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ABSTRACT

Lack of efficient and transparent interaction with GPU data in hy-
brid MPI+GPU environments challenges GPU-acceleration of large-
scale scientific and engineering computations. A particular chal-
lenge is the efficient transfer of noncontiguous data to and from
GPU memory. MPI supports such transfers through the use of
datatypes, however an efficient means of utilizing datatypes for
noncontiguous data in GPU memory is not currently known.

To address this gap, we present the design and implementation
of efficient MPI datatypes processing system, which is capable
of efficiently processing arbitrary datatypes directly on the GPU.
We present a means for converting conventional datatype repre-
sentations into a GPU-tractable format, which exposes parallelism.
Fine-grained, element-level parallelism is then utilized by a GPU
kernel to perform in-device packing and unpacking of noncontigu-
ous elements. We demonstrate a several-fold performance improve-
ment for noncontiguous column vectors, 3D array slices, and 4D
array subvolumes over CUDA-based alternatives. Compared with
optimized, layout-specific implementations, our approach incurs
low overhead, while enabling the packing of datatypes that do not
have a direct CUDA equivalent. These improvements are demon-
strated to translate to significant improvements in end-to-end, GPU-
to-GPU communication time.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Concurrent programming struc-
tures

General Terms

Design, Performance
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1. INTRODUCTION

A great amount of interest in the HPC community has been cen-
tered on the capabilities of graphics processing units (GPUs) as
inexpensive, many-core accelerators. Evidence of this is seen in
recent Top500 lists of supercomputers [1], where GPU accelera-
tors are gaining in popularity due to their effectiveness over a wide
range of computational loads.

A number of technical challenges arise from the addition of a
fundamentally different computing architecture to existing systems.
Aside from the cost of developing, porting, and optimizing codes to
run on the GPU, there is a greater concern about how their addition
affects algorithms relying on point-to-point and collective commu-
nication. For the currently prevailing model of discrete graph-
ics processing hardware with memory that is separate from the
CPU’s RAM, any communication operation involving data resi-
dent in GPU memory requires moving data between GPU and CPU
memories, effectively adding another “hop” in the communication
graph. In addition, the MPI Standard [9] does not define MPI’s in-
teraction with GPU memory managed by, for example, OpenCL [6]
or CUDA [11] programming models.

Enabling MPI to interact directly with data stored in GPU mem-
ory is an important step toward providing transparent and efficient
integration of GPUs into HPC applications. In addition to commu-
nication operations that transfer contiguous chunks of GPU data, a
significant and challenging problem is the communication of non-
contiguous data, which is enabled through the use of MPI datatypes.
MPI datatypes allow the programmer to define an arbitrary layout
for data which is sent or received (or input/output for MPI I/O oper-
ations) using a single MPI operation. A common use of data types
in scientific computing applications is the transfer of noncontigu-
ous array slices vectors from GPU to GPU (in applications such as
stencil computations that require array boundary updates between
processes [8, 10, 13]).

Communication operations like these must be done efficiently
for the computational benefit of using the GPU to outweigh the cost
of data transfer into CPU main memory. In order to utilize network
and I/O resources effectively, noncontiguous data is first packed
into contiguous buffers. The transfer granularity between the GPU
and the CPU and over the network must be sufficiently to make ef-



ficient use of the PCle bus. Considerations such as these, severely
impact the effectiveness of conventional GPU-CPU data copy op-
erations and present significant productivity and performance chal-
lenges to the manual packing of data in GPU memory.

In this work, we present the design of an efficient, in-GPU non-
contiguous datatype processing system. We focus on NVIDIA’s

CUDA interface, however techniques presented are applicable broadly

across accelerators and accelerator programming models. Our ap-
proach defines a datatype representation that exposes fine-grain par-
allelism and utilizes a GPU kernel that can efficiently utilize this
parallelism to accelerate data movement. We demonstrate that our
approach is efficient at packaging noncontiguous when compared
with CUDA’s built-in data layouts and hand-coded packing kernels.
In addition, our system supports arbitrary datatypes for which no
CUDA equivalent is currently provided. We evaluate our system
across a range of data layouts and demonstrate an improvement of
up to 700% end-to-end latency for performing large, noncontigu-
ous vector data communication. Finally, we evaluate the impact of
resource contention for GPU cores and access to the PCle bus.

Through this work, we address three key challenges to enable
the efficient processing of noncontiguous MPI datatypes in GPU
memory:

1. Datatype Representation in GPU Memory: GPUs are op-
timized for a high ratio of FLOPS to memory operations,
and high memory throughput can only be achieved through
highly regular access patterns that load contiguous chunks of
memory in bulk and memory operations that take advantage
of a small user-controlled cache space. Thus, we develop a
GPU-optimized serialized datatype representation for arbi-
trary datatypes, separated into a cacheable, constant-length
parameter space, and a variable-length parameter space re-
siding in GPU memory, as a first step towards building an
efficient packing algorithm.

2. Parallel Memory-bound Datatype Traversal: For packing op-
erations, it is ideal for the computational load to be mini-
mized, spending the majority of time fetching and writing
the elements specified by the type. Furthermore, an effi-
cient datatype traversal must take advantage of GPU hard-
ware characteristics, such as a fine degree of parallelism, and
high memory bandwidth at the cost of high latency and less
cache space. We identify a fine-grain, dependency-free paral-
lel packing strategy based on canonical datum identification
and a traversal algorithm based on the packing strategy and
datatype representation.

3. Packing in the Presence of Resource Contention: The schedul-
ing policy of GPU kernels and PCle activity prevents mean-
ingful resource sharing; thus, a packing operation could starve
in the presence of another compute-or-bus intensive kernel.
Different communication patterns may necessitate different
packing strategies. We identify algorithm patterns for which
the packing operation interferes with application performance
and provide experimentation showing their effects.

This paper is organized as follows. In Section 2 we provide
an overview of MPI datatypes and their optimized processing in
CPU memory, as well as necessary concepts in efficient GPU algo-
rithm design. Section 3.1 discusses the optimization of the datatype
representation, while Section 3.2 discusses the packing algorithm,
given the GPU datatype representation. The evaluation of GPU
datatype processing is given in Section 4, focusing on overall per-
formance against optimized manual implementations and CUDA
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Figure 1: An example MPI vector of vectors, and the sub-
sequent packed form.

alternatives in Section 4.2, relative performance of different com-
ponents of the packing kernel and related operations in Section 4.2.1
and the effect of different packing methodologies on point-to-point
communication in Section 4.3. Finally, we evaluate the effects of
resource contention on packing kernels and PCle operations in Sec-
tion 4.4.

2. BACKGROUND

2.1 MPI Datatypes Specification

The Message Passing Interface (MPI) Standard [9] specifies the
definition of datatypes, allowing users to portably communicate
noncontiguous data between processes with minimal effort, increas-
ing productivity while efficiently utilizing network resources. Per-
haps the most powerful aspect of the datatypes specification is that
datatypes can be layered on top of other datatypes to create com-
plex selections of data, all within a simple and concise API. For in-
stance, the vector of vectors shown in Figure 1, with two different
gaps between elements, can be defined and communicated in a sim-
ple manner within MPI, as shown in Figure 2. Primitive datatypes,
such as integer and floating-point variables, form the basis for de-
rived datatypes, such as MPI vectors, which can be defined in
terms of either primitive or other derived types.

The datatype encodings provided through MPI are driven pri-
marily by the data layout of the application. For example, simu-
lations utilizing arrays commonly use the vector or subarray
types to define column vectors or subvolumes. This allows users to
define subsets of their data (array slices, for example) to communi-
cate to other processes, rather than manually selecting and prepar-
ing the data for communication. The most common datatypes used
include a strided vector of blocks, a subarray defining an n-
dimensional subvolume, a location-indexed set of blocks, and a

location-indexed st ruct consisting of blocks of arbitrary datatypes.

A block refers to a contiguous chunk of datatypes, and the block-
length refers to the number of “child” datatypes that a block con-
tains.

The definition of datatypes is used within MPI applications to
provide a simple interface for the communication of noncontiguous
data either to/from I/O or across a network to other compute ele-
ments. However, initiating an I/O operation or a network transfer
for each individual piece of data is expensive and poorly utilizes re-
sources, where large, contiguous transfers are preferred. To address
this challenge, MPI implementations pack the data into contiguous
buffers prior to performing the network or I/O operation. Perform-
ing this efficiently requires optimizing a number of components.

For noncontiguous datatype processing to be useful in large-
scale applications, a simple and efficient datatype representation

s



/I Specify layout of sender’s buffer, a vector of vectors,
1 with base type of double.

/I The vector function signature is:

/I MPI_Type_vector(count, blocklength, stride,

/ old_type, new_type).

MPI_Datatype vl1, v2;

MPI_Type_vector(4, 1, 2, MPI_DOUBLE, &v1);
MPI_Type_vector(6, 1, 4, &v1, &v2);

// commit the type description
MPI_Type_commit(&v2);

// perform communication, using intermediate packing
MPI_Send(buffer, 1, v2, ...);

Figure 2: Defining and communicating the vector-of-vectors in
Figure 1.

must be provided that allows for fast traversal, that is, iterating
through the datatype, computing offsets in the input buffer of the
encoded datatypes. The specification of datatypes, while formally
described as a list of type, displacement pairs, can be encoded us-
ing a natural tree structure, where each node in the tree represents
a datatype, built on top of child datatype nodes. This structure,
as well as necessary parent-child relationships, is captured in the
MPICH implementation of dataloops [12], which records type-
specific parameters and propagates information about datatypes nec-
essary for a simple traversal. Specifically, the information needed
for a traversal is the extent and size of the child datatype, where the
extent is the distance between successive child data types and the
size is the amount of data encoded by the type, if stored contigu-
ously.

Given an encoding of a noncontiguous datatype, the traversal of
elements defined by it must be efficient. MPICH accomplishes this
by representing the traversal as a buffer-filling operation. MPICH
unrolls a simple depth-first search on the tree structure and uses a
concise stack-based representation of the traversal. Each stack ele-
ment represents type-specific parameters, such as how many vec—
tor blocks have been traversed. The extent and size at each level
of the tree are used to compute offsets from the raw data into the
contiguous buffer, and type-specific optimizations can be utilized
to prevent revisiting nodes more than necessary, such as substitut-
ing specialized memory copy functions for vector types.

2.2 GPU Architecture and Programming Model

GPUs have become an important hardware component in HPC
systems due to their optimization of massively parallel comput-
ing. In particular, Nvidia’s Compute Unified Device Architecture
(CUDA) defines a programming abstraction suitable for general
purpose computation on GPUs (GPGPUs) [11].

CUDA presents the GPU as a CPU-driven co-processor, where
the CPU issues parallel kernels on the GPU. Kernels and memory
copies between CPU memory and separate GPU memory are per-
formed across the PCle bus, a high-latency, high-bandwidth oper-
ation, and DMA enables both kernel calls and memory operations
to be performed asynchronously.

GPUs have multiple streaming multiprocessors (SMs), each con-
sisting of a multiple scalar processors (SPs), giving hundreds of
total available cores for computation at a given time. The thread-
ing model provided is single instruction multiple thread, or SIMT,
which executes a group of threads (a warp, typically 32) in lock-
step. SIMT, unlike SIMD, allows threads to diverge on branch in-

structions, where each branch is executed serially until the con-
vergence point is reached. Thread assignment is mapped as three-
dimensional grids, or thread blocks, where each block is scheduled
on an SM up to the amount of available resources (such as stati-
cally allocated register files). The main memory in GPUs are opti-
mized for parallel access in large chunks (typically 128B) that are
coalesced by adjacent threads in a warp; if adjacent threads access
adjacent memory, the operations are combined into a single mem-
ory transaction. While the main memory is a high-latency, high-
bandwidth resource with a small L2 cache, each multiprocessor
also contains a fast but small user-controlled scratch cache, called
shared memory. Of particular importance is that GPU threads are
extremely lightweight and vastly less powerful than CPU threads,
but make up for it in sheer parallelism potential and extremely low
context switch overhead.

Given these components, there are a number of optimization
goals when devising GPU algorithms. First, PCle bus activity should
be minimized, due to high latency and transfer rates that pale in
comparison to GPU hardware specifications. Second, memory ac-
cess patterns on the GPU should be regular and exhibit locality with
respect to threads. Third, the shared memory space should be used
as much as possible to avoid multiple main memory accesses. Ad-
ditionally, an algorithm must exhibit fine grain parallelism so that
the hardware can utilize context switching to hide main memory
access latency and stalls in the instruction pipeline.

3. IN-GPU DATATYPE PROCESSING

3.1 Representing MPI Datatypes for Efficient
GPU Processing

An efficient implementation of packing on the GPU would store
the type representation contiguously, loading into shared memory
once upon kernel invocation. However, many datatypes have a
variable-length encoding, such as the indexed and st ruct types.
For these types, we cannot assume that the available shared mem-
ory is sufficient to store the full type representation. If we leave
aside these variable-length datatype fields (such as blocklengths
and displacements for the indexed type), then we can assume
that the remaining type tree can be stored in shared memory, as
each type otherwise requires a small amount of fixed-length mem-
ory to encode. The MPICH implementation, for instance, limits the
depth of type trees to be 16, the fixed parameters of which can be
assumed small enough to hold in shared memory. Extreme cases,
such as wide trees of derived structs, are, to our knowledge,
unseen in applications that use MPL.

Thus, to make the design friendly to both GPU access patterns
and the subsequent packing algorithm, our proposed type tree rep-
resentation is separated into fixed and variable length parameter
spaces, each serialized in an inorder fashion. Such a separation cre-
ates a cachable, constant-length parameter space and a variable-
length parameter space, both residing in GPU memory. See Ta-
ble 1 for a non-exhaustive listing of datatypes with their fixed and
variable length parameters.

Figure 3 shows an example type tree of arbitrary types. As il-
lustrated in the figure, the type tree is traversed inorder, storing
the fixed-length parameters (listed in Table 1) contiguously. For
The variable-length parameters for types such as indexed and
subarray are stored in a contiguous buffer, called the looka-
side buffer, separate from the fixed-length parameters. For each
datatype with a variable-length parameter, a pointer is added into
the type’s fixed-length parameters into the buffer. To control traver-
sal and remove the explicit encoding of primitives, a bitfield is used
for each type to specity the node datatype, whether or not it is a leaf



Table 1: MPI datatypes and their fixed/variable length param-
eters. The “Common” row contains parameters common to all
datatypes in our implementation. The lookaside offset is added

to point to the variable type parameters upon serialization.
Type Fixed Variable
count
Common size
extent
child elements
contiguous
vector stride
blocklength
indexed lookaside offset blocklengths
displacements
) blocklength .
blockindexed lookaside (%ffse ¢ displacements
blocklengths
struct lookaside offset | displacements
child types
dimension array sizes
subarray lookaside offset | subarray sizes
start offsets

Serialize
into GPU
Memory
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Figure 3: An example type tree in CPU memory, separated and
serialized inorder into GPU memory by its fixed-and-variable-
length parameters. Branches in trees only appear for struct
types.

(derived) datatype, and if so, then the type of primitive it encodes
(e.g., integer, floating-point). This is added into the fixed-length
parameters of each datatype.

Since the type tree is serialized inorder, a top-down traversal to
a single datum requires no additional linkage information for all
but struct types, as the “leftmost” child types are adjacent in
memory to the parent types. When there are st ruct types with
multiple derived datatype children, however, additional pointers
are required in the struct variable-length parameters to differenti-
ate where in memory the children types are.

For most derived datatypes, the encoding is quite simple. For in-
stance, the encoding for v2 is merely the fixed parameters in rows
Common and vector in Table 1, followed by the same parameters
encoding v1, and requires on the order of bytes of storage. Equally
simple but different from an implementation point of view, a single
indexed type has a similarly small fixed-length storage size, fol-
lowed by a potentially large list of blocklengths and displacements,
requiring storage in GPU main memory.

3.2 Parallel Memory-bound Datatype Traver-
sal

There are two technical challenges in allowing an efficient da-
tatype traversal on the GPU and discouraging a straightforward
“port” of current implementations. First and foremost, CPU-based
packing implementations are based on filling buffers, leaving a pos-
sibility for the coarse-grain parallelism of filling multiple buffers.
This runs contrary to best practices on the GPU, where a finer
grain of parallelism is critical to performance. Second, the traver-
sal is highly memory-bound, as small type trees can encode large
amounts of data, which transforms the problem into essentially a
large, non-contiguous memory copy. Section 3.2.1 addresses the
mismatch in parallel packing strategies, while Section 3.2.2 dis-
cusses the algorithm itself, which attempts to minimize the memory
costs of processing the datatype representation.

3.2.1 Parallelism via Point-Based Retrieval

Current MPI implementations are focused on efficiently travers-
ing the datatype by size, that is, filling up a fixed-size buffer to be
sent over the network. When considering a parallelization, such as
for data residing on the GPU, the current implementation allows
for parallelization in terms of size. Given a number of buffers and
a buffer size, each buffer can be filled in parallel using the informa-
tion encoded in the dataloops implementation. However, this will
certainly not map well to the GPU, as efficient GPU computation
necessitates a finer degree of parallelism.

The key insight to enable this finer degree of parallelism is that
we can produce a dependency-free parallel traversal, given informa-
tion encoded in the datatypes and minimal additional knowledge
about child datatypes, making the representation a more promis-
ing candidate for use on the GPU. In addition to caching the size
and extent of child datatypes, the number of elements can be simi-
larly cached, allowing for fine-grained parallelism on a per-element
level. By element, we refer to a single primitive datatype (e.g., in-
teger, floating-point). When defining types (and thus building the
type tree), the number of primitives encoded by a type gets propa-
gated upwards, so that the parent type (e.g., v2) records the num-
ber of primitives in each instance of the child datatype (e.g., v1).
Without this encoding, the type representation can only define the
location of an element with respect to all previous points in the
type, which is undesirable for the parallelism we are considering.

Using this encoding, we can base the traversal solely on which
element to fetch, requiring no additional information besides the
type representation. This is shown in Algorithm 1. One particular
aspect to note is that adjacent threads are assigned adjacent ele-
ments, so if there is locality with respect to adjacent elements, then
memory operations on them can be coalesced implicitly, so that no
extra performance memory-wise is missed. Furthermore, on the
most common MPI datatypes (vector, subarray, blockin-
dexed), threads experience no branch divergence due to a single
code path.

3.2.2 GPU Datatype Traversal Algorithm

The design of the type representation on the GPU described in
Section 3.1, combined with the parallel traversal strategy in the pre-
vious section, yields a straightforward traversal for packing non-
contiguous GPU data with minimal additional memory overhead.
The traversal algorithm assigns a single primitive datum to a thread
based on the number of primitives to be packed, traverses the type
tree in a top-down fashion, updating read and write offsets, until
a “leaf” derived datatype is encountered and the primitive is read
from and written to the correct location. Algorithm 1 shows the
general process. In Line 13, we can change packing to unpacking



by merely switching the direction of the read/write. In Line 16,
pointer-jumping is only necessary for st ruct types with multiple
derived children; see Section 3.1.

Algorithm 1: Point-based traversal and packing of arbitrary
datatype. Refer to Table 1 for fields of the variable type.

: user_buffer: buffer to pack

: type: serialized datatype, pointing to root type
: ID: primitive to read/write, in canonical order
: pack_buffer: packed buffer

input
input
input
output

/l'in, out: location in user/packed buffer, respectively
in—0
out—0
Load type fixed-length parameters into cache
while true do
/l increment buffer offsets
in—in+ inc_read (ID, type)
out < out + inc_write (ID, type)
/I compute element ID w.r.t. child type
ID «— ID % type.elements
I perform r/w if finished processing derived datatypes
if type is leaf then
pack_buffer [out] < user_buffer [in]
break
else
type « type.child

ORI U A W=

The functions inc_readand inc_write are type-dependent.
Thankfully, they are simple to compute for the contiguous, vec—
tor, subarray, and blockindexed types, as they have a very
regular structure. All but the subarray type are O(1), and the
subarray type is O(d), where d is the number of dimensions. The
inc_readand inc_write functions for the vector type com-
putation are shown together in Algorithm 2. The general strategy is
to compute the block that the element resides in, update the offsets
appropriately, then “recurse” on the child type.

Algorithm 2: Read/write offset computation for the vector
type. Refer to the Common and vector rows of Table 1 for
the fields stored in a vector type.

input :type: vector datatype
input : ID: primitive to read/write, in canonical order
output: in, out: read/write offset increments

/1 offset w.r.t. child datatypes

count_offset — ID / type.elements

/I offset w.r.t. vector blocks

block_offset < count_offset / type.blocklength
/I for each block, advance by stride bytes

/I for each child datatype in block, advance by child extent
in — block_offset x type.stride + type.extent *
(count_offset % type.blocklength)

/I for each child datatype, advance by child size

9 out «— count_offset * type.size

return in, out

N AU AW -
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For the vector-of-vectors type v2 in Figures 1 and 2, Procedure 3
shows the execution trace of a single thread traversing to its corre-
sponding primitive. One thread is launched for each of the four
primitives in the datatype. Note that the execution trace for this
type is the same across all threads launched.

Pt

For the datatypes with variable-length parameters, such as in-
dexed, the process is more nuanced. To avoid performing a linear
scan of the type for potentially thousands of threads over poten-
tially thousands of blocklengths, preprocessing is performed to al-
low a logarithmic-time binary search. Essentially, a prefix-sum is
performed on the indexed type’s list of blocklengths as a prepro-
cessing step. Then, given a count of n and a list of prefix-summed
blocklengths bg, b1, ..., b,, the terminating condition for thread
(element) ¢ in the binary search is

br <i/e < bpi1 (n

where 0 < h < n and e are the number of elements in the child
datatype. The additional b,, term is needed to check the condition
ath=mn—1.

Trace 3: Execution trace of vector-of-vectors traversal for a
single thread.

input : user_buffer: buffer to pack
input : ID: thread/datum ID

output : pack_buffer: packed buffer
in«—out«—0

Coordinated load of v2, v1 into shared memory
type «— v2

Increment in, out using Alg. 2, with ID, type
ID — ID % type.elements

Is type a leaf type? (no)

Increment type pointer by sizeof (vector type) (type «— v1)
Increment in, out using Alg. 2, with ID, type
ID — ID % type.elements

Is type a leaf type? (yes)

pack_buffer [out] < user_buffer [in]

ORI AW -

There is one optimization in particular that we may perform
to dramatically improve the packing operation. This optimization
makes use of the fact that all writes are performed into a contigu-
ous buffer and are thus highly coalesced by adjacent threads. Given
this insight, we enable zero-copy memory transactions on the GPU.
Essentially, instead of packing the data into GPU main memory,
then performing a bulk copy on the packed buffer, recent GPUs
can utilize memory-mapping of CPU memory into the GPU’s mem-
ory space. Then, the streaming multiprocessors can write directly
across the PCle bus into CPU main memory. Since threads write
exactly once and at the end of their traversal, memory mapping is
a perfect opportunity to obtain additional performance for minimal
effort, by avoiding the GPU main memory and implicitly pipelining
the computational and PCle loads.

There are a number of other small optimizations we can make
to further increase the efficiency of the algorithm, but only under
certain circumstances. We can increase data reuse by assigning
multiple points to each thread, essentially looping over the traversal
starting at Line 5 of Algorithm 1. However, this is useful only in
circumstances with low available resources or a very large number
of points to pack, as otherwise the GPU multiprocessors will be
undersaturated. Also, for simple types, detecting common types
and issuing custom type-specific kernels can be used that reduce the
computational cost at the cost of losing generality of the packing
kernel. We provide a few such type-specific kernels in Section 4.2
for comparative purposes.

3.3 Packing in the Presence of Resource Con-
tention



In the previous sections, the methodology for packing was dis-
cussed with an underlying assumption of availability of resources
and without consideration of other scenarios where packing could
actually be detrimental to overall performance. For instance, what
if a user initiates a send for data residing on the GPU while a fully
occupant kernel is running? In the worst case, the scheduling pol-
icy of current GPUs, which schedules blocks to run to completion
and only allows for architectural reasons a single kernel to be run
on each multiprocessor, can easily lead to starvation of a packing
kernel. This, in turn, leads to unacceptably high sending latency.

There are a number of communication patterns which could in-
troduce resource contention, all centered around concurrent send-
ing with other operations; global synchronizations for communi-
cation, such as in stencil codes, will not run into resource con-
tention. Contention can occur on the computational level, when
the communication is performed asynchronously to enable com-
putational overlap. Thus, the packing operation would coincide
with that computation. Furthermore, transfers could be occuring
while a communication operation is being performed, such as in
CPU-moderated algorithms that follow an iterative setup-compute-
collect model. Thus, both PCle directions could coincide with the
packing operation and transfer of results. Of course, a combination
of these can also be performed, such as when multiple users or MPI
processes are accessing the same underlying hardware.

Under resource contention, the best case occurs when we are
working with simple types that directly translate into CUDA calls,
such as a contiguous, vector, or two-or-three-dimensional
subarray. These can be translated into a single memory copy
call, and packing/multiprocessor usage can be avoided altogether.
However, this solution is only feasible for very specific datatypes,
and cannot be counted on for a generic implementation.

When the datatype is nontrivial and there is resource contention
preventing a packing kernel from being run, there are a number of
methods that can be used to get the data onto the CPU. The two
simplest ones are transferring by extent and transferring point-by-
point. Both of these, of course, are highly inefficient. Transferring
the entire extent of a datatype, except in cases where the extent and
size are approximately equal, wastes bandwidth and still requires
packing on the CPU end. Transferring point-by-point suffers from
the high latency of initiating copies from the CPU. Both have the
potential for interfering with user kernels that rely on host-device
transfers. A more intelligent method would involve a hybrid of
the two, transferring sections with a low extent-to-size ratio in bulk
and transferring point-by-point otherwise. However, such a method
would need more complex processing and memory management on
the CPU-side and would still have the problems of both methods,
albeit reduced in severity. For some types, CUDA and OpenCL al-
low for the transfer of regularly-strided two-and-three-dimensional
subarrays. While this is very useful for the common case of array
processing on the GPU, it is nevertheless a special case which be
relied on for many applications. A more exotic option is to devote
a persistent kernel for use by MPI operations and utilize signaling
and polling to initiate packing, similar to Stuart et al.’s implementa-
tion of message-passing on the GPU [14]. However, since we show
latency costs to be extremely important when performing the pack-
ing operation and their method produced an increase in these costs,
we do not consider this approach (see Sections 4.2 and 4.2.1).

Unfortunately, there is currently no way within the CUDA or
OpenCL interfaces to query the level of resource utilization on the
GPU, complicating the act of choosing a globally efficient strategy
(kernel versus memory-copies) without having application-specific
knowledge. Since the overarching goal of this research is to pro-
vide transparent GPU data management from within MPI, solutions

such as hijacking user kernel calls to collect statistics and infer uti-
lization are, while interesting problems, not addressed by this pa-
per.

4. EXPERIMENTAL EVALUATION

We evaluate our datatypes processing methodology using mi-
crobenchmarks of packing performance on numerous MPI datatypes,
comparing against most-capable CUDA alternatives as well as op-
timized type-specific packing kernels. We additonally evaluate dif-
ferent components of our packing algorithm, including PCle and
memory operations to and from the input buffer, and give the full
context improvement in GPU-to-GPU communication by imple-
menting a ping-pong test on noncontiguous data. Finally, we exam-
ine the effects of GPU resource contention on packing and mem-
ory copy operations by modifying the issuing order of packing and
other operations. For all tests, we used an Nvidia C2050 GPU,
connected to an AMD Opteron 6128 at 800MHz. For the commu-
nication benchmarks, we used two such nodes, connected by QDR
Infiniband.

4.1 Test Datatypes

While our target applications are those that communicate non-
contiguous data, it is nevertheless useful to look at the absolute best
case for GPU data movement of a contiguous buffer. This would al-
low us to measure the overhead due to the packing operation on this
base case. For this purpose, we use a contiguous type versus a
single memory copy (cudaMemcpy).

To benchmark two-and-three dimensional arrays such as column
vectors, we use a vector type, of a fixed 512-byte stride between
blocks. This allows us to compare the best case of the alternative,
cudaMemcpy 2D, where performance is more sensitive to data lay-
out. The blocklength argument allows us to control the width of
each block transferred. For example, if we wanted to transfer the
rightmost two columns of a two-dimensional matrix, we would set
the blocklength to two doubles, or 16 bytes.

To benchmark array types outside the scope of vector rep-
resentation, we use a four-dimensional subvolume encoded as a
subarray type. For simplicity, we use the same dimensions of
64 X 64 x 64 x 64 and iteratively increase the size of the vol-
ume selected, which for this experiment is a four-dimensional hy-
percube. For comparison, we use iterative calls to CUDA’s three-
dimensional memory copy function, equal to the width of the fourth
dimension. That is, for a 4* subvolume, four calls to cudaMem—
cpy 3D would be made, one for each 43 subvolume.

To benchmark an i ndexed type, for simplicity, we use the same
data format as in our test vect or type, meaning a constant block-
length and a regular displacement pattern. Other datatypes would
be used in practice and be much more efficient, but this benchmark
is a reasonable indicator of indexed performance; varying block-
lengths would cause less divergence than the uniform blocklength,
and a regular displacement allows us to control coalescence in a
fine-grain manner. For comparison against the indexed type, we
transfer the data block-by-block using cudaMemcpy.

Finally, we use a struct type to test the effect of thread di-
vergence on writing. We use a simple C'-style struct consisting of
an 8-byte double, two 4-byte ints, and a character, which
amounts to 24 bytes with padding. For comparison we copy the
extent of each st ruct using cudaMemcpy.

4.2 Noncontiguous Packing Performance

For each datatype presented in Section 4.1, we evaluate the gen-
eral performance of packing from GPU memory into CPU mem-
ory, with respect to the size of the packed buffer. Figure 4 shows
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Figure 4: Packing operation time for several MPI datatypes, compared with hand-coded packing and CUDA memory copy opera-

tions.

these experiments, comparing against their respective CUDA al-
ternatives. Furthermore, we compare against hand-coded packing
routines to test the overhead of our generic packing methodology.

A number of interesting trends can be observed for the different
datatypes. First, since there is a relatively large gap between the
command latency and peak throughput, transfers on the lower KB
level are latency-bound, and thus very small differences are seen
between the CUDA API calls and the packing kernel. Given the
current architecture of discrete GPUs, little can be done to improve
these results, though emerging architectures that combine CPU and
GPU functionality, such as AMD’s Fusion [2], show promise in
bridging this performance gap in the future. Furthermore, there is
a difference in the latency of issuing kernels and memory opera-
tions. The launching of kernels themselves is asynchronous and re-
turn immediately, but waiting for their associated stream to indicate
that they are finished is a relatively higher latency operation versus
waiting on a memory copy. Thus, packing, being kernel-based, is
adversely affected for smaller input sizes, performing worse than
the alternative CUDA-based methods (though only on the order of
microseconds).

Second, the types that do not have a CUDA-equivalent perform
extremely well against CUDA, due to the bus latency in initiating
each block-wise memory copy. For these types, it is clearly most
beneficial to issue a packing kernel, except for data on the order of
bytes. Block-wise memory copies could compete with the packing
kernel only for extremely large block sizes. Extrapolating the block
size to throughput ratio of the indexed type, it would take a block

size of greater than 4 KB to match the throughput for the 128 KB
type size case.

For the types that do have a CUDA-equivalent, the results are
more nuanced. Here, performance is largely a function of the data
layout: for two-dimensional memory copies, each block must be
wide enough to saturate the bus for best performance. For sin-
gle columns corresponding to a blocklength of 8 bytes, the two-
dimensional memory copy performs very poorly, while the pack
kernel performs approximately 20 times faster. For a larger num-
ber of contiguous columns (16 doubles per stride in the table),
the memory copy outperforms the packing kernel in all cases, espe-
cially, for small and medium-sized inputs due to the additional ker-
nel latency. For larger-sized inputs, both the copy and the packing
kernel approach the bandwidth limit, so the relative performance
difference begins to converge.

The four-dimensional subarray type, despite being reason-
ably mapped to the CUDA API, nevertheless sees major perfor-
mance improvements when moving to a kernelized packing oper-
ation. Since the three-dimensional memory copies must be made it-
eratively to transfer the entire type, the latency is aggregated through
the copies and hurts overall performance.

Against hand-coded implementations, the generic packing algo-
rithm performs well, with little discernible difference in perfor-
mance. With the exception of the struct type, generic packing
for small packed buffer sizes sees slight overhead, while the per-
formance of generic and hand-coded packing converges for larger
packed buffer sizes. The differences in the struct implemen-



tations are a result of the hand-coded implementation hard-coding
the location of each st ruct element, benefiting greatly from com-
piler optimization and greatly simplified traversal logic compared
to the generalized st ruct packing algorithm.

The vector type is one of the more widely used MPI datatypes,
and there is a significant difference in performance depending on
the extent-to-size ratio, so the performance gap in the different
vectors in Figure 4 needs to be further explored. Figure 5 fixes
the size of the packed buffer and compares the completion times of
the packing and the two-dimensional memory copy, varying by the
blocklength (the size of contiguous chunks). Note that, for packed
sizes in the lower KB range, it is preferable to use the memory
copy, due to latency concerns. However, for larger sizes and a
small blocklength, the packing kernel can give a 10-20 times per-
formance improvement. Note that an intelligent MPI implementa-
tion can easily check for these cases, given minimal information
about the type and hardware configuration (e.g. memory-mapped,
pinned memory). Within an actual application, an example use of
the vector type is in halo exchange. For multi-dimensional in-
put matrices for a stencil computation, the border, or ghost, cells
must be distributed to neighbors after each iteration. If the CUDA
APIs were used for this purpose and the ghost cells had a small
width, then this operation would be slow-performing, especially
since GPU-based applications would experience minimal perfor-
mance gain from small matrices.

For three-dimensional arrays in particular, a single vector type
can be used to send each face of the array: the fully contiguous X-
Y face, the row-wise-contiguous X-Z face, and the non-contiguous
Y-Z face. Table 2 shows the transfer rate of each face for different
array sizes, using the packing kernel and CUDA’s two-dimensional
memory copy. Here, the results largely agree with those previously
presented; contiguous chunks of data are more effectively trans-
ferred using built-in CUDA copies (though there is only an approx-
imately 10-15% difference), while packing is dramatically better
for getting non-contiguous data. Note that the CUDA memory copy
seems to degrade in performance for the X-Z plane transfer in the
512 x 512 x 512 case. We cannot currently explain this behavior.

Table 2: Transfer of face of three dimensional matrix of double-
precision values to CPU, versus cudaMemcpy2D. X-Y: fully
contiguous. X-Z: z sets of x contiguous doubles. Y-Z: fully
non-contiguous.

Throughput
(MB/s)
| Size | Face | Pack | CUDA

X-Y 923 1062
64 x 64 x 64 X-Z 937 1097
Y-Z 865 186

X-Y | 2573 2854
128 x 128 x 128 | X-Z | 2554 2868
Y-Z | 2131 209

X-Y | 4567 4842
256 x 256 x 256 | X-Z | 4553 4845
Y-Z | 3728 216

X-Y | 5790 5841
512 x 512 x 512 | X-Z | 5792 1645
Y-Z | 4816 218

4.2.1 Noncontiguous Packing Performance by Com-
ponent

The performance metrics of Figure 4 give a good overview of the
relative performance of the different types, but some information is
still missing. For instance, what are the costs of PCle transfers?
What is the effect of memory layout on the overall performance?
To answer these questions, Figure 6 shows the performance under
three contexts: the full context presented in Figure 4, the comple-
tion time of packing into GPU memory (avoiding PCle transfers),
and finally datatype traversal time.

For medium and large-sized messages, the efficiency of the traver-
sal operation is largely dependent on complexity of the type used.
For instance, the vector and contiguous types, when merely
traversing the type, complete quickly due to the simplicity of the
traversal logic. The subarray type, however, suffers in perfor-
mance due to the additional logic and integer computation com-
pared to types such as vector necessary to represent and pack a
subarray of arbitrary dimension. However, for cases such as a four-
dimensional subvolume, multiple vect ors would have to be used,
which would reduce performance, so one cannot merely replace the
types and get higher performance.

For types with variable-length parameters, such as indexed
and subarray, the problem becomes memory-bound with re-
spect to the input type, and thus sees lesser performance on the
traversal. The indexed type, performing a binary search, still must
pay the penalty of accessing GPU main memory for every point re-
trieved, which is a high-latency operation. Some aspects, such as
coalescence between adjacent threads in the search, help reduce the
severity, but the cost regardless is high enough to reduce the perfor-
mance substantially. Note that the worst case for indexed occurs
when there is a large set of approximately uniform blocklengths.
Not only does this increase the size of the variable length parame-
ter space for the type, but it also maximizes branch divergence and
non-locality in the search. Similar trends are seen in the struct
type, though to a higher degree due to an even higher reliance on
the variable length parameters to perform the point retrieval; each
block can be a separate datatype (see Table 1).

When the read/write stage of the packing is performed, the im-
pact on performance is determined solely by the layout of the de-
scribed non-contiguous data in memory. The best example of this
is shown in the vector types with different blocklengths. With a
small blocklength, and thus high non-contiguity, the reading of the
values becomes the bottleneck of the datatype processing. With a
large blocklength and thus a higher degree of contiguity, however,
the reading is an efficient process due to the much higher degree
of coalescence. Writing, in all cases except for the struct, is
naturally coalesced due to writing into a contiguous buffer, so the
effect of it on performance is small. The st ruct type experiences
branch divergence on writing, and therefore loses much efficiency
on this end compared to the other types.

Finally, adding the PCle bus activity into the packing bottlenecks
the faster packing operations, though not to a high degree due to the
use of zero-copy in the packing operation. It is important to note
that the st ruct type, when diverging on writing, is unable to use
the bus efficiently when using zero-copy, which is highly sensi-
tive to the read/write pattern used. Therefore, for the type, zero-
copy must be disabled, otherwise performance becomes equivalent
to the element-by-element memory copies presented in Figure 4.
Even then, the packing and the PCle operations are serialized and
thus suffer in performance to a greater degree than the other types,
in which zero-copy implicitly pipelines the PCle and packing oper-
ations.

Because kernel latency comprises the vast majority of the run-
ning time of the packing operation for small-sized data, there is no
difference between any of the types when PCle and memory oper-
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ations are removed.

4.3 Full Evaluation: GPU-to-GPU Communi-
cation

Now that the performance of packing on various datatypes has
been studied, we consider it within the context of MPI point-to-
point communication. Because of the extremely inefficient perfor-
mance of CUDA-based methods on irregular data (e.g., indexed,
struct), for this benchmark we only consider the packing of a
vector type of varying blocklength; an MPI_Send where data
is packed at the rate of 4 MB per second will obviously not per-
form well. Figure 7 shows the results of a GPU-to-GPU ping-pong
test. The sender packs and sends the vector, while the receiver
receives and unpacks the vector. This process is then repeated

back to the original sender.

As it can be seen, the efficiency of the communication is largely
dependent, as expected, on the data layout. For instance, a small
blocklength, which favors the packing operation, causes a large rel-
ative performance increase versus using the two-dimensional mem-
ory copy. The larger blocklength causes the memory copy to be
largely equivalent to the packing operation.

However, these results should be taken with a grain of salt. The
network bandwidth for a one-way transfer that we achieved was
approximately 2.0 GB/s, which is much lower than the packing
throughput and memory copy for medium and large sizes. This
means that the network was the bottleneck for the sending proce-
dure for medium and large-sized messages. However, at least in
our setup, the latency in sending a message was much lower, mean-
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Figure 7: GPU-to-GPU ping-pong test, on the vector type with 8, 32, and 128 byte blocks, against cudaMemcpy2D.

ing that for smaller messages the GPU-to-CPU transfer was more
costly. Also, the full GPU-to-GPU communication must perform
packing twice, once to pack the data and again to unpack. This, in
effect, adds two hops to the communication network. Therefore, on
high-speed networks and for algorithms that are communication-
bound, the addition of GPUs can actually hamper performance if a
greater relative speedup is not achieved in the computational com-
ponent, though for applications that have high-speed interconnects
available, the packing operation should be able to keep up with net-
work speeds.

4.4 Resource Contention Effects on Packing

The number of possibilities of application contexts utilizing mul-
tiple GPUs is large and growing. That said, it is important to con-
sider the effects that issuing packing kernels would have on running
applications, given the lack of “fair” scheduling present in current
GPU architectures.

In Section 3.3 we identified a few algorithm patterns which could
introduce resource contention on the GPU, separated into PCle and
SM (streaming multiprocessor) loads. For these types, we perform
a few small representative operations that induce the particular con-
tention scenario, then attempt to run our packing kernel, and vice
versa. We call these representatives the user operations. For both
directions of PCle activity, we merely issue a memory copy. For
SM contention, we utilize a simple vector add operation. The rea-
son we do this is to tie it closely to a packing operation (using the
vector type), where the packing time is similar to the user oper-
ation time. Furthermore, the vector add is entirely memory-bound
and maximizes the amount of resource contention with respect to
the memory subsystem. That is, more compute-bound operations,
such as large matrix-matrix multiplications, would have a much
more different run time than a corresponding packing operation and
would have a larger percentage of its load within the SM, creating
less resource conflicts with packing on other SMs.

For these experiments, we initialize a pair of large vectors, then
perform a number of timings. First, we time each operation (the
add/copy, the pack kernel, and the two-dimensional CUDA mem-
ory copy) in isolation to form our baseline. To measure contention
effects on the pack/copy operation, we first initiate the user oper-
ation, then time the non-contiguous packing/transfer. To measure
contention effects on the user operation, we do the same in reverse:
initiate the packing kernel and then time the user operation. Re-
gardless of the operation, we time the amount of time it takes to
finish both, to see the degree of overlap occuring in the operations.

The parameter space for an experiment of this variety is enor-
mous, so we have chosen an exemplar that is representative of the
trends as a whole, and has processing times that are reasonably
close for every operation. For each of the following experiments,
we used a vector of total size 16 MB, and defined the vector

datatype to have a count of 262,144, a blocklength of 8, and a
stride of 64 bytes. Rather than choosing more realistic parameter
sets (these cover the entire vector), we chose these values to best
show the effects of resource contention due to each operation hav-
ing a similar run time. In the case of GPU contention, we show that
operation scheduling plays the integral role in creating contention
among various operations, so we expect similar results for other
datatypes and operations, though on a different scale.

Table 3 shows these exemplars. For the SM experiment, the or-
der of initiation is critically important. When using the packing
kernel, either operation, when initiated after the other, gets starved
out, only starting when there are available SMs. Depending on
the order of initiation, either operation can experience this degra-
dation, though the one that is initiated first sees no penalty. The
two-dimensional memory copy, avoiding the SMs entirely, does
not suffer this problem, and sees no degradation in performance.
In other words, the Direct Memory Access (DMA) engine handles
the copy operation, leaving the GPU’s SMs untouched. This means
that compute-heavy applications that do double-buffering or other
kinds of compute-network overlap would want to avoid performing
a kernelized pack, opting instead for CUDA’s memory copies.

For the PCle experiment from GPU to CPU, both the user op-
eration and the pack/memory copies suffer, as both must use the
same lane of the bridge. However, a very interesting finding can be
seen in the user-then-pack case. Since the packing operation uti-
lizes zero-copy for all but the st ruct type (e.g. memory mapping
GPU memory into CPU memory), we notice that the scheduling
mechanism seems to treat the SM-issued bus transactions more fa-
vorably. Using CUDA memory copies instead of the pack does
not overlap at all with the user memory copy and vice versa, since
the transfers are completely serialized on the CPU end (regardless
of using different CUDA streams). Therefore, if applications have
this kind of algorithm pattern, if the user wants the packing to go
through as quickly as possible then the packing kernel should be
used or the memory copy should be issued before the user opera-
tion.

For the CPU to GPU PCle experiment, while we would expect
an insignificant degree of contention due to the operations using
different PCle lanes (PCle is full duplex), we actually see some
degradation in the time taken, though the totals for issuing both
concurrently are much less than that for the completely serial case.
We unfortunately cannot explain this behavior with absolute cer-
tainty, but we hypothesize it to be an artifact of the scheduler, or a
small degree of contention with respect to transferring kernel pa-
rameters.

Not shown is the case when all resources are being used in some
fashion. There are countless possibilities and parameterizations of
this process that would lean heavily on the particular application
context, though there are a few observations we can make. For



Table 3: User workloads in contention with the pack kernel and CUDA API calls, using the vector type, in milliseconds. The
Workload column shows the order in which the operations are initiated, while the Type Proc. column shows the packing/CUDA

processing time where appropriate. Section 4.4 discusses the parameters.

SM PCIe (CPU—GPU) PCIe (GPU—CPU)
Workload Order User | Type Proc. | Total || User | Type Proc. | Total || User | Type Proc. | Total Time
Serialized (Pack) 255 | 355 255 | 5.89 2.55 5.11
Serialized (CUDA) | %0 296 | 396 ] >4 297 [ 631 > 297 553
User—Pack - 352 | 355 - 3.65 | 4.08 - 3.18 5.09
User—CUDA - 3.00 | 3.03 - 3.66 | 4.06 - 5.53 5.54
Pack—User 3.53 - 3.56 4.08 - 4.11 5.08 - 5.11
CUDA—User 1.03 - | 3.00 [[ 4.05 - | 4.07 5.53 - 5.53

algorithm patterns that include PCle transfers and kernels on the
same CUDA stream, the scheduler is able to issue kernels imme-
diately after PCle transfers are issued. The same goes for memory
copies issued after kernels. Therefore, there wouldn’t be such a
strict starvation that occurs in some of the cases in Table 3. Per-
haps, in future GPU architectures, advanced schedulers would be
able to enable resource sharing on a finer grain level, which would
increase the fairness with respect to performance of multiple appli-
cation contexts hitting on the same hardware.

S. RELATED WORK

There have been a number of efforts to integrate GPU functional-
ity into an HPC environment, with modifications at the application,
programming model, and library levels to account for a discrete
GPU main memory space.

At the application level, algorithms that use both MPI and GPUs,
such as Jacobsen et al.’s flow computation algorithm [5], are modi-
fied to allow efficient GPU computation, such as changing the prob-
lem space partitioning to benefit GPU access patterns. However,
since no library support is enabled, the algorithms end up losing
efficiency on the handling of memory as well as the amount of pro-
gramming effort. Furthermore, MPI datatypes differ from these
specialized data structures in that the datatypes efficiently encode
a subset of the data structures used, for use in communication and
I/0 routines.

At the programming model level, Gelado et al. created the Asym-
metric Distributed Shared Memory model (ADSM) to provide a
single GPU address spaces across a cluster [4]. From the CPU
standpoint, all GPU memory is in a single address space, but GPUs
are only aware of their resident memory space. Their consistency
model is designed for and allows operating and processing on the
shared address space in contiguous chunks with memory coher-
ence, and would have to become much more complex to enable
the transfer and consistency of noncontiguous data or partial data
within a contiguous buffer. Since our method is based on the mes-
sage passing model with no consistency enforcements, our work
does not apply here, though an interesting problem could be the
combination of ADSM with noncontiguous datatypes.

Zippy [3] combines the message passing and shared-memory
models (based on Global Arrays) and provides a single address
space for all GPUs in the cluster, using MPI as its backend. Zippy
works specifically on array-based data, as compared to our aims
of supporting a generalized data representation. Since their dimen-
sionality support extends beyond the two-and-three dimensional ar-
rays representable by CUDA, our work is applicable to both repre-
senting an area that needs to be transferred (such as noncontigu-
ous array boundaries) and to subsequently packaging that data effi-
ciently.

At the library level, Distributed Computing for GPU Networks
(DCGN) [14] extends MPI and partially implements the standard

with a highly threaded design, utilizing signaling/polling mecha-
nisms to allow for GPU-sourced communication. It also uses ex-
isting MPI libraries as a backend, meaning our work can directly
benefit theirs. Unfortunately, given the current architectural con-
straints, the signaling and polling operations are cycle-consuming
and lead to high latencies in GPU-sourced communication routines.
This likely means that, while future architectures will allow for ef-
ficient GPU-sourced communication, the model used in today’s ap-
plications will be a CPU “push-pull” model, that is, the CPU initi-
ates the communication routine and invokes the memory manage-
ment operations on the GPU.

Similarly, cudaMP I works on top of MPI, focusing on perfor-
mance implications of different memory types, such as pinned vs.
not pinned [7]. Specifically, they focus on the application of the la-
tency/bandwidth performance model, which comes into play when
doing anything GPU-related, which tends toward high-latency, high-
bandwidth operations. Additionally, they briefly discuss noncon-
tiguous memory transfer onto the CPU, but only as an application-
specific column-vector transfer, and do not take into consideration
MPI datatypes in general. Similar to our method, they issue a ker-
nel to pack this data. Our work thus directly applies to their frame-
work.

A more straightforward integration has been seen in MVAPICH2,
where the authors have made their MPI implementation aware of
the CUDA memory space, eliminating underlying memory copies
[16]. They have provided the ability to communicate contiguous
buffers, and more recently, buffers that can be represented as a
single vector type, in communication involving buffers in GPU
memory [15]. However, their methodology is based solely on exist-
ing CUDA library functions (specifically, two-dimensional mem-
ory copies) and thus cannot be extended to other datatypes; we
provide a framework capable of representing and packing arbitrary
datatypes built on top of each other. Our methodology can be inte-
grated into their buffer-pool-based framework in a simple manner,
however.

6. CONCLUDING REMARKS

Since GPUs are expected to continue evolving to be capable of
more general purpose computations, it is extremely important to
be able to integrate them into widely used libraries in the HPC
community, such as MPI. We have presented one important as-
pect towards this end, the processing of arbitrary, non-contiguous
datatypes describing data residing in GPU memory. In particular,
we found that kernelizing the packing operation leads to huge per-
formance improvements in datatypes that describe two non-exclusive
data layouts: highly non-contiguous data, and irregularly located
data. These cases are particularly important for future applications
because there is a large degree of research into new ways of using
GPU hardware to perform complex operations. With these complex
operations come more complex communication patterns. Relaxing



the data layout requirements necessary for quickly getting the data
from the GPU to the CPU and across nodes is helpful from an op-
timization standpoint: algorithms could have local access patterns
that differ from global communication patterns, and if there is ef-
ficient packing available, applications could focus more towards
optimizing the local patterns.

Overall, we view our method as complementary towards the goal
of full, robust integration of GPU technology into the HPC commu-
nity, and a strong baseline for future MPI library implementations.
Obviously, it does not make sense to pack datatypes which can al-
ready be efficiently encoded and transferred using the CUDA or
OpenCL libraries. Also, fully optimized implementations could
do optimizations similar to what current MPI implementations do,
such as substituting specialized packing operations for commonly
used types. For instance, rather than going through the main mem-
ory representation for a single vector datatype, one could merely
pass the vector parameters in as kernel parameters, and lower
the small-message latency of the packing operation. This is anal-
ogous to writing efficient, low-level memory copying code. How-
ever, these are special case optimizations, whereas our work uses
the same algorithm for every type and can handle arbitrary data
layouts specified by MPI datatypes. Nevertheless, given the tree-
based nature of the MPI datatypes specification, it should be fairly
straightforward to detect these special cases on the fly and issue the
correct optimization.

Another common optmization to make is the pipelining of data in
communication codes to increase network utilization. While we did
not explicitly explore this in our work, it is straighforward to pro-
vide this functionality. Given a pipeline unit of an arbitrary size, we
can modify the point-to-thread mapping and the input/output off-
sets in Algorithm 1, signifying an element offset and dynamically
assigning threads and thread blocks to the number of elements to
read. We can also simply select the number of elements that can
fit into any given buffer using the existing datatype encoding and
a single-pass traversal, similar in style to Algorithm 1. However,
for our test system, the pipelining would not have helped and, in
fact, might have harmed the communications performance, because
of the lower process-to-process bandwidth compared to the pack-
ing throughput and the additional latency costs in initializing and
waiting for multiple packing operations. Nevertheless, for systems
with increasingly high network capabilities, it would be important
for this functionality to be available, and our design is capable of
performing pipelining with little change to the underlying methods.

Furthermore, we have shown the need, through experiments on
resource contention, for more complex resource scheduling on the
GPU. As communication patterns get more complex and multiple
threads and MPI processes access the same GPU hardware, there is
nothing a user can do to prevent resource contention other than fine-
tuning and organizing the code to explicitly minimize contention.
Thankfully, the MPI Standard allows hints in the form of attributes
to be passed to datatypes. While there may be no way to avoid
resource contention, at least the user could be able to have some
say in the handling of it. To enable a wider range of applications
to efficiently use the GPU, providing scheduling capabilities, such
as a priority-based scheduler for performance critical workloads
such as packing, will become an increasingly important aspect of
overall GPU adoption and use, especially, for general-purpose ap-
plications.
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