
Meshing the Universe: Identifying Voids in Cosmological Simulations
Through In Situ Parallel Voronoi Tessellation

Tom Peterka∗ Juliana Kwan Adrian Pope Hal Finkel Katrin Heitmann
Salman Habib

Argonne National Laboratory

ABSTRACT

Mesh tessellations are effective constructs for the visualization and
analysis of point data, because they transform sparse discrete sam-
ples into dense and continuous functions. We present a prototype
method for computing a Voronoi tessellation in parallel from large
particle datasets; the same method, in principle, is applicable to the
Delaunay. Computing large tessellations is computationally inten-
sive and must be constructed in parallel on a distributed-memory
supercomputer in order to satisfy time and memory constraints. We
perform the mesh computation and analysis in situ with the sim-
ulation in order to minimize storage pressure and generate early
results, specifically identifying voids in cosmological data. We
demonstrate performance and scalability in a single time step, and
we also compute time-varying tessellations to better understand the
temporal dynamics of voids.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming; H.3.4 [Information Stor-
age and Retrieval]: Systems and Software—Distributed Systems;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, Surface, Solid, and Object Representations

1 INTRODUCTION

Dark matter is thought to account for over 80% of the matter con-
tent of the universe: its existence is inferred from a number of ob-
servations involving Cosmic Microwave Background [12], galactic
dynamics [25] and gravitational lensing [14]. Indeed, indirect de-
tections inform us that dark matter is the backbone of large scale
structure in the universe, which drives the distribution of the gas
and galaxies that we can observe.

We can simulate the nonlinear time evolution of the universe
to a high precision using dark matter tracer particles that expe-
rience Newtonian gravitational forces in a Friedmann-Lemaı̂tre-
Robertson-Walker background. The structures formed by particles
can be classified into four main categories: halos, voids, filaments,
and walls.

Methods to identify halos have been successfully implemented
since Davis et al. [6] first developed the Friends-of-Friends algo-
rithm, but void identification remains an elusive task because of the
unpredictable and irregular shapes that voids can occupy. Adaptive
methods such as Voronoi tessellation are suited to this task, because
cells are determined by point distributions rather than by assuming
a priori shapes. Furthermore, while Voronoi cells are convex, their
tessellation into larger structures can produce arbitrary and concave
regions.

We present the computation of a Voronoi tessellation in parallel
on HPC architecture in situ with a cosmological simulation of dark
matter in the universe. N-body methods are used to simulate many

∗e-mail: tpeterka@mcs.anl.gov

phenomena, and the analysis of particle simulations and some ex-
perimental observations is enabled by imposing a geometric struc-
ture on the field data. Sampling onto a regular grid is one common
method, but when the density distribution of particles must be pre-
served, polyhedral tessellations such as the Delaunay and Voronoi
are advantageous.

Most existing algorithms for computing convex hulls, Delaunay
triangulations, and Voronoi diagrams are serial or shared-memory,
apart from [2]. Our contribution is a general-purpose tessellation li-
brary for parallelizing the Quickhull algorithm [1], and we demon-
strate its scalability in situ with a cosmological simulation. We
show that a simple minimum volume threshold can be used to par-
tition Voronoi cells into connected components that correspond to
voids of irregular, concave geometries. We benchmark the perfor-
mance of our method at scale, with simulations of one billion par-
ticles running on thousands of processes.

Our construction of geometric structures is not limited to a par-
ticular domain. Other areas that would benefit from our approach
include molecular dynamics, computational chemistry, groundwa-
ter transport, and materials science.

2 BACKGROUND

Formally, each Voronoi region is defined as:

Vi =
{

x|d(x,xi)< d(x,xj)
}
∀ j 6= i, (1)

where d(x,xi) is the distance between points x and xi. In other
words, given a set of n 3D input points called sites, the volume of

Figure 1: Voronoi tessellation of cosmological simulations filtered at a
volume threshold reveals regions of irregular low-density voids amid
clusters of high-density halos.

each Voronoi cell is formed by partitioning the 3D space into dis-
joint regions that are closest to a particular site than to all other
sites. This produces a set of n convex, volume filling, polyhedra
called Voronoi cells containing one of the input points somewhere
in the interior of each cell. The dual of the Voronoi tessellation is
the Delaunay tessellation, where the space is partitioned into tetra-
hedra whose vertices are the input points.

2.1 Feature Identification in Cosmology

Being able to identify features of the cosmic web is an important
part of understanding the large scale structure in the universe, be-
cause this additional shape information allows us to probe beyond
the traditional 2-point statistics, such as the power spectrum and
the correlation function. Furthermore, tracking the shapes of these
objects can give a more detailed understanding of the formation his-
tory of small scale structures beyond the halo model, in which over-
densities are assumed to be spherical. The anisotropic distribution
of tracer particles implies that a reconstruction of the density and
velocity fields should ideally be adaptive. Delaunay and Voronoi
methods adapt by adjusting the resolution of the reconstruction in
response to the local number of particles, since each particle is a
Voronoi site or Delaunay vertex.

Weygaert et al. [33] overviews the advantages of using
tessellation-based methods in cosmology as opposed to a fixed grid.
The ZOBOV void finder [17] begins with a Delaunay Tessellation
Field Estimator (DTFE) [27]. The Watershed Void Finder [20] at-
tempts to locate voids by using the DTFE algorithm to first recon-
struct the density field, and then local minima are connected to-
gether at some density threshold. The procedure is analogous to
filling a landscape with water with the valleys acting as voids and
the ridges between valleys as filaments and walls. Shandarin et
al. [28] combines tessellations with multistream techniques to iden-
tify Zel’dovich pancakes for the first time in N-body simulations.

Sheth and Weygaert [29] present a model of void evolution over
time and conclude that in low-density regions, larger voids are
formed by the merger of smaller voids, similar to the evolution of
halo amalgamation. Furthermore, they show that in high-density
regions, voids disappear over time, being overtaken by the high
density collapse that forms halos. Weygaert [31] also evaluates
statistics and distributions of the resulting Voronoi tessellations and
correlates clustering to Voronoi vertices.

Cosmological structures have been identified using other means
than tessellations. Slices and spherical regions are easier to com-
pute but do not represent the actual cosmological structure, as doc-
umented by the variety of answers presented by Colberg et al. [5].
The ORIGAMI algorithm [9] identifies morphological structures by
counting the number of shell crossings produced whenever a parti-
cle exchanges its position with another particle in an earlier time
step, in 6D phase space. Tracer particles are collisionless and travel
in multistream flows in high density halo regions, so the identifica-
tion and tracking of multistream features in the particle velocity is
another way to locate halos [23].

In terms of observations, these techniques have been success-
fully applied on the PSCz survey [24] and the Sloan Digital Sky
Survey [21] to reconstruct the density and velocity fields from a
distribution of galaxies.

Besides being used for analysis, tessellations can be incorporated
into the N-body calculations themselves: in hydrodynamics sim-
ulations, Springel [30] used a Voronoi tessellation to convert La-
grangian particle behavior to a moving mesh. The performance of
this code in replicating complicated gas phenomena such as shocks
and the Kelvin-Helmholtz instability is far superior to fixed resolu-
tion methods such as smoothed particle hydrodynamics [10, 13].

2.2 Computational Geometry Algorithms
Quickhull is a serial algorithm for computing convex hulls, from
which Delaunay triangulations and Voronoi diagrams are derived.
[1]. It is robust in the presence of imprecise floating-point inputs
and improves over the performance of earlier algorithms such as
Clarkson [4].

CGAL (Computational Geometry Algorithms Library) [8] is an
alternate implementation that can compute a Voronoi diagram given
a set of input sites. Unlike Quickhull, a direct implementation of a
3D Voronoi tessellation does not exist; the Delaunay graph must
be computed first, from which the dual is calculated to produce
Voronoi vertices.

Parallel computational geometry algorithms of limited dimen-
sion and concurrency have been researched as well. Rycroft [26]
published and implemented a parallel Voronoi algorithm for shared-
memory threads in the Voro++ library. Miller and Stout examined
parallel algorithms for a convex hull of 2D points, tuned for various
network topology [15]. Dehne et al. [7] presented a parallel 3D con-
vex hull algorithm for distributed memory architecture in O(nlogn)
local computation and one communication phase.

2.3 HACC Framework
HACC, or Hardware Accelerated Computational Cosmology, is a
simulation framework for computing cosmological models on vari-
ous supercomputing architectures such as GPUs, Cell Broadband
Engines, and multicore CPUs. It solves a 6-D N-body nonlin-
ear Vlasov-Poisson equation with periodic boundary conditions in
three regimes. Further details of the algorithm are contained in [22].

Very large simulation sizes are required in order to compute even
a fraction of the sky, requiring hundreds of billions to trillions of
particles for accurate power spectrum measurements [11] and gen-
erating data sizes of over 100 TB per run. The spatial dynamic
range required to compute accurate structure formation is 106 : 1.
HACC also includes in situ analysis capability for finding halos
and subhalos [35], which can be stored and later examined in post-
processing tools such as ParaView. These analysis output files are
much smaller than the original particle data, and can also be used
to track the evolution of halos over time.

3 METHOD

3.1 Program Organization
Rather than developing a new parallel algorithm from the ground
up, our approach is to take an existing serial algorithm and par-
allelize it by combining local computation with communication.
Thus, we build on the many years of computational geometry re-
search embodied in existing and mature tools. We selected the
Quickhull algorithm because of its widespread use, documented
performance, and numerical stability. The Quickhull algorithm is
implemented in an open-source package called Qhull.1 Qhull is
a set of standalone command-line programs for computing convex
hulls, Delaunay triangulations, and Voronoi tessellations that call
the underlying libqhull library. The standalone programs are
well-documented, but the library API is not. We examined Qhull’s
printing routines so that we could parse its data structure; and once
we understood Qhull’s data model and copied its output into our
own data structures, we redirected its output to /dev/null. No
changes were made to Qhull itself.

While Qhull contains libraries for C and C++, the C version is
robust and recommended. Figure 2 shows the combination of C
and C++ codes in our final system, as well as the overall program
structure. We call our library tess, and its main features are:

• Standalone as well as in situ domain decomposition
• Neighborhood particle ghost zone exchange

1http://www.qhull.org

HACC
(C++)

tess
libtess.a
(C)

Voronoi
blocks

DIY parallel write
custom format

Serial read
custom format

qhull
libqhullstatic.a
(C)

DIY
libdiy.a
(C++ implementation
with C interface)

MPI other libs
(fftw, etc.)

Serial renderer
(C++ / OpenGL)

Figure 2: The software structure is a combination of C and C++ code.

• Local Voronoi cell computation
• Identification of complete cells
• Early volume threshold culling
• Local convex hull computation for faces, areas, and volumes

of cells
• Parallel write of Voronoi cells to storage
• Offline serial reader and renderer

The HACC framework contains some analysis capability directly
in the code, but tess is linked to HACC as a separate library with its
own parallel infrastructure. This modularity affords different anal-
yses to be executed depending on the goals of the simulation cam-
paign. Parallelizing a serial algorithm like Quickhull is done with
the aid of a library called DIY [19]. This library provides utilities
for configurable data partitioning, scalable data exchange, and effi-
cient parallel I/O. DIY is initialized with information from HACC
about its block decomposition and neighborhood connectivity, and
then DIY performs data movement and communication on behalf of
tess. Developing tess required two new features to be added to DIY:
neighborhood periodic boundary conditions and reduced neighbor-
hood communication (see Section 3.4).

3.2 Analysis Data Model
In tess, each process maintains a data structure for the block of
Voronoi cells local to it; these blocks are written in parallel to a
single file by the DIY library. Each block contains a conventional
unstructured mesh data model. Vertices are listed once, and integer
indices connect vertices into faces and cells. Original particle loca-
tions (Voronoi sites) are also saved, as well as cell volumes, areas,
and block extents.

On average, Voronoi cells in HACC contain 15 faces per cell
and 5 vertices per face. Each cell consists of approximately 35 to-
tal vertices, since vertices are shared between at least two faces in
the same cell. Vertices are also shared among five cells on aver-
age; hence, approximately seven new Voronoi vertices are added
for each new cell in a full tessellation.

The total data size of a full tessellation is approximately 450
bytes per particle. As we will see in Section 4, a large fraction
of cells have insignificant volume with respect to voids. When we
choose to eliminate these, as we often do, the data size is reduced

to approximately 100 bytes per particle. By comparison, a HACC
checkpoint that saves only particle data uses 40 bytes per particle.

Of tess’ total output size, approximately 7% is used to store
floating-point geometry of vertices, particles, volumes, and areas.
The remaining 93% is used for connectivity of the mesh. A more
efficient data structure for general polyhedral grids has been pub-
lished by Muigg et al. [16], and we are investigating its use.

3.3 Parallel Voronoi Algorithm
Our approach exchanges a ghost zone of particles prior to comput-
ing Voronoi cells locally. Hence, we rely on an approximation of
the width of this ghost zone, and a block size that is several times
larger. Both of these conditions are satisfied in HACC; average cell
size is on the order of initial particle spacing, and block size is ap-
proximately ten times that distance.

Algorithm 1 Parallel Voronoi Algorithm
1: Get decomposition and input particles from simulation
2: Exchange ghost zone of particles in one direction only
3: Generate Voronoi tessellation locally
4: for all cells do
5: Delete incomplete cells and cells whose vertices are outside

overall domain boundaries
6: Delete cells smaller than circumscribing sphere of thresh-

old volume
7: Compute convex hull, faces, areas, and volumes
8: Deleted cells smaller than threshold volume
9: end for

10: Parallel file write of original sites and local Voronoi cells

The steps in our algorithm are illustrated in Figure 3 and listed
in Algorithm 1. The first step is initialization, explained in Sec-
tion 3.5. In step 2, particles are exchanged as explained in Section
3.4. The local Voronoi tessellation is computed in step 3 using the
Quickhull algorithm.

The Voronoi cells are each examined in steps 4-9. Incomplete
cells are eliminated; those cells are not closed and lack particles
surrounding them on all sides, but the preceding particle exchange
ensured that the same cell was completed in another block. Occa-
sionally invalid cells with vertices out of the overall domain bounds
arise; a simple bounds check eliminates these as well.

As Section 4 shows, a large fraction of cells have small volume
and may be of no interest, especially for void finding. These will
be eliminated once their volume is accurately computed, but in step
6 we perform a conservative quick estimate of the cell volume and
eliminate as many cells as early as possible. We only keep the cells
whose distance between any two vertices exceeds the diameter of a
circumscribing sphere of the threshold volume.

In step 7, we call the Quickhull algortihm again to compute the
convex hull of the vertices in the Voronoi cell. Voronoi vertices
are convex by definition, but the convex hull alorithm orders the
vertices into faces and computes the volume and surface area of
the cell. Afterwards, we recheck the volume and further cull cells
below the volume threshold, writing the remaing data to storage in
parallel according to the data model in Section 3.2.

3.4 Neighborhood Particle Exchange
Two new communication patterns were added to DIY as a result of
this research: periodic boundary neighbors and asymmetric particle
exchange. HACC’s nearest-neighbor connectivity includes periodic
boundaries, meaning that blocks at one edge of the entire domain
have neighbors at the opposite edge of the domain. Also, of those
neighbors within the ghost zone distance from a particle, it is suffi-
cient to send the particle in only one direction, say the minus direc-
tion, in all axes. No more than half of the neighbors need to receive

P0

P2

P1

P3

1. Neighborhood exchange of
particles in a ghost region
twice the average cell width 2. Compute local complete Voronoi cells

P3

P0 P1

P2 3. Write local sites and
cells to storage

Figure 3: Steps to resolve Voronoi cells at block boundaries. 1. Particles are exchanged in ghost regions among four processes marked with
solid lines, dashed lines indicating expanded ghost regions. Arrows indicate direction of exchange. 2. Local voronoi cells are computed at each
process. 3. Completed cells and original particles are saved to storage in parallel. Data remain distributed throughout the process.

A

B

Figure 4: Neighborhood communication with periodic boundary con-
ditions and neighbors that are near enough to a target point. Green
blocks denote sources, and red blocks denote destinations. Parti-
cle A is at the domain boundary and is sent to the virtual neighbors
marked with dashed lines, but actually on the other side of the do-
main. The coordinates of the particle are transformed accordingly.
Particle B is sent to actual neighbors near enough to receive it.

a particle, such that the same Voronoi cell is not computed twice by
two different blocks.

These ideas are diagrammed in Figure 4. Particles originate in
the green blocks and follow the indicated paths to the red blocks.
Particles within the ghost zone distance are exchanged with all
neighbors in the minus direction of each axis. If the neighbor is
a periodic boundary neighbor, the particle is translated in each of
the periodic dimensions to the other side of the domain.

3.5 Calling Tess In Situ
Tess is built as a standalone library; it and DIY are statically linked
to HACC via small modifications to the HACC build system. In
the future, tess and other in situ analysis tools will be included as
HACC build options and called through a common API for analysis
tools. For the time being, calls to tess are inserted directly into the
main time loop of the HACC simulation driver. Initialization is
done as follows:

tess_init(num_blocks, tot_blocks, gids,
bounds, neighbors, num_neighbors,

cell_size, ghost_factor, data_mins,
data_maxs, wrap, min_vol,
max_vol, comm, times)

The number of blocks per process (num blocks) is always one
in HACC and total number of blocks in the domain (tot blocks)
is the number of processes in HACC. The gids are global block
identifiers for the local blocks, in HACC the MPI rank of the
process. Bounding boxes for the local blocks are in bounds.
The list of neighboring blocks is provided in neighbors and
num neighbors. There are 26 neighbors for each block in
HACC, including periodic boundary neighbors. The cell size
and ghost factor control the size of the neighborhood ghost
zone. Data mins and data maxs are the overal domain
bounds. The wrap argument enables periodic boundary neighbors.
Min vol and max vol are optional volume limits on the Voronoi
cells that are returned. Comm is the MPI communicator, and perfor-
mance timing is returned in times.

Once initialized, tess is called as frequently as desired by provid-
ing the particles, number of particles, and output file name:

tess(particles, num_particles, out_file)

4 RESULTS

Our small scale tests were run on a Linux desktop workstation with
a quad-core Intel i7 processor capable of running eight hardware
threads with 12 GB of RAM. Beacuse HACC, tess, and DIY scale
across different architecture sizes and types, we were able to test
for correctness, albeit not performance, at small scale.

Our larger tests were run on Intrepid, a 557-teraflop IBM Blue
Gene/P (BG/P) supercomputer operated by the Argonne Leader-
ship Computing Facility (ALCF) at Argonne National Laboratory.
Tests were run in symmetric multiprocessor mode (one MPI pro-
cess per node) to maximize available memory per process; HACC
and tess are memory-size bound. The libraries and simulation
were all compiled with the IBM xlcxx r compiler using -O3
-qarch=450d -qtune=450 optimizations.

In our HACC configuration, we varied the number of particles
from 323 to 10243, up to one billion particles. The particles are ini-
tialized on a grid of the same number of grid points (ng) per dimen-
sion as number of particles (np). The physical size of the simulation

Figure 6: Culling cells below a minimum volume threshold reveals connected components of cells, which constitute voids. Left to right: orig-
inal cells ranging from 0.0001 to 2.005 (Mpc/h)3, and progressing through minimum volume threshold of 0.0, 0.5, 0.75, and 1.0 (Mpc/h)3,
respectively.

Histogram of Cell Volume at t = 99

Cell Volume ((Mpc/h)^3)

N
um

be
r

of
 C

el
ls

0
50

00
10

00
0

15
00

0 100 bins
Range [0.02 , 2]
Bin width 0.02
Skewness 8.9
Kurtosis 85

0.02 0.22 0.42 0.62 0.81 1.01 1.21 1.41 1.61 1.81 2.00

Figure 5: Histogram of cell volume distribution in small scale test.

box is also the same as ng and np; hence, particles begin spaced 1
Mpc/h apart in each dimension, where h is a scaling factor.

4.1 Small Scale Exploration
Our intial testing consisted of the 323 particle simulation run on a
Linux workstation up to 32 processes. Particles evolved for 100
time steps, and the Voronoi tessellation was computed at the end of
the last time step. Several characteristics of the Voronoi tessellation
applicable to larger scale were uncovered at this small scale.

The distribution of Voronoi cell volume after 100 time steps ap-
pears in Figure 5. The distribution exhibits extreme skew in the
positive direction, with the majority of cells at the left side and a
long thin tail at the right. In fact, 75% of the cells are in smallest
10% of the volume range.

This characteristic distribution holds in all of our larger scale
runs and indicates that a simple threshold operator can dramatically
reduce the number of cells. Voids by definition are regions of low
particle density; small, dense cells appear in the peak of the distri-
bution, and larger low-density cells are found in the long tail at the
right. Emprically, we found that a 10% volume threshold is a rea-
sonable value that eliminates many small, uninteresting cells while
safely retaining all of the cells that contribute to voids.

Thresholding serves a second purpose besides reducing output

size. We can further filter cells during either computation or render-
ing to reveal voids more clearly. Figure 6 shows a sequence of pro-
gressive thresholding during rendering. From left to right, culling
cells below an increasing volume threshold reveals connected com-
ponents of cells that correspond to voids.

In the left image, the difference in cell size is visible, but the
connection of cells into larger structures is not. The other images
reveal a small number, approximately 7-10, distinct connected com-
ponents, or voids. In our current implementation, the cosmologist
selects the minimum volume threshold empirically based on the cell
volume distribution and previous experience, and the grouping of
the remaining cells into voids appears visually. In the future, we
plan to identify connected components automatically in situ.

4.2 Medium Scale Performance
Figure 1 shows a tessellation of 1283 = 2 M particles generated in
situ on BG/P. Full timing results for a range of problem and system
sizes appear in Table 1, which shows the performance of running
one Voronoi tessellation in situ after running a number of simulation
time steps on BG/P. This test was run with culling the smallest 10%
of volume range of the Voronoi cells, resulting in approximately
four times reduction in file size. The file sizes shown in the last
column of Table 1 indicate the culled file size.

The tessellation time is 1 - 10% of the total run time, depend-
ing on the number of time steps executed before calling tess. The
cost of tessellation compared with simulation is reasonable, espe-
cially considering that HACC takes longer to compute later time
steps. Strong scaling efficiency for tess is between 30-40%, includ-
ing I/O, consistent with the simulation strong scaling. Aggregate
I/O bandwidth up to 5 GB/s was measured.

The bottlenecks are the Voronoi tessellation time and to a lesser
extent the convex hull from each Voronoi cell. These are compu-
tationally intensive and subject to load imbalance, as the range of
times indicates. We are investigating whether it makes sense to re-
distribute particles to better balance load, but this discussion led
us to think about whether HACC itself should employ dynamic re-
balancing, which it currently does not. It is also possible that our
asymmetric neighbor exchange affects load balance. We will inves-
tigate this further.

4.3 Time-varying Void Evolution
Tess can generate tessellations at any number of time steps in the
simulation, so that we can study the evolution of voids over time.
We tested the time-varying capability by producing output at every
ten time steps of a simulation consisting of 100 time steps. This
test was at small scale, on 323 particles on our workstation, with
the results in Figure 7. The left column shows histograms of cell
volume at time steps 11, 21, 31, and 41. The center column shows
the cell density contrast (δ) distribution, because much theory has

Table 1: High Resolution Performance Data
Particles Time

Steps
Processes Total

Time (s)
Simulation
Time (s)

Tessellation
Time (s)

Particle
Exchange
Time (s)

Voronoi
Time
[min,
max] (s)

Convex
Hull
Time
[min,
max] (s)

Output
Time (s)

Output
Size
(GB)

1283 100 128 1862 1809 53 1 [5, 30] [9, 19] 2 0.3
256 1354 1322 32 1 [2, 18] [2, 10] 2
512 1116 1096 20 1 [1, 12] [1, 5] 2
1024 745 729 16 1 [1, 9] [1, 3] 3

2563 100 512 3090 3016 74 2 [9, 56] [9, 12] 3 1.7
1024 2391 2346 45 2 [4, 33] [3, 6] 4
2048 1861 1830 32 2 [2, 23] [1, 3] 4
4096 1334 1305 29 2 [1, 14] [1, 2] 12

5123 50 2048 3852 3684 167 4 [24, 116] [25, 40] 6 14
4096 2008 1918 89 3 [9, 57] [12, 20] 9
8192 1784 1722 62 3 [4, 38] [5, 10] 11
16384 1406 1344 61 2 [1, 27] [1, 5] 27

10243 25 8192 2331 2119 212 6 [49, 176] [2, 10] 20 101
16384
32768

been developed in terms of density contrast. It is the difference
between the cell density (d) and mean density (µd), normalized by
the mean.

δ = (d−µd)/µd (2)
The right column shows images of the tessellations at these same
time steps.

The early time steps begin with a normally distributed cell size
and shape, because particles begin their evolution on regular grid
points. As time progresses, the range of volume and density ex-
pands. The kurtosis increases as the distributions become more
pointed, and skewness increases as well. These statistics cor-
respond to the breakdown of perturbation theory governing the
physics. In the future, we will investigate whether such summary
statistics can be used as a simple indicator of the change in the
physical model behavior. The images in the right column confirm
the behavior of the volume and density contrast distributions.

The findings of Sheth and Weygaert [29] are further confirmed
in Figure 7. (Time step and red shift are synonomous in this con-
text.) As the left column shows, cells grow in size with red shift, as
the increasing volume range shows. The quantity of smaller cells
(height of the spike) decreases while the tail grows to the right of
the distribution, consistent with small voids coalescing into larger
ones. The center column is consistent with the theory that voids in
high-density regions disappear with increasing red shift. The den-
sity contrast range increases with red shift, corrresponding to the
formation of high and low density structures over time.

5 SUMMARY

We presented a solution for computing scalable parallel tessella-
tions and demonstrated its in situ application to cosmological com-
puations. This produced statistical summaries of volume and den-
sity distributions and the visual identification of voids. Performance
was benchmarked on medium-scale problems and system sizes,
with good scalability. Our time-varying results were consistent with
earlier findings.

We have only presented a cursory example of where an in situ
Voronoi tessellation would be advantageous over a grid based fixed-
resolution approach. Our approach can be extended to investigate
void and genus statistics over a range of cosmologies as a means of
distinguishing between competing cosmological models. This has
been proposed in [18, 32, 34, 36] as a precision probe cosmology,
but has never been verified with the full nonlinear N-body solution.

It would also be interesting to perform these reconstructions with
halos as Voronoi sites instead of directly using the particle distribu-
tion, since halos can be matched to direct observables such as galax-
ies. This would involve smaller, prefiltered data and a combination
of in situ analysis techniques.

Of course, there are also improvements that could be made to the
algorithm itself, such as organizing vertices into faces and cells us-
ing a more compact data structure and computing the volume faster
than Qhull’s convex hull algorithm. We also plan to coalesce cells
that have been prefiltered into larger structures (no longer convex
hulls), connect them together logically through connected compo-
nent labeling, remove their interior faces to save space, and com-
pute volumes and other statistics on them. These connected com-
ponents will also need to adhere to periodic boundary conditions.
We will also look to tracking temporal evolution of connected com-
ponents using the feature tree method of Chen et al. [3].

Our rendering application is a small serial prototype. Improve-
ments can be made by using parallel rendering with a more efficient
and standard mesh model. Our next version of the viewer will prob-
ably be written with a combination of DIY and VTK, and include
parallel rendering performance, additional visualization methods
such as volume rendering, and a richer user interface.

ACKNOWLEDGEMENTS

We gratefully acknowledge the use of the resources of the Ar-
gonne Leadership Computing Facility at Argonne National Labo-
ratory. This work was supported by the Office of Advanced Scien-
tific Computing Research, Office of Science, U.S. Department of
Energy, under Contract DE-AC02-06CH11357. Work is also sup-
ported by the DOE Office of Science, Advanced Scientific Comput-
ing Research award No. DE-FC02-06ER25777, program manager
Lucy Nowell.

REFERENCES

[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull Algo-
rithm for Convex Hulls. ACM Trans. Math. Softw., 22:469–483, Dec.
1996.

[2] M. C. Cautun and R. van de Weygaert. The DTFE Public Software -
The Delaunay Tessellation Field Estimator Code. ArXiv e-prints, May
2011.

[3] J. Chen, D. Silver, and L. Jiang. The Feature Tree: Visualizing Fea-
ture Tracking in Distributed AMR Datasets. In Proceedings of the

2003 IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, PVG ’03, pages 14–, Washington, DC, USA, 2003. IEEE
Computer Society.

[4] K. L. Clarkson. Applications of Random Sampling in Computational
Geometry, II. In Proceedings of the fourth annual symposium on
Computational geometry, SCG ’88, pages 1–11, New York, NY, USA,
1988. ACM.

[5] J. M. Colberg, F. Pearce, C. Foster, E. Platen, R. Brunino,
M. Neyrinck, S. Basilakos, A. Fairall, H. Feldman, S. Gottloeber,
O. Hahn, F. Hoyle, V. Mueller, L. Nelson, M. Plionis, C. Porci-
aini, S. Shandarin, M. S. Vogeley, and R. van de Weygaert. The
Aspen–Amsterdam Void Finder Comparison Project. Technical Re-
port arXiv:0803.0918, Mar. 2008.

[6] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M. White. The Evolu-
tion of Large-Scale Structure in a Universe Dominated by Cold Dark
Matter. The Astrophysical Journal, 292:371–394, May 1985.

[7] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar. A Ran-
domized Parallel 3D Convex Hull Algorithm for Coarse Grained Mul-
ticomputers. In Proceedings of the seventh annual ACM symposium on
Parallel algorithms and architectures, SPAA ’95, pages 27–33, New
York, NY, USA, 1995. ACM.

[8] A. Fabri and S. Pion. CGAL: the Computational Geometry Algo-
rithms Library. In Proceedings of the 17th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems,
GIS ’09, pages 538–539, New York, NY, USA, 2009. ACM.

[9] B. L. Falck, M. C. Neyrinck, and A. S. Szalay. ORIGAMI: Delineat-
ing Halos using Phase-Space Folds. ArXiv e-prints, Jan. 2012.

[10] R. A. Gingold and J. J. Monaghan. Smoothed Particle Hydrodynamics
- Theory and Application to Nonspherical Stars. Monthy Notices of the
Royal Astronomical Society, 181:375–389, Nov. 1977.

[11] K. Heitmann, M. White, C. Wagner, S. Habib, and D. Higdon. The
Coyote Universe. I. Precision Determination of the Nonlinear Matter
Power Spectrum. Astrophysical Journal, 715:104–121, May 2010.

[12] N. Jarosik, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason,
M. Halpern, R. S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. Lar-
son, M. Limon, S. S. Meyer, M. R. Nolta, N. Odegard, L. Page, K. M.
Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, and
E. L. Wright. Seven-year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Sky Maps, Systematic Errors, and Basic Re-
sults. Astrophysical Journal Supplement, 192:14, Feb. 2011.

[13] L. B. Lucy. A Numerical Approach to the Testing of the Fission Hy-
pothesis. Astronomical Journal, 82:1013–1024, Dec. 1977.

[14] M. Markevitch, A. H. Gonzalez, L. David, A. Vikhlinin, S. Murray,
W. Forman, C. Jones, and W. Tucker. A Textbook Example of a Bow
Shock in the Merging Galaxy Cluster 1E 0657-56. Astrophysics Jour-
nal Letters, 567:L27–L31, Mar. 2002.

[15] R. Miller and Q. F. Stout. Efficient Parallel Convex Hull Algorithms.
IEEE Trans. Comput., 37(12):1605–1618, Dec. 1988.

[16] P. Muigg, M. Hadwiger, H. Doleisch, and E. Groller. Interactive Vol-
ume Visualization of General Polyhedral Grids. IEEE Transactions
on Visualization and Computer Graphics, 17:2115–2124, 2011.

[17] M. C. Neyrinck. ZOBOV: a Parameter-Free Void-Finding Algorithm.
Monthly Notices of the Royal Astronomical Society, 386:2101–2109,
Jun. 2008.

[18] C. Park and Y.-R. Kim. Large-Scale Structure of the Universe as
a Cosmic Standard Ruler. Astrophysics Journal Letters, 715:L185–
L188, Jun. 2010.

[19] T. Peterka, R. Ross, W. Kendall, A. Gyulassy, V. Pascucci, H.-W.
Shen, T.-Y. Lee, and A. Chaudhuri. Scalable Parallel Building Blocks
for Custom Data Analysis. In Proceedings of the 2011 IEEE Large
Data Analysis and Visualization Symposium LDAV’11, Providence,
RI, 2011.

[20] E. Platen, R. van de Weygaert, and B. J. T. Jones. A Cosmic Water-
shed: The WVF Void Detection Technique. Monthy Notices of the
Royal Astronomical Society, 380:551–570, Sep. 2007.

[21] E. Platen, R. van de Weygaert, B. J. T. Jones, G. Vegter, and M. A. A.
Calvo. Structural Analysis of the SDSS Cosmic Web - I. Nonlinear
Density Field Reconstructions. Monthy Notices of the Royal Astro-
nomical Society, 416:2494–2526, Oct. 2011.

[22] A. Pope, S. Habib, A. Lukic, D. Daniel, P. Fasel, N. Desai, and

K. Heitmann. The Accelerated Universe: A Hybrid Cosmology Code
for Roadrunner. Computing in Science and Engineering, 12:17–25,
Jul. 2010.

[23] U. Popov, K. Heitmann, J. Ahrens, S. Habib, and A. Pang. The Evolu-
tion of Multistreaming Events in the Formation of Large Scale Struc-
tures. In Proceedings of the 2011 IEEE Pacific Visualization Sympo-
sium, pages 207–14, 2011.

[24] E. Romano-Dı́az and R. van de Weygaert. Delaunay Tessellation Field
Estimator Analysis of the PSCz Local Universe: Density Field and
Cosmic Flow. Monthly Notices of the Royal Astronomical Society,
382:2–28, Nov. 2007.

[25] V. C. Rubin, D. Burstein, W. K. Ford, Jr., and N. Thonnard. Rotation
Velocities of 16 SA Galaxies and a Comparison of Sa, Sb, and Sc
Rotation Properties. Astrophysical Journal, 289:81–98, Feb. 1985.

[26] C. Rycroft. Voro++: A Three-dimensional Voronoi
Cell Library in C++. Technical report, 2009.
http://www.osti.gov/energycitations/servlets/purl/946741-
A8FxbI/946741.pdf.

[27] W. E. Schaap. DTFE: The Delaunay Tesselation Field Estimator. Uni-
versity of Groningen, The Netherlands, 2007. Ph.D. Dissertation.

[28] S. Shandarin, S. Habib, and K. Heitmann. The Cosmic Web, Multi-
Stream Flows, and Tessellations. (arXiv:1111.2366), Nov. 2011.

[29] R. K. Sheth and R. van de Weygaert. A Hierarchy of Voids: Much Ado
About Nothing. Monthly Notices of the Royal Astronomical Society,
350:517–538, May 2004.

[30] V. Springel. Hydrodynamic Simulations on a Moving Voronoi Mesh.
ArXiv e-prints, Sep. 2011.

[31] R. van de Weygaert. Voronoi Tessellations and the Cosmic Web: Spa-
tial Patterns and Clustering across the Universe. ArXiv e-prints, Jul.
2007.

[32] R. van de Weygaert, P. Pranav, B. J. T. Jones, E. G. P. Bos, G. Vegter,
H. Edelsbrunner, M. Teillaud, W. A. Hellwing, C. Park, J. Hidding,
and M. Wintraecken. Probing Dark Energy with Alpha Shapes and
Betti Numbers. ArXiv e-prints, Oct. 2011.

[33] R. van de Weygaert and W. Schaap. The Cosmic Web: Geometric
Analysis. ArXiv e-prints, Aug. 2007.

[34] X. Wang, X. Chen, and C. Park. Topology of a Large-Scale Structure
as a Test of Modified Gravity. Astrophysics Journal Letters, 747:48,
Mar. 2012.

[35] J. Woodring, K. Heitmann, J. Ahrens, P. Fasel, C.-H. Hsu, S. Habib,
and A. Pope. Analyzing and Visualizing Cosmological Simulations
with ParaView. (arXiv:1010.6128. LA-UR-10-06301), Nov. 2010.

[36] C. Zunckel, J. R. Gott, and R. Lunnan. Using the Topology of Large-
Scale Structure to Constrain Dark Energy. Monthly Notices of the
Royal Astronomical Society, 412:1401–1408, Apr. 2011.

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its be-
half, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or on be-
half of the Government.

Histogram of Cell Volume at t = 11

Cell Volume ((Mpc/h)^3)

N
um

be
r

of
 C

el
ls

0
20

00
40

00
60

00
80

00

50 bins
Range [0.088 , 0.57]
Bin width 0.009
Skewness 3.3
Kurtosis 13

0.088 0.184 0.279 0.375 0.470 0.566

Histogram of Cell Volume at t = 21

Cell Volume ((Mpc/h)^3)

N
um

be
r

of
 C

el
ls

0
10

00
20

00
30

00
40

00
50

00 50 bins
Range [0.046 , 0.6]
Bin width 0.011
Skewness 2.2
Kurtosis 6.6

0.046 0.157 0.269 0.380 0.492 0.603

Histogram of Cell Volume at t = 31

Cell Volume ((Mpc/h)^3)

N
um

be
r

of
 C

el
ls

0
10

00
20

00
30

00
40

00

50 bins
Range [0.022 , 0.8]
Bin width 0.016
Skewness 1.9
Kurtosis 5.2

0.022 0.178 0.334 0.490 0.646 0.802

Histogram of Cell Volume at t = 41

Cell Volume ((Mpc/h)^3)

N
um

be
r

of
 C

el
ls

0
50

0
10

00
15

00
20

00
25

00

50 bins
Range [0.014 , 0.72]
Bin width 0.015
Skewness 1.1
Kurtosis 2.6

0.014 0.155 0.295 0.436 0.576 0.717

Histogram of Cell Density Contrast at t = 11

Cell Density Contrast ((density − mean) / mean)
N

um
be

r
of

 C
el

ls

0
50

0
10

00
15

00

100 bins
Range [−0.77 , 0.59]
Bin width 0.014
Skewness 1.6
Kurtosis 4.1

−0.768 −0.496 −0.225 0.046 0.318 0.589

Histogram of Cell Density Contrast at t = 21

Cell Density Contrast ((density − mean) / mean)

N
um

be
r

of
 C

el
ls

0
50

0
10

00
15

00
20

00

100 bins
Range [−0.77 , 2.4]
Bin width 0.033
Skewness 2
Kurtosis 5.5

−0.77 −0.13 0.52 0.84 1.16 1.48 1.80 2.12 2.45

Histogram of Cell Density Contrast at t = 31

Cell Density Contrast ((density − mean) / mean)

N
um

be
r

of
 C

el
ls

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00 100 bins
Range [−0.72 , 15]
Bin width 0.15
Skewness 4.5
Kurtosis 23

−0.72 2.33 3.85 5.38 6.90 8.42 9.95 11.47 14.52

Histogram of Cell Density Contrast at t = 41

Cell Density Contrast ((density − mean) / mean)

N
um

be
r

of
 C

el
ls

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0 100 bins

Range [2.8 , 376]
Bin width 3.8
Skewness 9.8
Kurtosis 98

 2.8 40.2 77.5 114.9 189.6 264.3 339.1

Figure 7: Evolving Voronoi cell volume distribution (left), Voronoi cell density contrast distribution (center), and images of same time steps (right).

