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Abstract

We present here the ExM (extreme-scale many-task) pro-

gramming and execution model as a practical solution

to the challenges of programing the higher-level logic

of complex parallel applications on current petascale

and future exascale computing systems. ExM provides

an expressive high-level functional programming model

that yields massive concurrency through implicit, auto-

mated parallelism. It comprises a judicious integration of

dataflow constructs, highly parallel function evaluation,

and extremely scalable task generation. It directly ad-

dresses the intertwined programmability and scalability

requirements of systems with massive concurrency with

a programmingmodel that may be attractive and feasible

for systems of much lower scale. We describe here the

benefits of the ExM programming and execution model,

its potential applications, and the performance of its cur-

rent implementation.

1 Introduction

Exaflop computers capable of 1018 floating-point

operations/s are expected to provide concurrency at

the scale of O(109) threads on O(106) cores [22].

Such extreme-scale systems will enable and demand

new problem-solving methods that do not follow to-

day’s dominant single program, multiple data (SPMD)

paradigm but instead involve many (often a time-varying

number) concurrent and interacting tasks. Writing cor-

rect, scalable programs at this level can be an onerous

task, with significant investment of programmer time re-

quired to make a program run efficiently on hundreds or

thousands of cores. Applications at this scale can have a

development cycle approaching a decade.

For some applications, intricate high-level coordina-

tion logic is necessary; but in other cases, the high-

level coordination pattern is relatively straightforward

and may be expressed as the composition of a num-

ber of computational tasks. In practice, the composition

takes the form of scripted dataflow logic, in which tasks

are linked together through their input and output data

sets; the tasks themselves are developed separately as li-

braries or external programs. Important applications in

methodologies such as rational design, uncertainty quan-

tification, parameter estimation, and inverse modeling all

have this many-task property. Many will have aggre-

gate computing use cases that require exascale comput-

ers. The ExM computing model draws on recent trends

that emphasize the identification of coarse-grained paral-

lelism as a first and separate step in application develop-

ment [14, 23, 24]

Currently, many-task applications are programmed in

one of two ways. In the first approach, the logic asso-

ciated with the different tasks is integrated into a sin-

gle, tightly coupled application. Load-balancing libraries

based on MPI [15], such as the Asynchronous Dynamic

Load Balancing Library, ADLB [12], or on Global Ar-

rays [18], such as Scioto [8], have recently emerged as

promising solutions to aid in this approach. They pro-

vide a master/worker system with a put/get API for task

descriptions, thus allowing workers to add work dynami-

cally to the system. However, they lack a comprehensive

programming model, data model, and other features re-

quired for high-productivity programming. In the sec-

ond approach, a script or workflow is written that in-

vokes the tasks, in sequence or in parallel, with each

task reading and writing input and output files or streams.

However, performance can be poor, since existing many-

task scripting languages are implemented with central-

ized evaluators that cannot sustain the high overall task

rate necessary to efficiently communicate with and uti-

lize O(106) cores.

Our view is that the programming of a significant frac-

tion of extreme-scale applications will require a hier-

archy of programming models. An implicitly parallel,

functional, dataflow-based programming model is well

suited for programming the higher levels of such appli-

cations, while many diverse and finer-grained parallel

models will be used in hybrid approaches to program the

cores of such applications. This view is based on our sig-

nificant experience with the Swift parallel scripting lan-

guage [25], which has been used extensively to program

the “outer loops” of such applications and to compose

existing programs into larger and more sophisticated ap-

plications such as simulation or analysis pipelines, pa-

rameter sweeps, ensemble methods, and complex work-

flows graphs. The contribution of this paper is a compre-

hensive strategy to perform such high-level application

coordination at extreme scales with greater programma-

bility.
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Previous approaches to workflow execution on high-

performance resources have involved deploying a toolkit

developed for distributed systems on the target infras-

tructure. Software systems relevant for this model

include Dryad [10], Skywriting [16]/CIEL [17], and

Swift [25]. This approach is convenient for the user,

particularly when each task is a distinct executable pro-

gram. However, this approach faces multiple perfor-

mance challenges, including the ability to rapidly launch

independent processes [21], manage large numbers of pi-

lot jobs [13], communicate over an emulated TCP net-

work [11], and coordinate data access [26].

Alternatively, the developer may hand-code a work

distribution system using available high-performance

tools, communicating through MPI messaging in dis-

tributed memory or function calls (as in the parallel ver-

sion of the Common Component Architecture [2].) This

approach uses familiar technologies but can be inefficient

unless much effort is spent incorporating load-balancing

algorithms into the application. Moreover, the approach

can involve considerable programming effort if multiple

component codes are to be integrated. Partitioned global

address space (PGAS) [20] language features provide a

partial solution to the data model but do not offer notifi-

cations and other features necessary for the construction

of high-level scripts.

Our approach integrates these two models. First, we

provide a very high-level, naturally concurrent program-

ming model in the previously developed Swift language.

Second, we developed translation strategies to render

Swift semantics into a distributed-memory model, based

on efficient primitives compatible with the highly scal-

able ADLB library - the primary focus of this paper.

2 modFTDock: A sample application

Runningmany-task applications, such as ensembles of

protein analysis codes, efficiently, reliably, and easily on

large-scale machines is challenging. modFTDock [19],

a relatively simple application analyzing protein dock-

ing, highlights these challenges. As shown in Figure 1,

modFTDock starts withM input files and N input param-

eters. Each of these M×N combinations is processed

by the sequential modftdock task. The resulting dock-

ing data is stored and processed later by tasks merge and

score, which produce the requisite results. All the appli-

cation stages communicate only through their input and

output data. Figure 2 illustrates the simple specification

of this dataflow in Swift. Quantitative information for a

contemporary modFTDock run is tabulated in Table 1;

conceivable future experiments could be composed of

trillions of tasks.

The challenge is to efficiently, reliably, and scalably

coordinate the million tasks generated by the modFT-

Dock application while at the same time using a com-

Figure 1: Dataflow schematic for modFTDock. The out-

put sizes are for a single run of an application task.

1 dock score scores[];

2 foreach (p1, i in proteins) {
3 dock result docked[];
4 foreach (p2, j in proteins) {
5 if (i < j) {
6 docked[j] = modftdock(p1, p2);

7 }
8 }
9 scores[i] = score(merge(docked));

10 }

Figure 2: Swift implementation of modFTDock.

pact, programmer-friendly specification that can support

the integration of legacy code.

3 Swift: A dataflow language to support

many-task applications

The canonical applications for which Swift was orig-

inally designed had most of the sequential computa-

tion code already written and encapsulated as command-

line binaries that needed to be coordinated as a work-

flow. Traditionally UNIX shell scripts have been used to

this end, but Swift was designed to better support run-

ning such applications in distributed and parallel con-

texts, where synchronization, data movement, explicit

task scheduling, and fault-tolerance are necessary.

The Swift execution model may be split into two pro-

cesses: task generation, the interpretation of the user

dataflow script, generating concurrent tasks and task ex-

ecution, which distributes the resulting side-effect free

leaf tasks and orchestrates their execution. Leaf tasks

may be implemented as procedures and correspond to

library call invocations, or standalone executables, in

which case they correspond to launching a new process.

Leaf tasks themselves may use multiple cores or even

multiple nodes.

To link the above to our sample application, we treat

the components of the modFTDock as leaf tasks coordi-

nated by a Swift script. For modFTDock, the leaf tasks

Table 1: Statistics for a full modFTDock application run.

Task Number of Tasks Duration

modftdock 1,200,000 1,000s

merge 12,000 5s

score 12,000 6,000s
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are single-process executables, yet concurrency is ex-

posed by Swift semantics. Data dependencies, task dis-

tribution, and data movement are managed by the system

as follows.

In Swift, unlike in shell scripts, all inputs and outputs

of a (side-effect free) leaf task must be explicitly defined,

so that the Swift runtime has enough information to man-

age its input and output. A Swift app function definition

such as the one below converts a standalone executable

(the convert utility) to a Swift function with arguments

and return values (such as image files or int parame-

ters).

app (image out) rotate(image in, int angle) {

convert "-rotate" angle @in @out;

}

We will provide an extension mechanism to allow

functions from other languages to be defined and com-

piled/linked as Swift tasks as well. In addition to these

external functions, functions can also be defined within

Swift, comprising multiple Swift statements.

The parallelism in a Swift script is exposed implic-

itly, with the order of execution of Swift statements de-

termined entirely by data dependencies. Multiple state-

ments and subexpressions can execute in parallel, given

no data dependencies and sufficient parallel computing

resources. Consider the following example:

(datafile result) process (datafile in) {

datafile foo; datafile bar;

foo = f(in);

// g and h below can run concurrently with f

bar = g(in);

result = j(foo, h(bar));

}

Each iteration of a foreach loop in Swift runs inde-

pendently, but data dependencies may serialize execu-

tion.

int out[];

foreach f, i in myfiles {

// Each iteration is completely independent

out[i] = readData(process(f));

}

int out[];

foreach f, i in myfiles {

// But these are serialized by data dependencies

if (i > 0) {

out[i] = readData(process2(f, out[i-1]));

} else {

out[i] = readData(process(f));

}

}

The Swift language design ensures that even high

concurrency programs are deterministic by default [4].

The core Swift language constructs are deterministic

and non-determinism can only originate from non-Swift

code. A valid Swift program always produces the same

Figure 3: Task distribution in the Turbine runtime sys-

tem.

output (although the ordering of side-effects such as log

messages can vary).

The main feature that enables this property is the use

of write-once variables: each Swift variable can be writ-

ten to only once. Writing twice causes a compile or run-

time error.

Write-once variables give programming in Swift a

nonimperative programming flavor and eliminate the

possibility of many concurrency bugs. A Swift com-

piler can automatically detect or warn of many classes of

errors such as deadlocks from circular dependencies or

unassigned variables. Including arrays in the language

allows more runtime errors because of the impossibility

of deciding statically if a particular array index is modi-

fied (cf. the halting problem), but these quasi-imperative

arrays of write-once variables are more expressive than

purely functional alternatives [3] and are less of a leap

for programmers familiar with imperative languages.

In summary, Swift programs are well suited for ex-

pressing the upper-level concurrency of complex appli-

cations that integrate a variety of other functional com-

ponents (often written in other diverse parallel program-

mingmodels). The Swift runtime provides the scalability

and performance necessary to manage millions of task

definitions and input/output data objects. This allows the

use of distributed memory to store script control vari-

ables and cache user datasets, while resolving the data

dependencies that coordinate independent processes.

4 ExM architecture

We are developing a new implementation of Swift

based on the ExM extreme-scale many-task execution

model. This implementation performs fully distributed

execution of a Swift program with no centralization of

control flow.

The full ExM system comprises a distributed version

of Swift and MosaStore, a distributed in-memory file

system [6]. We discuss only the former in this paper,

which is implemented as two subsystems: the runtime

system (called Turbine) and the Swift-to-Turbine com-

piler (called stc).

We think of the intermediate code, the crucial inter-
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1 main {
2 int x;

3 int y;
4 int z = 1;
5 (x, y) = f(z);

6 if (x != 0) {
7 trace(y);

8 } else {
9 trace(z);
10 }
11 }

Figure 4: Swift script to be compiled by stc.

1 # Main program fragment-

2 # starts on a single process

3 main {
4 # allocate data in global data store

5 integer x

6 integer y
7 integer z literal 1

8

9 # post call to f, with input x and output x, y

10 statement call composite f [ z ] [ x y ]
11

12 # post call to conditional expression

13 statement conditional if-0 [ x y z ]
14 }
15

16 # This program fragment executes sometime after x

17 # is written, maybe in another process

18 block if-0 { x y z } {
19 # retrieve x from the global data store

20 integer get x
21 if (x) {
22 statement builtin trace [ y ]
23 } else {
24 statement builtin trace [ z ]

25 }
26 }

Figure 5: Generated Turbine intermediate code.

Each fragment is sequentially evaluated, with each

statement command creating an asynchronous task.

face between the two, as the instructions for an abstract

workflow machine. The set of runtime system primi-

tives for task management, data management and syn-

chronization is kept as minimal as possible, in order to

make the Turbine runtime as robust and flexible as pos-

sible. Figures 4–7 illustrate how Swift code is translated

into intermediate code for Turbine’s consumption.

The Turbine runtime system currently is built on top

of MPI, running on a cluster with all communication be-

tween components using messages. Using MPI made

it easy to port to several cluster architectures, including

IBM Blue Gene/P, Cray, and SiCortex systems. The MPI

processes are divided among three roles: ADLB servers

that manage the task queue and data store; Turbine rule

engines that track data dependencies and execute inter-

mediate code; and workers that exclusively execute leaf

tasks. Typically the bulk of processes are workers, since

the bulk of computation occurs in leaf tasks.

1 # int A[];

2 container A integer integer # container with int keys, vals

3

4 # test[0] = 1;

5 integer t0 literal 1
6 container insert immediate A 0 t0

7

8 # test[f()] = g();

9 integer t1

10 statement call composite g [] [ t1 ]
11 integer t2

12 statement call composite f [] [ t2 ]
13 container insert future A t2 t1
14

15 # trace(test[1]);

16 reference t3

17 container lookup ref immediate A 1 t3
18 integer t4

19 dereference t3 t4
20 statement builtin trace [ t4 ]
21

22 # cleanup operation: decrement container writer count

23 container decr writers A

Figure 6: Generated Turbine intermediate code for array

operations, with the corresponding Swift code in com-

ments.

1 int A[]; int B[];
2 A = constructArray();

3 foreach x, i in A {
4 B[i] = f(x);
5 }

1 main {
2 container A integer integer

3 container B integer integer
4 statement call composite constructArray [] [ A ]

5 loop A loop1 body [ B ]
6 }
7

8 block loop1 body { B x i } {
9 integer t0

10 statement call composite f [ t0 ] [ x ]
11 container insert immediate B i t0
12 }

Figure 7: Swift script with foreach loop to be compiled

by stc, and the corresponding intermediate code.

5 Implementation progress and challenges

At the time of writing, we have a working compiler

and runtime system that can handle a significant subset

of the language, including functions, recursive function

calls, conditionals, expressions, arrays and structures.

We are focusing currently on scalability, running Swift

scripts on tens of thousand of cores.

A number of challenges arise in making the Turbine

interpreter scale. ADLB provides a strong base on which

to implement task distribution, but a naive approach to

task generation can put unnecessary strain on load bal-

ancing and data dependency management processes. A

naive foreach loop, without throttling or loop splitting

could create hundreds of thousands of tasks simultane-

ously, swamping ADLB. Long data dependency chains

between tasks in the runtime also occurs with a naive ap-
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proach. Static analysis is necessary to defer task creation

until data is ready and to coalesce tasks if possible.

Swift’s data model also presents challenges, with data

potentially shared by many tasks. With load balancing

it is essential that any data remain accessible to tasks af-

ter relocation. Turbine provides a global data store to

this end. Primitive data types such as numbers or strings

are stored directly in the data store. Arrays and struc-

tures also reside in the data store as Turbine containers,

a dictionary data type, with linked containers supporting

more complex data structures. Containers are specialized

to support the deterministic semantics of a Swift script,

such as the requirement that any ordering of reads and

writes to an array index should result in the same out-

come and that a read should eventually fail if an array in-

dex will never be written to. Hence, the interpreters need

to reach a consensus on when a container is closed (i.e.

no more writes will occur). To this end, we use static

analyis in the compiler and special reference counting

operations in Turbine. For scalability, Turbine supports

distributed containers, with the container split between

data servers by index range.

Logically all Swift variables are values, rather than

references; but for efficiency we want to avoid doing ex-

cessive copies-by-value, particularly of arrays. Copying

references, however, introduces the problem of garbage

collection. Various techniques exist for distributed

garbage collection [1]; distributed reference counting is

the most straightforward candidate for Swift but can be

inefficient. Most Swift variables are unneeded beyond

the lifetime of a procedure stack frame, so we anticipate

that escape analysis [5] should be sufficient to keep the

reference counting overhead manageable.

In general static analysis techniques in the compiler

will be important for scalability and performance, with

efficiency of individual runtime operations playing a sec-

ondary role. Often a naive approach to compilation re-

sults in severe inefficiencies, such as repeated redundant

lookups of variable values or other inefficient usage pat-

terns of the Turbine runtime. Static analysis of Swift

is fortunately straightforward because of write-once se-

mantics for variables, thus making it easy to convert a

Swift program to a simple version of the standard Static

Single Assignment form [7] and deploy many code opti-

mization techniques.

The current Turbine design with processes divided

into three roles has been easy to scale up, but it may even-

tually prove to limit the efficiency of task distribution.

Past work on building extremely efficient task-parallel

runtime systems (for example, Cilk [9]) has tended to

use a symmetrical design, where each process cooper-

ates equally in load balancing and task execution, with

work-stealing providing load balancing. For ExM, mov-

ing to this model could reduce internode communication

significantly, with tasks and data remaining local except

when load balancing occurs.

6 Performance results

In this section, we demonstrate the ability of the ExM

task distributor to run a synthetic user application that

performs nontrivial script logic. This benchmark carries

out an algorithm similar to a recursive search and emu-

lates user work at the leaf function calls.

We wrote a Swift script to evaluate the nth Fibonacci

number fib(n) according to the recursive formulation

fib(0) = 0; fib(1) = 1; fib(n) = fib(n− 1)+fib(n− 2).
In the Swift model, these recursive calls generate a

data-dependentworkflow to be evaluated among the con-

trol flow components in the runtime system. As the

workflow progresses, many recursive procedure invoca-

tions are triggered, exercising the control flow functions

of Turbine. At the base cases n = 1 or n = 0, leaf tasks

sleep for 10 seconds to emulate user computation time.

We ran this benchmark on the IBM Blue Gene/P In-

trepid, a system with 40,960 nodes of 4 cores each. We

used varying core counts, with one MPI process per core,

with the workload and number of leaf tasks increased by

increasing the input parameter n. We obtained a utiliza-

tion result by dividing the user time (time spent in sleep)

by the wall time of the run. Results are shown in Table 2.

Table 2: Detailed statistics for fib runs

Cores n Leaf Tasks Time (s) Util.

4,096 23 46,368 129.0 87.6%

8,192 26 196,418 168.7 87.8%

16,384 27 317,811 217.9 89.0%

32,768 29 832,040 284.1 89.3%

65,536 30 1,346,269 233.3 88.0%

7 Conclusion and future work

We have motivated and described the ExM distributed

execution model for running Swift dataflow applications.

Swift makes it easy to express massive coarse-grain par-

allelism, and ExM is capable of executing Swift applica-

tions with extreme scalability. While much work remains

to complete and validate the full Swift language on ExM

and to achieve exascale performance targets, the system

will soon be capable of supporting real scientific appli-

cations. We will use current petascale systems to extend

testing to the 160K core range and to simulate its perfor-

mance at over 1M core concurrency. We believe ExM’s

many-task execution model and distributed hierarchical

data model makes it well suited to address the resilience

and energy-aware load balancing that will be required at

the exascale. We will evalute these potential benefits as

the implementation proceeds.
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