of high-performing parame-
ter configurations for input sizeN become less effective for input
size4N . This result occurs because transformations targeting dif-
ferent levels of the memory hierarchy would not produce the same
effect on a computation that can fit in registers or L1 as they would
on an instance that does not fit in any level of cache. Nevertheless,
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Figure 8. Mean runtime correlation between the configurations
from Hopper and Fusion on theSPAPT problemATAX.01.N.

Figure 9. Histogram of mean runtime from 5,000 random code
variants inD on theGEMVER.01.N problem.

the results for problems based on theBiCG kernel (see Figure 14)
show that high-performing parameter configurations are generaliz-
able for certain types of computations.

5. Conclusions and Future Directions
Motivated by a lack of a test suite of search problems in autotuning,
we developedSPAPT. Each problem inSPAPT is a well-defined
mathematical optimization problem based on a representative ker-
nel from a scientific application, parameterized tuning directives,
acceptable values for each parameter, input sizes, and an initial
configuration for search algorithms. To the best of our knowledge,
SPAPT is the first test suite in the autotuning literature that is de-
signed for analyzing and benchmarking mathematical optimization
algorithms. We implemented all these problems in an annotation-
based language that can be processed by Orio, a recently developed
performance tuning software framework. We conducted illustrative
experiments to show performance impacts of problem characteris-
tics such as choice of performance objectives, noise, effect of cache
misses, target machines, and input sizes.

SPAPT has the potential to improve the state of the art in au-
totuning. On the one hand, our easily accessible, portable Orio
implementation of the test suite can encourage mathematical op-

Figure 10. Histogram of mean runtime from 5,000 random code
variants inD on theSEIDEL.01.N problem.

Figure 11. Histogram of mean runtime from 5,000 random code
variants inD on theADI.01.N problem.

timization researchers to develop optimization algorithms without
knowing the fine details of compiler optimization and performance
tuning. On the other hand, it can help the autotuning community
conduct systematic experimental studies of the existing optimiza-
tion algorithms and better understand the role that different trans-
formations play.

In addition to the limitations of any test suite described inSec-
tion 1,SPAPT has the following limitations at present. It deals only
with codes that run on a single node and does not provide any codes
that run on parallel machines. As a starting point, we focused on
some of the widely used scientific kernels in the autotuning liter-
ature. A possible bias in the test suite is that a large numberof
problems deal with linear algebra-related computations. We used
only the set of parameterized code transformations supported by
Orio. While these transformations are highly relevant for single-
node performance, distributed-memory parallel codes demand dif-
ferent set of transformations.

We plan to continue to extend the application space and numer-
ical and scientific problem domain coverage of the test suite. In
particular, we will define search problems using additionalkernels
from TORCH. We will useSPAPT to understand the search prob-
lem characteristics, to benchmark existing optimization algorithms,
and to develop efficient optimization algorithms for autotuning. We
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Figure 12. Histogram of mean runtime from 5,000 random code
variants inD on theDGEMV.01.N problem.

Figure 13. Mean runtime correlation between the configurations
from theATAX.01.N andATAX.04.N problems.

will investigate further the impact of different target machines on
the performance objectives of theSPAPT problems. We also intend
to build a database of tabulated execution times to further facilitate
benchmarking of search algorithms.

Figure 14. Mean runtime correlation between the configurations
from theBiCG.01.N andBiCG.04.N problems.
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