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Obtaining Quadratic Models of Noisy Functions1

Aswin Kannan and Stefan M. Wild

Abstract

When derivatives of a nonlinear objective function are unavailable, many derivative-

free optimization algorithms rely on interpolation-based models of the function. But

what if the function values are contaminated by noise, as in most of the simulation-

based problems typically encountered in this area? We propose to obtain linear and

quadratic models by using knowledge of the level of noise in a function. We develop an

efficient algorithm for obtaining the model coefficients, and we analyze the properties

of the corresponding quadratic program.

1 Introduction and Motivation

A common theme [3,4,15–17] in derivative-free optimization is the use of a quadratic model

q(x) = c+ gTx+
1

2
xTHx (1)

to approximate a function whose derivatives are unavailable or intractable to approximate

directly. The pn := (n+1)(n+2)
2 model coefficients (c, g,H = HT ) are typically obtained by

requiring that the quadratic satisfy interpolation conditions of the form

q(xi) = fi i = 1, . . . ,m, (2)

where the function values f1, . . . , fm are known at the m points in X = {x1, . . . , xm} ⊂ R
n.

In practice, the number of available function values m is often strictly less than pn. In

this case, methods (such as [4,17]) often resolve the remaining degrees of freedom in (2) by

minimizing the Frobenius norm of the Hessian,

min
c,g,H=HT







1

2
‖H‖2F =

1

2

n∑

i,j=1

H2
i,j : q(xi) = fi, i = 1, . . . ,m






. (3)

Previous works (see [3, 17]) provide conditions on X so that unique solutions to (3) are

obtained for arbitrary values of f ∈ R
m.

In practice, however, objectives with unavailable derivatives are typically based on de-

terministic simulations that rely on adaptive and/or iterative finite-precision computations,
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Figure 1: Least-squares quadratic q2 from (5) and the proposed quadratic qǫ from (4) for

three values of ǫ.

which result in computational noise contaminating the function values obtained. Noise can

be the result of other approximations or errors made in computing the function values. This

noise can destroy smoothness in the underlying process being simulated and, in some cases,

can hamper the progress of methods employing interpolation-based models.

In this paper we address this noise directly by relaxing the interpolation conditions (2).

Our approach is to enlarge the feasible region in (3) to account for absolute errors of size

ǫ. For notational ease, we begin by assuming ǫ is a scalar uniform bound, but more general

ǫ ∈ R
m
+ are straightforward.

We obtain the quadratic coefficients by solving the parametric convex quadratic program

P(X , f, ǫ) ≡ min
c,g,H=HT

{
1

2
‖H‖2F : |qǫ(xi)− fi| ≤ ǫ, i = 1, . . . ,m

}

. (4)

A primary benefit of this approach is that it incorporates knowledge of the magnitude of the

noise. The value of ǫ can reflect a bound on the absolute errors, a regularization tolerance

that depends on the size of a neighborhood of interest, or can be a small factor times the

noise level (standard deviations) computed in [12].

Alternatively, provided that m > pn, one can follow the approach of [2] and determine

the least-squares solution to (2), which may no longer correspond to a quadratic that inter-

polates the data. This approach seeks the coefficients that solve the optimization problem

min
c,g,H=HT

{
m∑

i=1

(q2(xi)− fi)
2

}

. (5)

The solid line in Figure 1 illustrates the least-squares quadratic, q2, along with our

proposed quadratic, qǫ, for three values of ǫ on a univariate example. Here we see that
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when the noise is known to be large (ǫ = 0.2), the least-squares quadratic can be viewed

as an overfit of the data since a linear function would suffice as an approximation. As the

noise tolerance decreases, the quadratic qǫ becomes more nonlinear in order to better fit the

data. For small enough ǫ, we obtain a certificate that no quadratic passes within ǫ of the

given function values.

This simple example motivates the use of an absolute bound ǫ when forming an approxi-

mation model for optimization, sensitivity analysis, or other applications. In the remainder

of the paper we focus on analysis and techniques for solving the corresponding quadratic

program (4). In Section 2 we introduce a reformulation of the problem and provide local

approximation bounds on the resulting quadratic. Further analysis of the problem (4) is

provided in Section 3, including results on monotonicity of the solution and uniqueness of

the solution in special cases. We introduce a specialized active set method in Section 4

and examine the performance of a Matlab implementation of the method on a series of test

problems in Section 5 to illustrate its robustness in practice. In Section 6 we summarize

the main contributions of this paper.

2 Preliminaries

The interpolation conditions (2) can be represented as a linear system of the form

Φz = [Φl Φh]

[

zl

zh

]

= f, (6)

where z ∈ R
pn corresponds to a vector of the distinct coefficients (c, g,H = HT ) and

Φ ∈ R
m×pn is a particular quadratic basis evaluated at the m points in X , which can be

suitably partitioned into affine and nonlinear parts, denoted by the subscripts l and h,

respectively. One can easily show (see, e.g., [3]) that coefficients satisfying (2) exist if and

only if (6) has a solution. Results can be extended to the case when f is arbitrary or when

unique solutions are desired, by requiring that rank(Φ) = m and rank(Φ) = pn, respectively.

For notational convenience we will work with a specific basis defining the ith rows of Φl

and Φh to be given by [1, xTi ] and

[
1

2
X 2
1,i, · · · ,

1

2
X 2
n,i,

1√
2
X1,iX2,i, · · · ,

1√
2
Xn−1,iXn,i

]

,

respectively, where Xj,i denotes the jth component of xi. This basis means that ‖H‖F =

‖zh‖2, so that (4) is equivalent to

min
z

{
1

2
zTh zh : −ǫ ≤ Φz − f ≤ ǫ

}

. (7)

When ǫ becomes sufficiently large, it is clear that H = 0 and there may be several

solutions (c, g, 0) to (4). For this reason, given a particular (X , f), we define

ǫ = ǫ(X , f) = min
ǫ,c,g

{
ǫ : |c+ gTxi − fi| ≤ ǫ, i = 1, . . . ,m

}
(8)
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to be the first ǫ for which a linear model can be fit to (X , f).

Likewise, when ǫ becomes sufficiently small, the feasible region of (4) may become empty.

Hence, we define

ǫ = ǫ(X , f) = min
ǫ,c,g,H=HT

{

ǫ : |c+ gTxi +
1

2
xTi Hxi − fi| ≤ ǫ, i = 1, . . . ,m

}

(9)

to be the smallest ǫ for which a quadratic interpolating ǫ-perturbed function values exists.

One can view the quadratic q∞ resulting from (9) as an l∞-norm regression.

An easy consequence of these definitions, Proposition 2.1 shows cases of particular in-

terest: when ǫ ∈ [ǫ, ǫ] exist.

Proposition 2.1. For all finite data (X , f),

0 ≤ ǫ ≤ ǫ < ∞. (10)

Furthermore, if Φz = f has no solution, then ǫ > 0.

Proof. The three inequalities in (10) are an immediate result of the absolute value, H = 0

being a special case of (9), and by setting (c, g,H) = 0 and ǫ = ‖f‖∞ in (9), respectively.

The second result is an immediate consequence of ǫ = 0 being infeasible for the definition

in (9).

Before proceeding, we comment on our particular form of the objective (4). Models that

minimize a measure of curvature play a large role in the context of approximation by splines

but are also increasingly common in optimization. For example, in model-based derivative-

free optimization, the curvature of an interpolating model directly appears in the bounds

for the zero- and first-order approximation errors of both underdetermined quadratic [3,17]

and radial basis function [18] models. Recent work [1] has also shown that pursuing other

metrics of a quadratic model’s Hessian can result in second-order approximations of special

classes of functions.

Three typical errors of interest are

ef (x) = f(x)− fs(x), (11)

eq(x) = q(x)− fs(x), (12)

eg(x) = ∇q(x)−∇fs(x) = Hx+ g −∇fs(x), (13)

where fs represents the true, underlying smooth function and f is the observed (assumed

deterministic) function. When function values are observed with error (ef (x) 6= 0), the

typical fully linear (quadratic) bounds described in [3] no longer apply. The following

theorem, proved in the appendix, illustrates how these errors can enter into approximation

bounds on some smooth (but unknown) function fs.

Theorem 2.2. Suppose that fs is continuously differentiable, that ∇fs is γf -Lipschitz con-

tinuous in B0 = {x : ‖x− xi0‖ ≤ ∆} with ∆ > 0, and that X ⊂ B0 contains at least n + 1

affinely independent points so that

Y =
1

∆
[xi1 − xi0 · · · xin − xi0 ]
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is nonsingular. Define ǫf := ǫ+maxi0,...,in |ef (xi)|. Then, if a quadratic q satisfies |q(xi)−
f(xi)| ≤ ǫ for all xi ∈ X , the following inequalities hold for any x ∈ B0:

|eq(x)| ≤ ∆2 (γf + ‖H‖F )
5
√
n‖Y −1‖+ 1

2
+ ǫf

(
2
√
n‖Y −1‖+ 1

)
, (14)

‖eg(x)‖ ≤ ‖Y −1‖√n

(
5

2
∆ (γf + ‖H‖F ) +

2

∆
ǫf
)

. (15)

By themselves (e.g., when ǫf = 0), the first terms of the right-hand sides (14) and (15)

provide the first-order Taylor-like error bounds pursued in [3], namely,

|eq(x)| ≤ κ0∆
2, ‖eg(x)‖ ≤ κ1∆,

for all x ∈ B0, with constants κ0, κ1 independent of both x and ∆. If the errors ǫf are of

order ∆2, these bounds can again be recovered. In the general setting, however, we note

that the presence of errors bounded away from zero results in the divergence of the gradient

error bound in (15) as ∆ is reduced.

3 Properties

In this section we analyze the parameterized quadratic program (4) (and its equivalent form

(7)) and its dependence on the inputs (X , f, ǫ). The following proposition discusses a special

case when Φl is of full rank.

Proposition 3.1. If m > pn− (n+1) and Φl is not of full column rank, then Φ = [Φl, Φh]

is not of full row rank.

Proof. Since Φl is not of full column rank, let ρ ∈ R
n+1 be a nontrivial dependence relation

on the columns of Φl:

ρ1X1,i + ρ2X2,i + · · ·+ ρnXn,i + ρn+1 = 0, i = 1, . . . ,m.

Multiplying by Xj,i, for j = 1, . . . , n, we obtain

2ρj(
1

2
X 2
j,i

︸ ︷︷ ︸

jth col. of Φh

) = −
∑

k 6=j

21/2ρk(2
−1/2Xj,iXk,i
︸ ︷︷ ︸

other cols. of Φh

)− ρn+1( Xj,i
︸︷︷︸

jth col. of Φl

), i = 1, . . . ,m. (16)

Let S = {j ≤ n : ρj 6= 0} and SC = {j ≤ n : ρj = 0} represent a partitioning of {1, . . . , n}.
Then, for j ∈ S, (16) shows that the jth column of Φh is linearly dependent on Φl and

Φh (but not the first n columns of Φh), leading to a total of |S| dependent columns. For

j ∈ SC , the dependence relation can be written as

∑

k∈S

ρkXj,iXk,i = −ρn+1Xj,i, i = 1, . . . ,m, (17)
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where the columns in the left-hand side are distinct for different j ∈ SC and do not include

the columns on the left-hand side of (16). Therefore there exist at least |S| + |SC | = n

columns in Φh that are linearly dependent on Φl and the other columns of Φh. Since

rank(Φl) < n + 1, there exists at least one column in Φl that is linearly dependent on the

remaining columns in Φl, and hence rank(Φ) ≤ pn − (n+ 1) < m.

Although it is useful primarily when m ∈ (pn − (n+1), pn], Proposition 3.1 shows that,

for these values of m, Φl is of full rank whenever Φ is. The algorithm presented in the next

section requires knowledge of the rank of submatrices of Φl at every iteration, and hence

Proposition 3.1 can be used to partially eliminate the need for performing an actual rank

check. This is especially beneficial when m ≥ pn is large.

The following proposition characterizes the relationship between the objective in the

parameterized program (7) and ǫ.

Proposition 3.2. Let zǫh be a solution to (7) for ǫ ≥ 0. Then,

‖zǫh‖ ≤ (1− αǫ)‖z0h‖, where αǫ = min

(
ǫ

‖f‖∞
, 1

)

. (18)

Moreover, if ǫu > 0 and ‖zǫuh ‖ 6= 0, then for ǫ > ǫu, ‖zǫh‖ < ‖zǫuh ‖.

Proof. Since z0h solves (7) for ǫ = 0, there exists z0l satisfying Φhz
0
h + Φlz

0
l = f . Let

z = (1− α)z0, where z0 = [z0h; z
0
l ] and α ≥ 0 is a constant. Then

‖Φz − f‖∞ = ‖(1− α)Φz0 − f‖∞ = α‖f‖∞.

Thus, for the α = αǫ ≤ 1 defined in (18), ‖Φz − f‖∞ ≤ ǫ, and hence

‖z0h‖ ≥ (1− αǫ)‖z0h‖ ≥ ‖zǫh‖,

where the last inequality holds because (1 − αǫ)z0h and zǫh are feasible and optimal for (7),

respectively.

For the second claim, let ǫu > 0, and take z = (1− α)zǫu for α > 0 and zǫuh 6= 0. Then

‖Φz − f‖∞ = ‖(1− α)Φzǫu − f‖∞ ≤ ‖Φzǫu − f‖∞ + α‖Φzǫu‖∞ ≤ ǫu + α(‖f‖∞ + ǫu).

For ǫ > ǫu and α = αu = min
(

ǫ−ǫu
ǫu+‖f‖∞

, 1
)

, it follows that ‖Φz − f‖∞ ≤ ǫ. Thus when

ǫ > ǫu, we have that αu > 0 and hence ‖zǫh‖ ≤ (1− αu)‖zǫuh ‖ < ‖zǫuh ‖.

Proposition 3.2 shows that the optimal objective, provided it is nonzero, is strictly

monotone in ǫ and that the optimal ‖zh‖ decreases at least linearly in ǫ. The next result

identifies the key properties of the active set that we will exploit in our algorithm to obtain

the quadratic qǫ.

Proposition 3.3. If

(A) Φ is such that any subset of n+ 1 rows of Φl are full rank,
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then the following hold:

1. Let Φ∗
l denote the rows of Φl corresponding to an active set at optimality of (8). If

ǫ > 0, then rank(Φ∗
l ) = n+ 1, and there are more than n+ 1 rows in Φ∗

l .

2. If ǫ > 0, then (8) has a unique solution.

3. Let Φ∗ denote the rows of Φ corresponding to an active set at optimality of (7). If Φ

is of full row rank and ǫ < ǫ, then rank(Φ∗) > n+ 1.

4. If Φ is of full row rank and ǫ < ǫ, then (7) has a unique solution.

Proof. 1. For an optimal solution (ǫ > 0, z∗l ) to (8) with an active set corresponding to

Φ∗
l , we have Φ∗

l z
∗
l = f∗ + ǫd∗, where f∗ represents the corresponding right-hand side

vector and d∗ is a vector with entries ±1.

Suppose that there are n + 1 or fewer rows in Φ∗
l . Then, by (A) the rows of Φ∗

l are

linearly independent, and hence there exists ẑl such that Φ∗
l ẑl = f∗. Thus

Φ∗
l (z

∗
l + α(ẑl − z∗l )) = f∗ + (1− α)ǫd∗,

for any α ∈ (0, 1). Since ǫ > 0, the active constraints are now active for a strictly

smaller ǫ = (1 − α)ǫ < ǫ. For α sufficiently small, the inactive constraints remain

inactive with (1− α)ǫ, and this situation contradicts the optimality of (ǫ, z∗l ). Hence

there are at least n+ 2 rows in Φ∗
l and by (A) n+ 1 are linearly independent.

2. Suppose that there exist two solutions z0l 6= z1l to (8). By convexity of (8), zαl =

(1 − α)z0l + αz1l , 0 ≤ α ≤ 1, represents a family of optimal solutions (infinitely

many solutions) to (8). Let Φ∗
l refer to one optimal active set. From the fact that

rank(Φ∗
l ) = n+ 1, the optimal solution z∗l corresponding to that active set is unique.

From the finiteness of m, the number of different active sets is finite, a contradiction

to the family of solutions. The claim follows.

3. Given ǫ < ǫ, for an optimal solution (z∗h, z
∗
l ) to (7) with an active set corresponding to

Φ∗, we have Φ∗z∗ = f∗ + ǫd∗, where f∗ represents the corresponding right-hand side

vector and d∗ is a vector with entries ±1. Suppose that there are n+ 1 or fewer rows

in Φ∗. Then, by (A) the rows of Φ∗
l are linearly independent, and hence there exists

z̄l such that Φ∗
l z̄l = Φ∗z∗. Thus for z̄ =

(

0

z̄l

)

,

Φ∗ (z∗ + α(z̄ − z∗)) = Φ∗z∗ = f∗ + ǫd∗,

for any α ∈ (0, 1). This shows that the active constraints are now active for a strictly

smaller ‖z̄h‖ = (1 − α)‖z∗h‖. For α sufficiently small, the inactive constraints remain

inactive, and this situation contradicts the optimality of (z∗h, z
∗
l ). Hence there are at

least n+ 2 rows in Φ∗.
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4. Suppose that there exist two solutions z0 6= z1 to (7). By convexity of (7), zα =

(1− α)z0 + αz1, 0 ≤ α ≤ 1, represents a family of optimal solutions (infinitely many

solutions) to (7). Let Φ∗ refer to one optimal active set. From the full rank of Φ and

from (A), the optimal solution z∗ is unique to a given Φ∗ (proved in Lemma 4.1). The

claim follows from a similar contradiction with respect to the finiteness of the number

of active sets, as stated in part (2) of the proposition.

If points in X are generated uniformly at random, then with probability 1 Φ is of full

rank and assumption (A) holds. We are interested in the general case of scattered data X ,

and hence assumption (A) will not be required to hold for the full matrix Φ. Instead, the

algorithm in the next section will operate with submatrices corresponding to a working set.

4 Algorithms: Interpolation and Noise

The previous section focused on theoretical properties. We now turn to algorithms for

solving (7). The diagonal structure of the objective, double-sided constraints, possibilities

of small values of ǫ, and ill-conditioned basis matrices are notable properties of (7) that we

address below.

Use of an interior-point scheme entails the use of slack variables, increasing the over-

all problem dimension by at least 2m. Motivated by the desire to solve overdetermined

(m > pn) as well as underdetermined cases (m ≤ pn) and to potentially not worsen the

conditioning of the present system, we employ an active-set scheme [9, 14] specialized to

suit our problem’s structure. An active set refers to the set of equality constraints and the

inequality constraints that are tight. The heart of an active set scheme lies in solving an

equality-constrained quadratic problem at every iteration. Throughout this paper, we treat

cases where ǫ ∈ R
m
+ is strictly positive. We also assume throughout that the problem has a

feasible solution, which can be detected by a linear feasibility test corresponding to (9).

Our methodology is summarized as Algorithm 1. From the positivity of ǫ, it is clear

that for any double-sided constraint, only one side can be active. Our algorithm uses this

feature and treats every double-sided constraint as a “single” constraint rather than as two

separate constraints.

For ease of notation, we drop the explicit iteration counter k dependence from the basis

matrices Φ. We take Φa to be the matrix of active constraints at iteration k:

Φa =

(

Φw

Φd

)

,

(

Φw

Φd

)

zk =

(

fw +Dwǫw

fd +Ddǫd

)

,Φw =
(

Φwh Φwl

)

,

where Φw and Φd represent the linearly independent (“working set”) and dependent rows

of Φa, respectively. We introduce a diagonal matrix D =

(

Dw 0

0 Dd

)

with entries ±1 to

handle the double sidedness of the constraints. Note that D refers to Dk with the iteration

suffixes dropped for notational convenience. Also note that the entry in D corresponding

to a constraint could be of different signs for different iteration suffixes k.
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Algorithm 1 Modified active-set scheme

Choose tolerance levels ψp > 0 and φλ > 0; set ψ > ψp, φ > φλ, and T = {1, · · · ,m}; and set k = 0.

Find a feasible solution z0 to (7) and compute an initial active set A0.

3: while ψ > ψp and φ > φλ
do

Partition Ak intoWk and Dk (sets of linearly independent and dependent constraints, respectively).

Set Ik = T k −
{

Ak
}

, nw = |Wk|, and nd = |Dk|.

6: Solve the active-set subproblem (19) to compute the direction pk and multipliers λk.

Set ψ = ‖pk‖.

if ψ > ψp
then

9: Set, αk = min
i∈Ik∪Dk

{

max

(

fi − Φiz
k − ǫi

Φipk
,
fi − Φiz

k + ǫi

Φipk

)}

to ensure that zk + αkpk is feasible.

if αk > 1 then

No blocking constraint is encountered; set αk = 1.

12: else

Add the blocking constraint to Wk, breaking ties lexicographically.

Modify Ak and Dk depending on whether the blocking constraint is from Ik or Dk.

15: end if

else

Set φ = mini(λ
k
i ) and αk = 0.

18: if φ < −φλ
then

if nd > 0 then

Drop (from Ak and Wk) the negative multiplier in λk with the least index.

21: else

Drop (from Ak and Wk) the most negative multiplier in λk.

end if

24: else

Optimality within tolerance is attained; exit.

end if

27: end if

Set zk+1 = zk + αkpk.

Update k ← k + 1.

30: end while

9



It suffices to solve the active-set subproblem with Φw instead of Φa,

min
ph,pl

{
1

2
pTh ph + pTh zh : Φwhph +Φwlpl = 0

}

, (19)

since Φwp = 0 implies that Φdp = 0. Letting Φ̂wl and Φ̃wl represent the linearly independent

and dependent columns of Φwl, respectively, we have that

Φwl =
(

Φ̂wl Φ̃wl

)

P, Φ̃wl = Φ̂wlσ, pl = P T

(

p̂l

p̃l

)

, (20)

where P is a permutation matrix. Setting p̃l = 0, we have that Φwlpl = Φ̂wlp̂l, and hence

(19) can be written as

min
ph,p̂l

{
1

2
pTh ph + pTh zh : Φwhph + Φ̂wlp̂l = 0

}

. (21)

Let λ represent the vector of multipliers corresponding to the equality constraints in (21).

The KKT necessary optimality conditions for the subproblem (21) are sufficient for opti-

mality due to convexity. These conditions can be compactly written as

(

ΦwhΦ
T
wh Φ̂wl

Φ̂T
wl 0

)(

λ

p̂l

)

=

(

Φwhzh

0

)

, (22)

or, equivalently,

(ZTΦwhΦ
T
whZ)λz = ZTΦwhzh

Y T Φ̂wlp̂l = Y TΦwhz
k
h − Y TΦwhΦ

T
whλ

λ = Zλz,

where Z refers to a basis for the null space of Φ̂T
wl and Y is a basis for the range space of

Φ̂wl. Y and Z can be obtained, for example, by a QR factorization of Φ̂wl.

4.1 Solving the active-set subproblem

Based on the previous discussion, solving the subproblem (21) is equivalent to solving the

linear system (22). Lemma 4.1 states when this linear system yields a unique solution.

Lemma 4.1. If the working set matrix Φw is of full row rank, then the following hold:

1.
(

Φwh Φ̂wl

)

is of full row rank;

2. ZTΦwhΦ
T
whZ is positive definite and (21) has a unique solution; and

3. M =

(

ΦwhΦ
T
wh Φ̂wl

Φ̂T
wl 0

)

is nonsingular.
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Proof. Dropping linearly dependent columns maintains the matrix rank, and hence the first

claim follows. The other results are standard (see, for example, [14, Chap. 16] and [17])

and rely on showing that ΦT
whZ is of full column rank.

The matrix denoted by M exploits the sparsity structure of the objective and solves a

small linear system. However, when the number of active constraints is close to pn or when

pn −m is small, we resort to solving the following system instead:

ZT
ΦQZΦt = ZT

ΦQz, p = ZΦt, Q =

(

I 0

0 0

)

,

where ZΦ denotes the null space matrix of Φ and the size of ZΦ would at most be pn ×
(pn −m).

4.2 Adding and deleting constraints

This section focuses on lines 13-14 (addition) and 19-23 (deletion) of Algorithm 1. Once (19)

is solved, we backtrack along the obtained direction pk to maintain feasibility. We let αk

refer to the backtracking parameter (line 9 in Algorithm 1) and let Φb refer to the blocking

constraint. If Φb is linearly independent of Φw, it is added to the working set (αk > 0);

otherwise it is added to the dependent active set (αk = 0). In case of a tie, the least index

is added to the working set.

If pk = 0, then progress cannot be made with the current working set. In this case (as

is done in a standard active-set scheme), we drop a constraint with a negative multiplier.

If there is no negative multiplier, the current solution and working set are optimal. In

cases of negative multipliers, Lemma 4.2 proves that descent is obtained in the subsequent

iterations.

Lemma 4.2. Let Φk
w refer to the matrix of the working set at iteration k, and let (Φk

w) =(

Φc

Φe

)

, where Φe is the constraint dropped (due to a negative multiplier) at the end of the

iteration (Φk+1
w = Φc). Then pk+1

h is nonzero and is a descent direction for (21).

Proof. Let λ and µ be the respective multipliers for Φc and Φe in the kth iteration, and let

λ̄ be the multiplier of Φc in the (k+1)st iteration. Let De be the scalar ±1 associated with

constraint e. Then, from

(

zkh
0

)

= −ΦT
c D

T
c λ− ΦT

e Deµ,

(

zkh + pk+1
h

0

)

= −ΦT
c D

T
c λ̄,

we have that (

pk+1
h

0

)

= −ΦT
c D

T
c (λ̄− λ) + ΦT

e Deµ. (23)

Since µ < 0 and Φc and Φe are linearly independent, pk+1
h 6= 0. Taking the inner product

of (23) and pk+1 and noting that Φcp
k+1 = 0, we have that 0 < ‖pk+1

h ‖2 = Φep
k+1(Deµ).
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If Deµ > 0, then Φep
k+1 > 0, while if Deµ < 0, then Φep

k+1 < 0; both cases implying

that feasibility is maintained with respect to the current working set. From pk+1
h 6= 0 and

from the uniqueness of pk+1
h , ‖zkh + pk+1

h ‖2 < ‖zkh‖2, imply that ‖pk+1
h ‖2 + (zkh)

T pk+1
h < 0.

Therefore,

α2‖pk+1
h ‖2 + α(zkh)

T pk+1
h ≤ α‖pk+1

h ‖2 + α(zkh)
T pk+1

h < 0,

for all 0 < α ≤ 1, implying that pk+1
h is a descent direction for (21).

When the active set has no dependent constraints, we drop the constraint with the

most negative multiplier. If the active set has dependent constraints, then we employ

Bland’s lexicographic rule (see, e.g., [10]) to prevent cycling (dropping the least index from

the negative multipliers). Moreover, in this case, we also backtrack on the set of active

dependent constraints in addition to the inactive indices in the subsequent iterations. At

any iteration, if zk is not optimal, descent is guaranteed after a finite number of iterations.

Given a working set, zkh is unique; since there are a finite number of working sets, this

procedure has finite termination.

4.3 Special case of Φ

An important feature of Algorithm 1 is that it operates for any general case, with no restric-

tions on X and f . In contrast, uniqueness of standard linear regression and interpolation

models heavily rely on linear independence assumptions (e.g., that Φl is of full rank) that

restrict the X that can be considered. Moreover, if the basis Φ is of full rank, it eliminates

possibilities of degeneracy and thereby results in considerably easier problems.

This motivates a more restrictive case of Φ given by the following assumption.

Assumption 4.3. Φ is of full row rank, and Φl is of full column rank.

Notably, in a pure interpolation problem (e.g., (7) with ǫ = 0), Assumption 4.3 guar-

antees uniqueness of the resulting quadratic model [17]. With purely theoretical interest,

we now propose a minor modification to Algorithm 1 when a working set does not satisfy

Assumption 4.3.

The following lemma states that Assumption 4.3 holds on the active-set matrix corre-

sponding to one optimal solution.

Lemma 4.4. Let Assumption 4.3 hold. Let Φ∗ be the matrix corresponding to the active

set of a solution z∗ to (7) and suppose rank(Φ∗
l ) < n+ 1. Then, for fixed z∗h, there exists a

z̃l and a larger active set with matrix Φ̃ =

(

Φ∗

Φν

)

such that rank(Φ̃l) = n+ 1.

Proof. LetN (Φ̃∗
l ) denote the null space of Φ̃

∗
l , and let the inactive constraints be represented

by I. For all j ∈ I, take

aj =
fj − ǫj − Φjz

∗

maxp∈N (Φ̃∗
l
)Φjp

, bj =
fj + ǫj −Φjz

∗

maxp∈N (Φ̃∗
l
)Φjp

, t = min
j∈I

(max(aj, bj)). (24)

12



Since N (Φ̃∗
l ) 6= {0}, we have that t > 0 is finite. Constraints Φν thus can be iteratively

added to the working set until the set of rows Φνl satisfies N (Φ̃∗
l ) ∩ N (Φνl) = {0}, or

equivalently, N (Φ̃l) = {0}.

With the above motivation, we modify the active-set scheme slightly and start with a

working set with rank(Φwl) = n + 1. In any subsequent iteration, when a constraint is

dropped that reduces the rank of Φwl, the above procedure of adding a new constraint is

employed. Theorem 4.5 establishes finite termination and convergence of this scheme.

Theorem 4.5. Let Assumption 4.3 hold, and let I denote the set of indices of the inactive

constraints at iteration k. Suppose the working active set represented by Φk
w =

(

Φc

Φe

)

has

rank(Φk
wl) = n + 1, with Φe denoting the constraint dropped from the working set (because

of a negative multiplier) such that rank(Φcl) < n+ 1. Then, the following hold:

1. There exists a ν ∈ I such that Φk+1
wl =

(

Φcl

Φνl

)

is of full column rank.

2. If Φν 6= Φe, then pk+1
h 6= 0 is a descent direction.

3. If Φν = Φe, then descent is seen or optimality is reached after a finite number of

iterations.

Proof. The first claim follows from Lemma 4.4. Let λ and µ be the Lagrange multipliers of

Φc and Φe, respectively, in the kth iteration, and let λ̄ and µ̄ be the Lagrange multipliers

of Φc and Φν in the (k + 1)st iteration. Then,

−ΦT
c D

T
c (λ̄− λ)− ΦT

ν Dν µ̄+ΦT
e Deµ =

(

pk+1
h

0

)

. (25)

For the second claim, Φν 6= Φe implies that Φc,Φν , and Φe are linearly independent and

Dν 6= −De.

Therefore µ̄ = µ = 0, is a contradiction, since µ < 0. Therefore, ‖pk+1
h ‖ 6= 0. Taking an

inner product with pk+1, we get 0 < ‖pk+1
h ‖2 = Φep

k+1(Deµ). If Deµ > 0, then Φep > 0;

and if Deµ < 0, then Φep < 0, ensuring feasibility. From the uniqueness of pk+1
h 6= 0, and

along similar lines to Lemma 4.2, one can easily see that pk+1 is a descent direction.

For the third result, Φν = Φe implies that Dν = −De. It suffices to analyze the case

‖pk+1
h ‖ = 0. Considering (25), µ̄ = −µ > 0 and λ̄ = λ. Therefore, the constraint Φc cannot

be dropped. If λ̄ > 0, then optimality is reached. With negative indices, the same procedure

can be repeatedly applied until all multipliers are positive or descent is obtained. The worst-

case number of iterations is the number of indices (finite) with negative multipliers at the

beginning of iteration k.

Convergence and finite termination follow. Note that if rank(Φl) = s < n + 1, then a

column reduction can be done initially (n+1 columns to s columns), and the same algorithm

can be applied.
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4.4 Bound-constrained formulation

When Assumption 4.3 holds, a bound-constrained version of (7) can be posed, with the

bounds parameterized by ǫ. In the next section we show that this formulation is useful in

practice for certain cases of (7). By introducing additional variables y, (7) can be written

as

min
−ǫ≤y≤ǫ

{

min
z

{
1

2
zTh zh : Φz − f = y

}}

, (26)

for some inputs (X , f, ǫ). The inner problem is an equality-constrained quadratic program,

with KKT conditions represented by linear equations of the form

(

λ

zl

)

= G

(

f + y

0

)

, G =

(

ΦhΦ
T
h Φl

ΦT
l 0

)−1

=

(

Gλ Gb

GT
b Gd

)

, zh = ΦT
hλ.

This inversion is possible only if Assumption 4.3 holds. In this case, (26) becomes

min
−ǫ≤y≤ǫ

{
1

2
yTMy + fTMy

}

, (27)

where M = GT
λΦhΦ

T
hGλ. We refer to the above as the bound-constrained formulation of (7)

and note the reduction in problem dimension (m ≤ pn).

5 Numerical Experiments

We developed a Matlab implementation of Algorithm 1, which does not require Assump-

tion 4.3. A linear feasibility solver was also implemented to compute an initial feasible point.

The linear feasibility phase also returns a corresponding initial basis matrix Φ that is scaled

and preconditioned. The feasibility solver solves (7) approximately and then warm starts

the active-set method from a feasible point close to the approximate solution. The entire

package is referred to as noqs (NOisy Quadratic Solver). The numerical experiments pre-

sented in this section were implemented in Matlab 7.11.0584 (R2010b) on a Linux operating

system with a quad-core 2.664 GHz processor and 4 GB of memory.

In this section, we compare the performance of noqs and three other Matlab-based solvers

for solving (7): minq [13], quadprog from the Matlab Optimization Toolbox [11], and qppal [8]

using filters. The solver minq makes use of the bound-constrained formulation discussed in

the previous section and thus requires Assumption 4.3. The solver quadprog can be used

without this assumption for two different formulations,

min
y,z

1
2z

T
h zh

subject to Φz = y + f

−ǫ ≤ y ≤ ǫ,

min
z

1
2z

T
h zh

subject to Φz ≤ f + ǫ

−Φz ≤ −f + ǫ.

(28)

The first formulation, which is also used by qppal, introduces additional variables y while

the second uses one-sided constraints. In our tests, we observed that quadprog performed
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much better using the second formulation; hence this is the version of quadprog we consider

in all results that follow. We note that quadprog handles the inequality constraints explicitly

as one-sided constraints.

We also tested warm-start versions of minq, quadprog, and qppal, whereby each solver

was given the initial z (and the corresponding preconditioned Φ) returned by the linear

feasibility routine of noqs. The suffix “ws” associated with solvers other than noqs denotes

this warm start. Since the time required for the linear feasibility phase is charged to these

solvers, we observed that minq-ws and qppal-ws were overall slightly slower than their non-

warm-started versions. Consequently, these two warm-start versions are not included in the

results presented in the sequel.

5.1 Test problems

The test set used for comparing the solvers consisted of two classes of problems: ones that

satisfy Assumption 4.3 (and thus can be solved by minq) and ones that do not, denoted by

Pm and Pr, respectively. The problems are summarized in Table 1. For each subset shown

in the table, problems were generated for eleven values of n, three noise levels, and three

values of m, leading to a subset total of 99.

In practice, we expect the allowable perturbation ǫ to model both absolute noise, ǫ = ǫae,

and relative noise, ǫ = ǫr|f |, where ǫa and ǫr are positive scalars and e denotes a vector

of ones. Our test includes three levels of noise (values of ǫa and ǫr), {10−5, 10−3, 10−1}.
In the case of relative noise, however, so that the alternative algorithms would be given as

favorable inputs as possible, we ensure that the corresponding absolute perturbations are

not too small and therefore set ǫ = max
{
ǫr|f |, 5 · 10−8

}
, with the max taken component-

wise.

For both ill-conditioned and nicely conditioned X , function values f were obtained by

both random number generators and by evaluating noisy quadratics. For underdetermined

cases, overdetermined cases, and degenerate cases in Pr, n was varied in {10, · · · , 40},
{10, · · · , 30}, and {10, · · · , 20}, respectively. These ranges are indicative of the typical di-

mensions seen in derivative-free optimization. For each underdetermined case, three values

of m ∈ [4n, 6n, pn] were considered. For each overdetermined case, m took three values

(⌈1.2pn⌉, ⌈1.5pn⌉, 2pn). The size of the resulting quadratic programs ranged from 66 vari-

ables and 40 constraints to 861 variables and 992 constraints. We note that the constraint

matrices Φ are dense and that all of the problems are feasible by construction. The test

problems and the noqs solver are available at http://www.mcs.anl.gov/~wild/noqs/.

5.2 Stationarity and feasibility metrics

Computation time (“time” refers to CPU time throughout this section) and measures of

stationarity and infeasibility are the metrics we used to compare the performance of all the

solvers. Prior to defining these metrics, we restate a measure from [6] for computing the
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Table 1: Characterization of the test problem sets Pm and Pr.
Nicely cond. X Ill cond. X

Pm Underdetermined (m ≤ pn)
Absolute noise 198 99

Relative noise 0 99

Pr

Overdetermined (m > pn)
Absolute noise 99 99

Relative noise 0 99

Degenerate Φ∗ and m ≤ pn Absolute noise 99 0

Rank-deficient Φ and m ≤ pn Absolute noise 99 0

relative distance δ, between two scalars:

δ[a, b] = min

{

|a− b|, |a− b|
|a|+ |b|

}

,

with δ(0, 0) = 0 and satisfying 0 ≤ δ ≤ 1. Extending this to vectors x, y ∈ R
p , we define

the distance d ∈ R
p by

di[x, y] = δ[xi, yi], i = 1, . . . , p,

with corresponding distance metric ‖d[x, y]‖.
We denote the solution from solver s on problem p ∈ Pm ∪Pr by zs,p. The solvers noqs,

qppal, and quadprog also return corresponding multipliers. Although the formulations used

by these solvers are different, the multipliers λs,p corresponding to the formulation (7) can

be obtained from elementary rearrangement operations.

The solver minq does not return the multipliers with its solution ys,p. Given ys,p, however,

one can estimate the corresponding λs,p by solving

min
λ

{
‖Mys,p +Mfp − λ‖2 : 0 ≤ −y

s,p
i λi ⊥ (ǫpi )

2 − (ys,pi )2 ≥ 0, i = 1, . . . ,m
}
. (29)

If minq returns a solution ys,p that is optimal, then one can show that the multipliers

obtained by solving (29) are equal to the optimal multipliers obtained by solving (7). This

entails proving that ΦTMΦ = I, which follows from Assumption 4.3 and basic linear algebra.

The solution to (29) can be further simplified as follows:

λ
s,p
i =







max (Mi(y
s,p + fp), 0) if ys,pi = −ǫ

p
i

min (Mi(y
s,p + fp), 0) if ys,pi = ǫ

p
i

0 otherwise,

(30)

for i = 1, . . . ,m.

The problem of ultimate interest (7) is characterized by double-sided constraints with

a narrow band of feasibility as result of small ǫ. For instance, consider the case of zs,p

being infeasible by an order of ǫ. When ǫ is small, the absolute error is negligible but

the relative error is high. To make sure that our feasibility and stationarity metrics are

scale-invariant, we normalize the constraints by ǫ and define our measures accordingly. We

employ a feasibility metric vf defined by

v
f,s,p
i =







0 if − 1 ≤ Φp
i z

s,p−fp
i

ǫpi
≤ 1

min
(

δ
[
Φp

i z
s,p−fp

i

ǫpi
,−1

]

, δ
[
Φp

i z
s,p−fp

i

ǫpi
, 1
])

otherwise,
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where we note that the above normalization can also account for differences in sign. The

metric for optimality, vo, is given by the measure of stationarity

vo,s,p = d

[(

z
s,p
h

0

)

, (Φp)Tλs,p

]

.

For given tolerance levels τ f and τ o, solver s is considered to have solved problem p if
∥
∥
∥vf,s,p

∥
∥
∥ ≤ τ f and ‖vo,s,p‖ ≤ τ o. (31)

5.3 Solver termination and benchmarking

Using a solver’s default termination conditions may result in suboptimality or delayed termi-

nation with a sufficiently optimal solution. For example, solvers may have different internal

termination criteria and preset tight tolerances. A common criterion used by each tested

solver is the maximum number of outer iterations allowed. For quadprog and noqs, this

refers to the number of active set iterations; for qppal and minq, this refers to the sequences

of bound-constrained quadratic subproblems and the subspace minimization problems, re-

spectively. However, running each solver for progressively increasing values of these outer

iteration numbers and computing feasibility and optimality metrics at regular intervals

would be an extremely time-consuming way to check for consistent termination. On the

other hand, running the solvers progressively by using the respective previous solutions can

propagate infeasible solutions in an adverse way.

Therefore, for this study we ran each solver for a large number of maximum outer

iterations and recorded the history of the solution iterates, multipliers, and computational

time at intermediate intervals. We computed the metrics of optimality and feasibility at

these intervals. If termination criteria were satisfied at these intermediate intervals, then the

process of checking was stopped and the solver time set to the corresponding computational

time from the history. The maximum number of active-set iterations was set to 10,000 for

quadprog and noqs, and the maximum number of major iterations and subspace steps for

qppal and minq were set to be 500 and 5m, respectively.

The process is summarized by Algorithm 2. Abusing notation, zk and λk refer to the

solution iterates and multipliers at the kth history point.

With the computational time ts,p, the performance profile [6] for solver s is given by

ρs(γ) =
1

|P|

∣
∣
∣
∣

{

p ∈ P :
ts,p

mins ts,p
≤ γ

}∣
∣
∣
∣
,

for γ ≥ 1. We define the feasibility profile of solver s by

ωs(γ) =
1

|P|
∣
∣
∣

{

p ∈ P : ‖vf,s,p‖ ≤ γ
}∣
∣
∣ ,

for γ ≥ 0. Both the performance profile ρs(γ) and feasibility profile ωs(γ) can be interpreted

as cumulative distribution functions.

17



Algorithm 2 Solver termination
Run solver s on problem p by fixing the maximum outer iterations to kcurr; initialize t

s,p =∞

Set feasibility and optimality termination criteria τ f > 0 and τ o > 0, respectively

3: Set termination flag θ = 0, k = 1 and kh to be equal to the total number of recorded history points

while k ≤ kh and θ = 0 do

Compute vf,s,p and vo,s,p from zk and λk

6: if ‖vf,s,p‖ ≤ τ f and ‖vo,s,p‖ ≤ τ o then

Set θ = 1

Set ts,p to be equal to the computational time taken by the solver at the kth history point

9: end if

Set k = k + 1

end while
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Figure 2: (Left) Performance profiles ρs(γ) of computation time on problem set P = Pm.

(Right) Computation times (log-scale) for the 11 problems in Pm with ǫa = 10−1,m = pn,

and ill-conditioned X .

5.4 Underdetermined problems

We first consider P = Pm, corresponding to the subset of test problems that can be for-

mulated as bound-constrained quadratic programs (BCQPs). Figure 2 (left) shows the

performance profiles for time using the tolerance levels τ f = τ o = 10−4.

We observed that qppal takes comparatively longer to obtain feasible solutions when the

number of constraints (m) increases or when ǫ becomes small. Even when qppal begins with a

feasible point (through the noqs warm start), subsequent iterates tend to get infeasible while

minimizing the objective. This situation is to be expected because qppal is not specially

designed for the feasibility regions that are thin (as a result of double-sided constraints with

tight bounds) and defined by relatively large numbers of constraints.

We attribute minq’s excellent performance primarily to the use of the BCQP formulation,

with all variables y bounded by comparatively smaller values. In this case, the problem is

scaled such that the bounds are normalized, and thus the Hessian matrix M is effectively
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Figure 3: Infeasibility profiles ωs(γ) on problem set P = Pm (left); infeasibility versus

condition number of Φ (right).

replaced by ǫaM . When ǫa is small, the quadratic terms do not dominate, thereby making

gradient projections highly effective. For larger values of ǫa, however, noqs often performs

better than minq. This situation is illustrated in Figure 2 (right), which shows the compu-

tation times on the subset of 11 problems in Pm with absolute noise ǫa = 10−1,m = pn,

and ill-conditioned X . One can also see that quadprog is slow in comparison with minq and

noqs.

Figure 3 (left) shows the infeasibility profiles, and Figure 3 (right) shows the variation of

the measure of infeasibility, vf , with respect to the condition number of Φ for minq and noqs.

The infeasibilities encountered by minq can be attributed to the inversion of the matrix G

(required by the BCQP formulation) and the conditioning of M . The inversion of G is a

saddle-point problem and can be solved by using preconditioners [7]. We leave the issue

of obtaining greater levels of accuracy in the BCQP formulation (e.g., by using extended

precision or converting to a better-conditioned quadratic basis) as future work.

5.5 Overdetermined problems

We now turn to the overdetermined cases, degenerate underdetermined cases, and rank-

deficient underdetermined cases that cannot be handled by minq. This set P = Pr contains

the 495 problems shown in Table 1. In a few such cases (when ǫ was small), the linear

feasibility solver in noqs had difficulty finding an initial feasible point, marked by larger

values of the scale-invariant infeasibility metric

δs,p = max
1≤i≤m

( |Φp
i z

s,p − f
p
i | − ǫ

p
i

ǫ
p
i

)

. (32)
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Figure 4: Performance profiles ρs(γ) of time (left) and infeasibility profiles ωs(γ) (right) on

problem set P = Pr (left).

In such cases, we instead ran the active-set method (and all other solvers) on a relaxed

problem with ǫnew = (1 + rtol)ǫ, where

rtol = 10−5, if δs,p ≥ 10−5.

This is expected to happen for p ∈ Pr, when values of ǫ are very small.

Figure 4 (left) and (right) compare the time and infeasibility levels, respectively, of the

three applicable solvers for Pr. We observed that most of the cases where quadprog (without

the warmstart) outperformed noqs were ones where n was small (n = 10 or n = 12). This is

partly attributed to the fact that the linear feasibility phase consumed a major portion of

the time required by noqs for smaller values of n (discussed further below and in Figure 6).

Figure 5 (left) shows the variation of time for noqs and quadprog for n varying from 10 to

50 in steps of 4 (problems generated in addition to Pr) for m = ⌈1.5pn⌉ for well-conditioned
X (not degenerate or rank-deficient) and ǫ = 10−3e. Figure 5 (right) shows the variation

of time for noqs and quadprog for n varying from 10 to 40 for m = pn for rank-deficient Φ

and ǫ = 10−3e. One can deduce that warm starting quadprog tends to result in a reduction

in the total time.

Figure 6 shows the percentage of time spent on the linear feasibility phase and the

active-set phase by noqs for the same set of problems shown in Figure 5 (left). One can see

that the warm-starting or feasibility phase consumes a significant amount of time for noqs

when n is small, while the active-set phase dominates for sufficiently large n.

Overall, noqs is seen to be robust with respect to all problem dimensions (both pn

and m), all values of ǫ, ill-conditioning, degeneracy, and rank deficiency. This robustness is

primarily attributed to exploitation of the problem structure in terms of convexity, sparsity,

and double-sided constraints, solving the appropriate KKT system, parameterization of the

constraints in terms of ǫ (not f ± ǫ), use of matrix factorizations and updates only when

required, and use of tie-breaking rules for degeneracy only when required.
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n NoQS quadprog quadprog-ws

10 1.09e+00 4.70e-01 1.21e+00

14 2.19e+00 2.02e+00 2.53e+00

18 5.59e+00 7.17e+00 6.19e+00

22 1.49e+01 1.80e+01 1.48e+01

26 3.64e+01 5.04e+01 4.35e+01

30 8.05e+01 1.31e+02 1.13e+02

34 1.72e+02 3.42e+02 2.65e+02

38 3.48e+02 7.58e+02 5.56e+02

42 8.92e+02 1.54e+03 1.21e+03

46 2.10e+03 2.96e+03 2.21e+03

50 3.05e+03 5.34e+03 3.87e+03
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Figure 5: Computational time (in seconds) for overdetermined problems (left) and scalabil-

ity for rank-deficient underdetermined cases (right).

Since the problem is parameterized with respect to ǫ, our view is that feasibility may

be a primary requirement for many applications. With respect to feasibility, noqs is seen to

be close to that of quadprog, which requires longer running times. We conclude this section

by recalling that minq can serve as an alternative to noqs only in underdetermined cases,

under Assumption 4.3, in the presence of nicely conditioned systems, and when values of ǫ

are not comparatively large.

6 Concluding Remarks

In this paper we have proposed a framework for obtaining surrogate quadratic models of

simulation-based functions that are corrupted by noise, the level of which is known. Our ap-

proach requires solving a quadratic program with a diagonal, convex objective and narrow,

double-sided linear inequality constraints that are parameterized by the noise parameter.

The primary focus of this work is on posing and solving this quadratic program. The

contributions are on three fronts:

• Theoretical properties. The problem was parameterized in terms of the basis

matrix and the noise. Fundamental properties of the basis matrix were studied and

the behavior of the objective function in terms of the noise levels was analyzed. Under

stronger assumptions, uniqueness was established. Bounds on the error between the

surrogate model and the underlying noise-free function were derived.

• Algorithms. An active-set scheme was tailored to the quadratic program’s specific

structure. The algorithm resolves semi-definiteness using basic matrix factorizations,

maintains factorizations only when required, makes use of the problem structure ef-

ficiently, and tackles degeneracy. Under stronger assumptions, the active-set scheme

was further modified to obtain stronger results and an equivalent, bound-constrained

21



10 16 22 28 34 40 46
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

F
ra

ct
io

n 
of

 p
ha

se
 ti

m
es

 

 

Phase 1 of noqs
Phase 2 of noqs

Figure 6: Fraction of noqs solve time devoted to each phase with increasing n for overde-

termined cases.

formulation was posed.

• Implementation. A Matlab-based implementation, noqs, of the active-set algorithm

was developed. A benchmark set consisting of 891 problems of varying sizes and noise

levels, and different levels of conditioning was developed and used to compare noqs

with other, less-specialized quadratic programming solvers. Overall, noqs was seen

to perform faster and more robustly. Additionally, instances were discussed where a

bound-constrained formulation can efficiently replace the original formulation.

A Appendix

A.1 Proof of Theorem 2.2

Proof. Since fs is continuously differentiable, a first-order Taylor expansion (see, for exam-

ple, [5, Section 4.1]) about x ∈ B0 gives

〈eg(x), xi − x〉 =

∫ 1

0
〈∇fs (x+ t(xi − x))−∇fs(x), xi − x〉dt

−1

2
〈H(xi − x), xi − x〉+ eq(xi)− eq(x), (33)

for any xi ∈ B0, where 〈·, ·〉 is the standard dot product on R
n. Subtracting the equation

associated with xi0 shows that

〈eg(x), xi − xi0〉 =

∫ 1

0
〈∇fs (x+ t(xi − x))−∇fs(x), xi − x〉dt

−
∫ 1

0
〈∇fs (x+ t(xi0 − x))−∇fs(x), xi0 − x〉dt (34)

−1

2
〈H(xi − x), xi − x〉+ 1

2
〈H(xi0 − x), xi0 − x〉+ eq(xi)− eq(xi0),
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for any x, xi ∈ B0. Since ∇fs is γf -Lipschitz, the Cauchy-Schwartz inequality can be used

to bound the first two terms in (34):

∣
∣
∣
∣

∫ 1

0
〈∇fs (x+ t(xi − x))−∇fs(x), xi − x〉dt

∣
∣
∣
∣

≤
∫ 1

0
‖∇fs (x+ t(xi − x))−∇fs(x)‖‖xi − x‖dt ≤ γf

2
‖xi − x‖2.

The third and fourth expressions can be similarly bounded by exploiting the relationship

‖ · ‖ ≤ ‖ · ‖F between the spectral and Frobenius matrix norms:

|〈H(xi − x), xi − x〉| ≤ ‖H‖F ‖xi − x‖2.

The final two expressions can be bounded by appealing to the definition of eq and using the

assumption that |q(xi)− f(xi)| ≤ ǫ for all xi ∈ X ,

|eq(xi)| = |q(xi)− f(xi) + ef (xi)| ≤ ǫ+ |ef (xi)|.

By assumption, the n columns of the matrix Y collecting n linearly independent, scaled

displacements are each bounded by ∆ in norm. Hence, the above bounds yield that

‖∆Y T eg(x)‖ ≤ √
n∆‖Y T eg(x)‖∞ ≤ √

n

(
5

2
γf∆

2 +
5

2
‖H‖F∆2 + 2ǫ+ 2 max

i0,...,in
|ef (xi)|

)

,

(35)

since ‖ · ‖ ≤ √
n‖ · ‖∞. Since Y is invertible, we obtain (15) by noting that

‖eg(x)‖ ≤ ‖Y −T ‖‖Y T eg(x)‖ = ‖Y −1‖‖Y T eg(x)‖. (36)

Returning to eq(x) in (33) and using xi = xi0 , we obtain (14) by noting that

|eq(x)| ≤ ‖eg(x)‖‖xi0 − x‖+ 1

2

(
γf∆

2 + ‖H‖F∆2
)
+ |eq(xi0)|.
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