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Abstract

This paper proposes a convex relaxation of a sparse support vector machine (SVM) based on the per-
spective relaxation of mixed-integer nonlinear programs. We seek to minimize the zero-norm of the hy-
perplane normal vector with a standard SVM hinge-loss penalty and extend our approach to a zero-one
loss penalty. The relaxation that we propose is a second-order cone formulation that can be efficiently
solved by standard conic optimization solvers. We compare the optimization properties and classification
performance of the second-order cone formulation with previous sparse SVM formulations suggested in
the literature.Keywords: SVM, second order cone optimization, sparsity

AMS-MSC2010: 90C90, 90C25.

1 Introduction

Given a dataset (A, y) ∈ Rm×n × {−1, 1}m we consider binary classification by support vector machines
(SVMs), computing a hyperplane

{
a ∈ Rn

∣∣ w>a = b
}

in order to classify any x ∈ Rn based on sgn(w>x−
b). Letting [k] = {1, . . . , k}, we seek a hyperplane to separate a subset of {i ∈ [m] | yi = 1} from a subset
of {i ∈ [m] | yi = −1}; a separator that (we hope) generalizes well for the test data. In the standard SVM
formulation this is achieved by minimizing ||w||22 or, equivalently maximizing the margin of separation.
Since generally the data is inseparable, one usually minimizes the sum of ||w||22 and the hinge-loss penalty
c
∑m
i=1[1 − yi(w>x + b)] for some c ≥ 0. The hinge-loss, however, is only a surrogate for the quantity of

interest: the number of misclassifications that is measured by the zero-one loss; see Höffgen et al. (1995)
and the discussion and references in Bennett and Bredensteiner (1997). We denote the zero-norm of a vector
a ∈ Rn by ||a||0 = {j ∈ [n] | aj 6= 0}. Next we consider sparse SVM formulations that minimize the sum
of ||w||0 and the hinge-loss with penalty.

Our formulations are based on the perspective reformulation of mixed-integer nonlinear programs
(MINLPs), a nonlinear MINLP formulation and relaxation technique that may eliminate in some cases
the need for big-M constants that may otherwise be needed for modeling indicator variables Günlük and
Linderoth (2010). The weakness of big-M relaxations in the context of classifier ensemble mixed-integer
programming formulations was demonstrated by Goldberg and Eckstein (2012).

2 Convex relaxations of sparse SVM

Chan et al. (2007) consider a sparse SVM formulation that applies a constraint ||w||0 ≤ r to the standard
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SVM formulation:
min
ξ,w,b
{||w||2 + c ||ξ||1 | Y (Aw + b) + ξ ≥ 1} , (1)

where Y denotes the m×m diagonal matrix with diagonal y.
Chan et al. (2007) propose a quadratically constrained quadratic program (QCQP) and a semidefinite

programming (SDP) as convex relaxations of a sparse SVM (SSVM) formulation. Both relaxations are in-
spired by and rely on the vector norm inequality ||a||1 ≤

√
||a||0 ||a||2. The QCQP-SSVM is

min
ξ,w,b,t

t+ c

m∑
i=1

ξi (2a)

s.t. Y (Aw + 1b) + ξ ≥ 1 (2b)

||w||22 ≤ t (2c)

||w||21 ≤ rt (2d)

ξ ≥ 0. (2e)

This formulation is equivalent to replacing the standard SVM objective by

min
ξ,w,b

{
max

{
1

r
||w||21 , ||w||

2
2

}
+ c

m∑
i=1

ξi

}
.

For the sake of brevity we omit the formulation of the SDP relaxation (SDP-SSVM) which can be found in
Chan et al. (2007).

Guan et al. (2009) proposed a MINLP for optimally solving a closely related problem where ||w||0 is
penalized in the objective instead of being subject to a hard constraint. Because of the intractability of the
problem, however, they were limited to solving the problem only for small datasets. Although solving the
discrete problem to optimality may better optimize the tradeoff of hinge-loss and ||w||0, tractable convex
relaxations may suffice to improve on classification performance and/or sparsity; see for example Chan
et al. (2007); Goldberg and Eckstein (2010). Recently, Tan et al. (2010) proposed an algorithm for sparse
SVM to solve a continuous relaxation with an infinite number of constraints. Their method for solving
that formulation is specialized for problems with a large number of features. Here we consider finite conic
formulations that are closer to the approach Chan et al. (2007); these can be solved by standard conic opti-
mization solvers. Further, with the advent of first-order methods for conic optimization Zhao et al. (2010)
our models may apply with a large number of observations and potentially in online settings.

Alternatively, smooth approximations of ||w||0 Bradley and Mangasarian (1998); Weston et al. (2003)
and LP-SVM Bradley and Mangasarian (2000); Fung and Mangasarian (2004) have been used for sparse
classification. However, smooth approximation techniques give rise to nonconvex optimization problems
requiring one to settle for local minima. On the other hand, LP-SVM and linear programming formulations
in general are poor relaxations of the zero-norm minimization problem because of the required big-M
constants. The sparsity however can still be controlled by setting larger hinge-loss penalties (i.e., larger
values of c); see Goldberg and Eckstein (2012) for a detailed analysis of the setting whereA ∈ {−1, 0, 1}m×n.
In the following we consider a convex (conic) relaxation that avoids the use of big-M constants that may
otherwise be needed to formulate ||w||0 within a mathematical program.

3 Combining the 2-norm and zero-norm penalties

We now consider a sparse SVM formulation that minimizes a linear combination of the two-norm and
zero-norm of w:

min
ξ,w

{
||w||22 + c ||ξ||1 + d ||w||0 | Y (Aw − 1b) + ξ ≥ 1

}
.
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This problem can be motivated by test error (or generalization) bounds that appear in the literature, some
given in terms of the margin of separation (the inverse of the 2-norm of w), some given in terms of sparsity,
and some combining both; see, for example, Koltchinskii and Panchenko (2005).

Guan et al. (2009) considered this problem1 and formulated it as a MINLP, using binary indicator vari-
ables z ∈ {0, 1}n and auxiliary variables u ∈ Rn+

min
ξ,w,b,u,z

n∑
j=1

uj + c

m∑
i=1

ξi + d

n∑
j=1

zj (3a)

s.t. Y (Aw − 1b) + ξ ≥ 1 (3b)

w2
j − zjuj ≤ 0 j ∈ [n] (3c)

ξ ≥ 0, z ∈ {0, 1}n. (3d)

The constraints (3c) ensure that

w2
j

{
≤ uj zj = 1

= 0 zj = 0.

We note that for sufficiently large values of c and d, the uj terms of (3a) become negligible and an optimal
solution of (3) is also optimal in

min
w,ξ
{||w||0 + c̃ ||ξ||1 | Y (Aw − 1b) + ξ ≥ 1} (4)

for c̃ = c/d. Hence, (3) generalizes previously considered zero-norm minimization problems (e.g., Weston
et al. (2003) and Amaldi and Kann (1998)), known to be NP-hard, implying that (3a) is NP-hard.

In addition to the fact that this problem is a computationally challenging MINLP, another obstacle is
that the left-hand side of (3c) is not convex. Further, even general nonlinear programming solvers have
difficulty in computing local minima for continuous relaxations of (3) because the constraints (3c) violate
constraint qualification. Consequently, to solve small instances of (3), Guan et al. (2009) resorted to replacing
the constraints (3c) by big-M constraints of the form |wj | ≤Mzj .

4 A second-order cone relaxation

As u, z ≥ 0, constraint (3c) can be rewritten as a convex second-order cone constraint, for each j ∈ [n],

||(2wj , uj − zj)|| ≤ uj + zj .

Let Qn denote the n-dimensional second-order (Lorentz) cone; see Ben-Tal and Nemirovski (2001) for a
definition and related results concerning second-order cone programming. Now, relaxing the variables and
letting zj ∈ [0, 1] in place of zj ∈ {0, 1}, a second-order cone relaxation of (3) in which we also replace the

1In their formulation, Guan et al. (2009) introduce an additional constraint for enforcing ||w||0 ≥ 1. However, one may set c and d

to enforce ||w||0 ≥ 1 endogenously.
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d ||w||0 penalty by a hard constraint for a given parameter r ≥ 0 is

min
ξ,w,b,u,z

n∑
j=1

uj + c

m∑
i=1

ξi (5a)

s.t. Y (Aw − 1b) + ξ ≥ 1 (5b)

(2wj , uj − zj , uj + zj) ∈ Q3 j ∈ [n] (5c)
n∑
j=1

zj ≤ r (5d)

ξ ≥ 0, z ∈ [0, 1]n. (5e)

This is a convex optimization problem that can be solved efficiently and also rapidly in practice by
specialized interior-point conic optimization solvers. We refer to this novel formulation as CQ-SSVM. Note
that for a sufficiently large values of r, in particular for r = n, the problem reduces to the standard SVM
problem (1).

5 Extending the formulation for the zero-one loss

We now consider a formulation that minimizes the zero-one loss in place of the standard SVM hinge-loss:

min
ξ,w,b
{||w||0 + c ||ξ||0 | Y (Aw − 1b) + ξ ≥ 1} . (6)

Similar formulations that attempt to minimize the zero-one loss in conjunction with penalizing ||w||0 have
been considered in the context of SVMs and boosting Weston et al. (2003); Goldberg and Eckstein (2010).

Appending the corresponding perspective variables and constraints to (3) for each of the variables ξi,
for i ∈ [n], we may formulate this problem as a MINLP:

min
ξ,w,b,u,s,q,z

n∑
j=1

(uj + dzj) +

m∑
i=1

(si + cqi) (7a)

s.t. Y (Aw − 1b) + ξ ≥ 1 (7b)

w2
j − zjuj ≤ 0 j ∈ [n] (7c)

ξ2i − qisi ≤ 0 i ∈ [m] (7d)

ξ ≥ 0, z ∈ {0, 1}n, q ∈ {0, 1}m. (7e)

The following proposition establishes values of c and d for which an optimal solution of (7) is optimal
to (6). It is assumed that the data is integer; however, note that every rational matrix can be scaled so that
its entries are integer.

Proposition 1. SupposeA ∈ Zm×n,Aij ≤ U for all i, j, and c, d ≥ U2mmm+2. Then, for every (w∗, b∗, ξ∗, u∗, s∗, q∗, z∗)

that is optimal to (7), (w∗, b∗, ξ∗) must be optimal to (6).

Proof. Clearly, (w∗, b∗, ξ∗) is feasible for (6). Also note that by optimality to (7) we have u∗j = w∗
2

j for j ∈ [n],
and s∗i = ξ∗

2

i for i ∈ [m]. Now, assume for the sake of deriving a contradiction some (w̄, ξ̄) that is feasible
for (6) (and hence also to (7b)) with ||w̄||0 + c

∣∣∣∣ξ̄∣∣∣∣
0
< ||w∗||0 + c ||ξ∗||0. Now, the system of inequalities (7b),

for i ∈ [m], with ξi = 0 fixed for i with ξ̄i = 0, and wj = 0 fixed for j with w̄j = 0, has a basic feasible

solution. Let B denote a submatrix of
(
Y
(
A 1

)
I
)

that forms a basis. This basis has a corresponding

set of active inequalities given by B
(
ŵ b ξ̂

)>
= 1, for some ŵ ∈ Rk and ξ̂ ∈ R` with k ≤ n and ` ≤ m.
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Applying standard techniques using Cramer’s rule, Hadamard inequality, and the fact that A is integer
matrix, one has that ŵj , ξ̂j ≤ Ummm/2. It follows that

∣∣∣∣∣∣(ŵ, ξ̂)∣∣∣∣∣∣
1
≤ Ummm/2+1. Hence, by a standard norm

inequality and, respectively, the supposition of the proposition∣∣∣∣∣∣(ŵ>, ξ̂>)
∣∣∣∣∣∣2
2
≤
∣∣∣∣∣∣(ŵ>, ξ̂>)

∣∣∣∣∣∣2
1
≤ U2mmm+2 ≤ c, d.

By construction ||ŵ||0 + c
∣∣∣∣∣∣ξ̂∣∣∣∣∣∣

0
≤ ||w̄||0 + c

∣∣∣∣ξ̄∣∣∣∣
0
, so∣∣∣∣∣∣(ŵ>, ξ̂>)

∣∣∣∣∣∣2
2

+ c
∣∣∣∣∣∣ξ̂∣∣∣∣∣∣

0
+ d ||ŵ||0 ≤ U

2mmm+3 + c
∣∣∣∣∣∣ξ̂∣∣∣∣∣∣

0
+ d ||ŵ||0

<
∣∣∣∣∣∣(w∗> , ξ∗>)

∣∣∣∣∣∣2
2

+ c ||ξ∗||0

+ d ||w∗||0 ,

thereby establishing a contradiction.

Through a similar second-order cone reformulation of the constraints (7d), relaxing the variables, letting
ξi, wj ∈ [0, 1], we arrive at the second-order cone relaxation. We also replace the penalty

∑
j∈[n] zj in the

objective by a hard constraint in order to facilitate comparison with the other sparse SVM relaxations (see
the following section for details).

min
ξ,w,b,r,u,q,z

n∑
j=1

(uj + dzj) +

m∑
i=1

(ri + cqi) (8a)

s.t. Y (Aw − 1b) + ξ ≥ 1 (8b)

(2wj , uj − zj , uj + zj) ∈ Q3 j ∈ [n] (8c)

(2ξi, ri − qi, ri + qi) ∈ Q3 i ∈ [m] (8d)∑
j∈[n]

zj ≤ r (8e)

z ∈ [0, 1]n, q ∈ [0, 1]m, ξ ≥ 0. (8f)

We refer to the method of solving formulation (8) as CQ01-SSVM.

6 Evaluating the quality of the relaxation

Ideally one can solve the MINLP (3) in order to compare its optimal solution with the solution of the re-
laxation. However, the MINLP becomes increasingly difficult to solve with more than a small number of
features.

The perspective (see Boyd and Vandenberghe (2004); Günlük and Linderoth (2010)) of g(wj , uj) = w2
j −

uj is illustrated in Figure 1. If uj = w2
j , then the constraint (7c) implies that zj = 1 if and only wj > 0.

Otherwise, if uj > w2
j , then for a solution (ξ, w, u, z) optimal to (5) with (5d) binding, it must be that

0 < zj = w2
j/uj < 1. Further, it is precisely when c is large compared with unity (the objective coefficients

of the uj ’s), and when r is small, that for each j ∈ [n], uj may tend to overestimate w2
j in order to allow

zj < 1. Intuitively, the larger the values of c, and the smaller r is, the larger the Lagrangian multipliers that
are associated with the constraints (5c) and that “push against” zj being large, for each j ∈ [n]. Empirical
evidence for quality of the relaxation is given in Section 7.

Formulations (5) and (8) facilitate comparison with (2) and also with an integer solution: if (ξ, w, u, z) is
optimal to (5) with ||w||0 ≤ r, then since zj for j ∈ [n] is constrained from above by 1 or by constraint (5d),
it follows by optimality to (5) that uj = w2

j for all j ∈ [n]. Thus, if ||w||0 ≤ r, it follows for j ∈ [n] that
zj ∈ {0, 1}.
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wj

uj

ŵj

ûj
ŵ2
j

M

Figure 1: Illustration of the perspective relaxation: the optimum (with respect to feature j) (ŵj , ûj , ẑj) is
taken over the convex hull of (0, 0, 0) and (t, t2, 1) for t ≥ 0. Such an optimal solution satisfies ẑj = ŵ2

j/ûj .
In a big-M formulation one would have ẑj = |ŵj | /M for a potentially very large M .

7 Computational experiments

Chan et al. (2007) suggested that investigating the tradeoff of ||w||0 and accuracy was interesting but not
in the scope of their work. Here we more closely examine this tradeoff for both SDP-SSVM and QCQP-
SSVM as well as for our formulations CQ-SSVM and CQ01-SSVM. We compare the quality of the different
relaxations for different values of the penalty parameters. We also compare the classification performance
and generalization of our two novel formulations CQ-SSVM and CQ01-SSVM with previous relaxations.

We solve the optimization models using the SDPT3 solver Toh et al. (1999) version 4.0. SDPT3 is a spe-
cialized interior-point solver for conic optimization problems. We note that all the formulations considered
in this paper can be cast as conic optimization problems.

7.1 Optimization and relaxation quality

We ran experiments on the entire datasets in order to examine the quality of the relaxation of the MINLP
by applying each type of relaxation. In Figures 2(a) and 2(c) we show the actual values of ||w||0 as r is
varied in formulations (5), (8), (2), and SDP-SSVM using the UCI-Ionosphere dataset (Frank and Asuncion,
2010). Following the discussion of Section 6, points that lie on or below the diagonal line correspond to
an integer solution. Figures 2(b) and 2(d) show the training accuracy vs. the density of w as r is varied,
for c = 26 and c = 2−6, respectively. In the case that c is “optimally selected” for the dataset and for the
QCQP-SSVM method, as in the case of c = 26, then all four methods perform nearly the same. However,
for most other choices of the parameter c, such as the case of c = 2−6 in Figure 2(d), then there appears to be
a clear advantage of CQ-SSVM and CQ01-SSVM over SDP-SSVM and QCQP-SSVM in terms of integrality
of the indicator variable vector z, and more importantly in the training accuracy–||w||0 space.

The average SDP-SSVM running time in the experiments of Figures 2(a)–2(d) was 40.99 seconds com-
pared with 1.87 seconds on average to solve the CQ01-SSVM formulation, a formulation withm+n second-
order cone constraints. Due to the computational cost of SDP-SSVM and the fact that Figures 2(a)–2(d)
demonstrate that the SDP-SSVM solutions are similar to those of QCQP-SSVM, we did not further consider
SDP-SSVM.

Table 1 indicates the datset sizes and shows the running times of CQ-SSVM and CQ01-SSVM compared
with LP-SVM and QC-SSVM. The running times apply to runs using roughly 80% of the dataset, which is
used as the training set. The results of in table indicate that in all cases considered CQ-SSVM is faster to
compute than QCQP-SSVM.
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in Section 7.2
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Figure 2: Integrality and sparsity experiments using the Ionosphere dataset

7.2 Classification performance evaluation

For the classification experiments we did not further consider the SDP-SSVM method because of its com-
putational cost and the fact that it seems to compute solutions that are similar to QCQP-SSVM. To set the
parameter c we performed an internal 3-fold stratified cross validation (CV) for all datasets. The parameter
setting was chosen to provide the best accuracy with ||w||0 as a tiebreaker. We experimented with the range
of parameter values c ∈ {2−10, 2−8, . . . , 28, 210}. The parameter r is set to 2 for CQ-SSVM and CQ01-SSVM:
this setting seemed to provide a reasonable tradeoff of accuracy and sparsity. More careful fine-tuning
of the parameter can be applied to improve the classification results even further. For QCQP-SSVM we
applied the setting of r = 0.1 as recommended by Chan et al. (2007).

Table 2 displays the classification performance of the three methods compared also with the LP-SVM Fung
and Mangasarian (2004) formulation. The results summarized in the table indicate that CQ01-SSVM pro-
vides the highest accuracy on average. In pairwise comparisons CQ01-SSVM and CQ-SSVM tie with each
other and outperform the competing methods in most cases with respect to accuracy. QCQP-SSVM pro-
vided the sparsest classifiers while CQ01-SSVM seemed to provide the best balance of accuracy and spar-
sity. It should be noted however that QCQP-SSVM and CQ01-SSVM are more computationally expensive.
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Table 1: CPU time statistics of the solver on 5-fold CV instances solved (25 in total for each dataset, as
detailed in Section 7.2). The mean CPU-seconds is given plus and minus a standard deviation. The UCI
dataset sizes are given after preprocessing; categorical attributes are converted into a several features, one
for each attribute value, and observations with missing numerical attribute values are removed. Below Φ

denotes the positive label proportion of the data.

Dataset m Φ n LP-SVM QCQP-SSVM CQ-SSVM CQ01-SSVM

Voting 435 0.38 48 0.8± 0.4 5.5± 1.0 4.3± 0.7 13.3± 1.3

Wisc. 683 0.35 10 0.5± 0.1 9.7± 0.9 7.6± 0.9 13.2± 0.7

WDBC 569 0.37 31 0.6± 0.1 8.0± 0.7 7.8± 1.0 13.9± 1.0

WPBC 396 0.78 32 0.4± 0.1 5.4± 0.4 2.9± 0.3 11.5± 0.7

SPECT 80 0.50 22 0.2± 0.0 1.2± 0.2 1.1± 0.2 2.7± 0.2

SPECTF 80 0.50 44 0.3± 0.0 1.6± 0.2 1.6± 0.2 3.3± 0.3

Ionosphere 351 0.64 34 0.7± 0.2 4.8± 0.7 3.1± 0.3 9.7± 1.2

PIMA 768 0.65 8 0.3± 0.0 7.8± 0.6 7.4± 0.8 14.5± 1.1

Spam 4601 0.61 57 3.5± 0.8 163.3± 18.8 104.7± 19.7 477.1± 74.2

KDD CUP∗ 5039 0.73 121 103.2± 14.0 328.5± 37.5 209.8± 36.4
∗ the value of m indicated is for samples of roughly 20% of the entire dataset that we used for the experi-
ments described in detail in Section 7.3.

CQ-SSVM’s classification performance provided a consistent balance of sparsity and accuracy over the
datasets and also improved classification accuracy on average.

7.3 Experiments with designated test sets

Here we consider classification performance with designated test sets for SPECT, SPECTF (Frank and Asun-
cion, 2010), and the KDD CUP 1999 network intrusion datasets; we use a processed version of the dataset
that corrects some of the flaws of the original network intrusion dataset; see Tavallaee et al. (2009). For this
dataset, because of its size, we sampled randomly to select roughly 20% of the training set and repeated
the experiment ten times. Here the parameters were chosen as follows: For QCQP-SSVM we used r = .1

as set by Chan et al. (2007). For CQ-SSVM r = 2. The parameter c ∈ {2−10, 2−8, . . . , 210} in each method
is selected by 3-fold CV using only the sampled training data. We report the average accuracy and density
over the 10 repetitions 10% sample size for these datasets in Table 3. The experiments show competitive
classification results for our method. It also becomes apparent from the running times in Table 1 that the
advantage of LP-SVM with respect to running time is not as significant for larger datasets such as the KDD
network intrusion dataset. In all cases CQ-SSVM produced significantly sparser classifiers than LP-SVM.

8 Conclusions and future work

We propose novel second-order cone relaxations of sparse SVM. In empirical tests this relaxation is tighter
than the norm-bound based convex relaxation of Chan et al. (2007), it is faster to compute, and it yields com-
petitive classification performance. The formulations we propose appear to be more robust to the choice
of the penalty parameters, obtaining a reasonable tradeoff of accuracy and sparsity without extensive fine-
tuning of the penalty parameters. The improvement in the overall tradeoff of sparsity and classification
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Table 2: Classification performance results with CQ-SSVM and CQ01-SSVM: 5 repetitions of 5-fold strati-
fied CV experiments.

Dataset LP-SVM QCQP-SSVM CQ-SSVM CQ01-SSVM
||w||0 Acc (%) ||w||0 Acc (%) ||w||0 Acc (%) ||w||0 Acc (%)

Voting 12.5 95.50 9.9 95.29 12.1 95.37 15.8 95.74
Wisc. 8.8 96.63 8.2 96.72 8.5 96.66 8.2 96.60
WDBC 13.4 96.57 10.5 96.88 12.6 96.67 10.8 96.67
WPBC 0.0 78.05 0.0 78.05 0.2 78.05 2.0 78.05
SPECT 9.4 68.50 4.1 69.00 8.2 70.00 10.3 73.50
SPECTF 18.1 75.50 9.2 79.25 10.5 77.38 7.0 79.00
Ionosphere 25.6 87.68 21.6 87.30 25.0 87.99 21.8 87.64
PIMA 7.5 76.95 6.9 76.61 7.4 76.93 6.8 76.82
SPAM 54.9 92.89 35.0 90.46 53.2 92.79 39.6 90.85
Average 16.7 85.36 11.7 85.51 15.3 85.76 13.6 86.10

Table 3: Classification performance results using designated test sets averaged over 10 repetitions. For the
KDD CUP dataset we performed random sampling in each run to select 20% of the training set.

Dataset LP-SVM QCQP-SSVM CQ-SSVM
||w||0 Acc (%) ||w||0 Acc (%) ||w||0 Acc (%)

SPECT 14.2± 4.0 73.80± 0.03 5.7± 4.0 70.75± 0.07 11.1± 4.3 71.34± 0.04

SPECTF 20.2± 9.4 75.19± 0.03 9.0± 4.2 74.06± 0.04 14.9± 6.4 76.04± 0.03

KDD CUP 85.0± 26.7 ∗87.20± 0.62 51.9± 34.4 86.27± 0.69 57.5± 13.6 86.98± 0.51
∗ 2 out of the 10 SDPT3 runs failed for LP-SVM due to numerical errors so that its accuracy is reported only
for the 8 successful runs.

performance is especially apparent for CQ01-SSVM, which applies a similar relaxation technique to both
the margin deviation variables and the hyperplane normal vector variables. Although more computa-
tionally expensive than alternative quadratic programming formulations considered herein, it remains less
computationally expensive than SDP alternatives such as SDP-SSVM.

Note that as the solution of (3) may have many zero components of ξ, we do not necessarily need to add
all m constraints (8d) ahead of time. In this paper we experimented with an interior point solver (SDPT3)
and hence dynamically generating the constraints and resolving may not have been sensible. Resolving the
problem and dynamic generation of the constraints may be sensible when solving these formulations using
first-order methods. Recent and ongoing development of first-order methods for conic optimization and
in particular for second-order cone programming may allow the application of our methods to large-scale
datasets. The ability to restart from any initial point could also make it suitable for an online setting (e.g.,
see Shalev-Shwartz et al. (2007); Ferris and Munson (2004) for specialized large-scale methods for standard
SVMs).

Our extension of sparse SVM for the zero-one loss may be also be useful for cases in which labels of
observations are subject to noise or when labels may be flipped by an adversary; see, for example, Biggio
et al. (2011) and references therein for different approaches.
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