
Dynamic Load Balancing for Malleable Model Coupling

Daihee Kim
State University of New York at Binghamton

dkim17@cs.binghamton.edu

J. Walter Larson
Argonne National Laboratory

larson@mcs.anl.gov
University of Chicago

The Australian National University

Kenneth Chiu
State University of New York at Binghamton

kchiu@cs.binghamton.edu

Abstract—Dynamic load balancing both within and between
constituent subsystems is required to achieve ultrascalabil-
ity in coupled multiphysics and multiscale models. Intercon-
stituent dynamic load balancing requires runtime resizing—or
malleability—of subsystem processing element (PE) cohorts. In
our previous work, we developed and introduced the Malleable
Model Coupling Toolkit with a load balance manager implement-
ing and providing a runtime load-balancing algorithm using PE
reallocation across subsystems. In this paper, we extend that
work by adding the ability to adapt to coupled models that
have changing loads during execution. We evaluate the algorithm
through a synthetic coupled-model benchmark that uses the LogP
performance model as applied to parallel LU decomposition.

Keywords-MPI, Dynamic Load Balance, Model Coupling, Mul-
tiphysics Modeling, Multiscale Modeling

I. INTRODUCTION

Modern science and engineering challenges often involve
complex, multidisciplinary, coupled systems. These challenges
are often investigated by simulating the coupled systems with
an application that contains interacting subsystem models,
or constituents. These interactions lead to data dependencies
between the constituents; in distributed-memory parallel im-
plementations, interconstituent data transfer is parallel and
frequently called M ×N transfer [1], [2]. More generally, the
transport and transformation (e.g., intermesh interpolation) of
one subsystem’s output into another’s input are called coupling
and, on multiprocessors, parallel coupling [3].

Resource allocation is a fundamental issue when construct-
ing scalable coupled simulations. Each constituent must be
mapped to a collection of processing elements (PEs), called
cohorts. Cohorts (under parallel composition, where the con-
stituent PE cohorts do not overlap) should be sized based on
the scalability and computational intensity of the correspond-
ing constituent. Such load balancing is further complicated
by its interconstituent data traffic and the wall-clock time
it consumes. In order to reduce the wait time caused by
load imbalance and data-dependency-driven interconstituent
synchronization, resources (in our case PEs) should be al-
located in a harmonious manner. Generally, such allocations
are determined by trial and error, consuming much time and
effort. Furthermore, often these resource allocations are static,
even though the runtime load per constituent may change
during the run. Moreover, load balance configurations are
platform-dependent. Thus, users of parallel coupled models
would benefit significantly from infrastructure that supports

automatic, interconstituent load balance at runtime. This need
will become more pronounced with trends toward more com-
plex coupled models (with increasing numbers of constituents)
and exascale computer hardware (with increasing numbers of
PEs).

The ability to reallocate constituent PE cohorts is termed
malleability [4]. A coupled model that allows dynamic inter-
constituent load balance is a malleable coupled model (MCM).
In previous work [5], [6], we introduced the Malleable Model
Coupling Toolkit (MMCT), which is an extension of the
Model Coupling Tooklit (MCT; [7], [8]) that supports runtime
load balancing in parallel coupled models, with a load bal-
ance manager providing a runtime load-balancing algorithm.
Although our previous work performed load balancing at
runtime, dynamic load conditions were not addressed; the
object of our previous work was system implementation and
application to performance tuning in order to find optimal
static load balance solutions. Dynamic load conditions might
result as a system’s state evolves to one requiring more or
less computation to simulate, for example the well-known
sensitivity of computational load in climate models to in-
stantaneous simulated weather state [9]. In this paper, we
extend our system to support the ability to load-balance not
only at runtime but also under changing load conditions.
We implemented a synthetic load based on the LogP perfor-
mance model of parallel LU decomposition [10], consisting
of computation and communication costs, in order to simulate
realistic throughput of a common parallel application, and
used it for a benchmark. The benchmark adopts the typical
structure and intercommunication pattern across constituents
of a coupled climate model. We show that our work performs
well on this synthetic coupled-model benchmark.

We introduce malleable model coupling and MMCT in
Section II. The dynamic load-balancing algorithm and its
performance for studies using the synthetic benchmark are
presented in Sections III and IV, respectively. We describe
related work in Section V and present our conclusions and
outline future work in Section VI.

II. MALLEABLE MODEL COUPLING AND MMCT

In a coupled model, each of its N constituents evolves
as it solves its equations for each time step, communicating
flux and state data as needed during coupling events [3].
These events can be irregular, driven by various thresholds,

or regular, according to some schedule. A coupled system
whose coupling events are scheduled according to a repeated
sequence within a constant time interval ∆T has a coupling
cycle with period ∆T [3]; ∆T can be considered the irre-
ducible overall “timestep” of the coupled system because it
represents the minimum time over which all interconstituent
data dependencies arise. For example, the Community Climate
System Model (CCSM) [11], [12] has ∆T = 1 model day.

The global iteration time τG and constituent iteration
time τi represent the respective wall-clock times required
to complete a coupling cycle by the coupled system and
its ith constituent [5]. The value τi can be decomposed as
τi = τ comp

i + τ coupi , the sum of its constituent compu-
tation (including intraconstituent communication) and (non-
overlapped) constituent coupling wall-clock times, respec-
tively. The object of dynamic, interconstituent load-balancing
is minimization of τG = max{τi, . . . , τN}, through con-
stituent PE pool reallocation—malleability—to harmonize the
values of (τ comp

i , τ coupi), i = 1, . . . , N .
MMCT provides infrastructure for interconstituent PE re-

allocation and global PE cohort (i.e., MPI COMM WORLD)
resizing. MMCT extends MCT with a centralized load-balance
manager (LBM) and a dynamic process and communicator
management system (PCMS). At startup, the head node of
each constituent is created by mpiexec [13], and the LBM
sends it a PE placement list to initialize its cohort. The
LBM communicates with each constituent’s head node via
socket-based, out-of-band communication. The LBM gath-
ers and analyzes throughput information—values of τG and
(τ comp

i , τ coupi), i = 1, . . . , N—to make PE cohort reallocation
decisions; its analyses are guided by a load balance algorithm.
The head node or process of each constituent measures timings
and provides throughput information to the LBM. The PCMS
executes the LBM’s decisions through dynamic process cre-
ation and termination.

The system performs these operations over a predefined
load-balance interval (LBI), which corresponds to an integral
multiple of the coupling cycle period ∆T . At the end of each
LBI, each constituent performs one of three actions: SHRINK
(EXPAND) to reduce (increase) the number of PEs in its
cohort, or PRESERVE to keep fixed the current number of
PEs in its cohort. Further details on the runtime architecture,
including PCMS, LBM, and the software implementation of
MMCT, and its relationship to MCT can be found in [5], [6].

III. PREDICTIVE LOAD-BALANCING ALGORITHM

A constituent’s computation time is assumed to be a
function of pi, the number of PEs in its cohort: τ comp

i =
fi(pi); and it decreases (increases) monotonically with pi for
pi < p∗i (pi > p∗i). Scaling saturates at pi = p∗i , where
τ comp
i has its minimum. When pi > p∗i , overheads such as

communication cost begin to overwhelm any benefit from
additional PEs. Our algorithm starts from some initial allo-
cation ~P 0 = (p01, . . . , p

0
N) to the system’s N constituents. At

every jth LBI, the LBM determines a PE cohort reallocation
(pj1, . . . , p

j
N)→ (pj+1

1 , . . . , pj+1
N) by analyzing measurements

of τG and {τ comp
1 , . . . , τ comp

N }. Reallocation is guided by
prediction of τG and proceeds in two phases: predict τ comp

i

(Section III-A), and use τ comp
i to predict τG (Section III-B).

Load balance decisions are made in a subsequent optimization
phase (Section III-C) using predicted values of τ comp

i and τG
to determine better PE cohort allocations.

A. Prediction of Constituent Computation Time

We did not need to modify the τ comp
i prediction scheme

from our previous work to handle dynamic constitutent loads;
rather, we use recent—as opposed to all—timing history to
inform τ comp

i prediction. The τ comp
i are estimated by using

a modified piecewise linear interpolation or cubic spline
interpolation. Values of τ comp

i are measured in each LBI
and stored with their corresponding number of PEs as points
(pji , τ

(comp,j)
i), that is, with pji (τ (comp,j)

i) as the ordinate (ab-
scissa). Constituent computation time analysis is performed for
each constituent in its respective two-dimensional (pi, τ

comp
i)

space. After the first LBI, the algorithm has only one mea-
surement (p0i , τ

(comp,0)
i). We shoot linearly from this point

with slope δτ comp
i = −τ (comp,0)

i /p0i . This initial step is used
for both the linear and the cubic interpolation algorithms. For
subsequent LBIs, timing data is collected, building up a timing
database {(p0i , τ

(comp,0)
i), . . . , (pji , τ

(comp,j)
i)}.

The piecewise linear interpolation algorithm operates on
the data as follows. If there is more than one timing mea-
surement, we divide the domain into two regions at pi =
1
2 max{p0i , . . . , p

j
i}. Within each region, we connect the data

points with line segments if there is more than one point;
otherwise we use the linear shooting technique for a single
measurement. At the interface between the two regions, we
extend the rightmost line segment in the left region and the
leftmost line segment in the right region until the lines meet.
If these two lines do not intersect within the region between
the rightmost and the leftmost points, the points are merely
connected. The justification for dividing the domain into two
regions and interpolating separately is that in situations with
few measurements this approach can more reasonably estimate
min{τ (comp,j)

i } and its corresponding PE value p∗i than using
piecewise linear interpolation over the whole domain.

The cubic spline interpolation algorithm operates as follows.
For the initial LBI, it uses linear shooting. For subsequent
LBIs multiple timing observations are used, and the algorithm
interpolates over the entire domain using a global method [14].
Pseudocodes for the piecewise linear interpolation and cubic
spline interpolation algorithms are presented in [6].

B. Prediction of Global Iteration Time

Values of τG are affected by the constituents’ PE allocations
and their intercommunication pattern, which are related to
pi and τ comp

i , respectively. In the simplest case of purely
concurrent constituent execution with communications isolated
to the beginning or ends of their respective time loops, τG ≥
max{τ comp

i , . . . , τ comp
N }, tracking execution of the slowest

constituent. Based on this observation, we defined a linear
heuristic approach to predict τG with respect to PE allocation

{num procs is an array storing numbers of PEs potentially reallocated for
each pair of a donor and a recipient}
{prediction conuter indicates the upper bound of the total number of PEs
potentially reallocated in a direction}
call initialize;
repeat

cur iter time = τG;
Collect or Update τcomp

i and τG with current PE configuration;
Perform linear or cubic spline interpolation for measurements of τcomp

i
if cur iter time ≤ prev iter time then

if [prev donors, prev recipients, prev num procs] exists then
Increase the value of prediction counter;

end if
Choose [donors, recipients, num procs] using SELECTION;
call update;

else
{Undo condition}
Decrease the value of prediction counter;
[donors, recipients, num procs]
= [prev recipients, prev donors, prev num procs];
call initialize;

end if
if [donors, recipients, num procs] exists then

reallocate([donors, recipients, num procs]);
end if

until [donors, recipients, num procs] exists
procedure initialize
prev iter time = infinity;
[prev donors, prev recipients, prev num procs] = [-1, -1, -1];
end initialize
procedure update
prev iter time = cur iter time;
[prev donors, prev recipients, prev num procs]
= [donors, recipients, num procs];
end update

Fig. 1. OPTIMIZATION algorithm. Measurements of τcomp
i are interpolated

using the piecewise linear algorithm or cubic spline algorithm

by using τ comp
i and to determine the constituent whose τ comp

i

should be reduced to improve coupled model throughput.
The heuristic model computes NE estimators of τG, each a
weighted sum of τ comp

i ; here NE is a complex, application-
specific function of N and the number of interconstituent
couplings present. The forecast for τG is

τ j+1
G = max

{
N∑
i=1

Wkiτ
(comp,j+1)
i

}
, k = 1, . . . , NE . (1)

The user supplies an NE ×N weight matrix W whose ele-
ments Wki are tuned to represent interconstituent serializations
and communications patterns.

We present two simple examples to illustrate this approach.
For two constituents in sequential composition with negligible
communications costs, τG = τ comp

1 + τ comp
2 . For a more

complex example in which two constituents are running se-
quentially for 40% of their coupling cycle and the balance is
concurrent execution, τG has NE = 2 estimators and is

τG = max{[0.4(τ comp
1 + τ comp

2) + 0.6τ comp
1],

[0.4(τ comp
1 + τ comp

2) + 0.6τ comp
2]}.

Each quantity in square brackets is a τG estimator. Note that
each estimator can be expressed as a weighted sum as in (1).

{max models is an array of models whose τcomp
i is a component of term

in an estimator having the greatest value in decreasing term’s value order.}
{pre map is a map storing prediction information (pre info) including the
slope of linear model or cubic spline model’s tangent keyed by a PE
allocation. pre info is retrieved by pre map.find}
for i = 0 to max models.size− 1 do

model id = max models[i].id;
pre info = pre map.find(model id, max models[i].cur npes);
if linear interpolation then

decision slope1 = pre info.right slope;
decision slope2 = pre info.left slope;

else if cubic spline interpolation then
decision slope1 = pre info.tangent line slope;
decision slope2 = decision slope1;

end if
max npes = the value of prediction counter;
if decision slope1 ≤ 0 then

recipient cand = max models[i];
donor cands = all other models except recipient cand;
donor recipient cands = all possible reallocating directions with PEs
≤ max npes and corresponding target PE allocations;
Pick [donors, recipients, num procs] among donor recipient cands
using DECIDE;
if [donors, recipients, num procs] exists then

return [donors, recipients, num procs];
end if

end if
if decision slopes2 ≥ 0 then

donor cand = max models[i];
recipient cands = all other models except donor cand;
donor recipient cands = all possible reallocating directions with PEs
≤ max npes and corresponding target PE allocations;
Pick [donors, recipients, num procs] among donor recipient cands
using DECIDE;
if [donors, recipients, num procs] exists then

return [donors, recipients, num procs];
end if

end if
end for
return [-1, -1, -1];

Fig. 2. SELECTION algorithm using prediction information. It is used by
the OPTIMIZATION algorithm.

Predict all τG of target PE allocations in donor recipient cands;
Sort donor recipient cands in increasing τG value order;
for i = 0 to donor recipient cands.size− 1 do

PE alloc = donor recipient cands[i].PE allocation;
if PE alloc is untried and donor recipient cands[i].τG ≤ cur iter time
then

donors = donor recipient cands[i].donors;
recipients = donor recipient cands[i].recipients;
num procs = donor recipient cands[i].num procs;
return [donors, recipients, num procs];

end if
end for
return [-1, -1, -1];

Fig. 3. DECIDE algorithm used by the SELECTION algorithm.

C. Optimization

The OPTIMIZATION algorithm (Figure 1) determines
PE cohort reallocations to reduce τG, and this aspect also
follows our previous work. A PE cohort configuration
(pj1, . . . , p

j
N) is a vector ~P j ∈ NN , and reallocation to

~P j+1 = (pj+1
1 , . . . , pj+1

N) corresponds to the vector difference
∆~P j+1 = ~P j+1 − ~P j that defines the direction of the
reallocation in PE space. Donor (Recipient) constituents in a
reallocation ~P j → ~P j+1 are identified by negative (positive)
values of pj+1

i − pji ; unchanged allocations correspond to

pj+1
i = pji .
The LBM’s optimization algorithm identifies possible re-

allocations that can comprise multiple donors and recipients,
and many—as opposed to one—PEs may be moved between
donor/recipient pairs. The result is larger steps through the
PE configuration space, resulting in fewer time-consuming PE
reallocations and reduced sensitivity to measurement noise.

The LBM optimizer collects and updates τ comp
i and τG val-

ues at each LBI. Linear or cubic interpolation is performed for
all available measurements of τ comp

i . A candidate reallocation
is determined by the SELECTION algorithm (Figure 2).

The previous reallocation direction is deemed successful
(unsuccessful) if τ j+1

G ≤ τ jG (τ j+1
G > τ jG). The algorithm

tries to select another direction after increasing the value
of the prediction counter ∆̂P . The prediction counter limits
the search radius in PE space; that is, |∆~P j+1| ≤ ∆̂P .
Initially, we set ∆̂P = 22, and it is always increased or
decreased geometrically by a factor of 2 but restricted to the
range 20 ≤ ∆̂P ≤ 24. Once a direction fails to improve
throughput, the previous reallocation is undone to recover the
previous PE allocation, and the value of prediction counter
is decreased. PE configurations previously determined by the
LBM will not arise unless a subsequent PE reconfiguration
is undone. The SELECTION algorithm chooses donor and
recipient constituents by first identifying constituents whose
τ comp
i must be decreased to reduce τG based on its modeled

value using (1). Constituents are sorted in decreasing order
by their linear term contributions to the estimators in (1).
The algorithm then iterates through the sorted constituents in
search of donor/recipient candidates. A constituent is selected
as a recipient (donor) candidate if its τ comp

i can be reduced by
adding (removing) PEs to (from) its cohort. The slope of either
the piecewise linear model or the cubic spline model’s tangent
is used to determine whether τ comp

i would be reduced by
adding or removing PEs. Once a donor (recipient) is identified,
the algorithm searches for a reallocation direction in PE space
by identifying corresponding recipients (donors) among other
constituents.

The DECIDE algorithm (Figure 3) picks the PE space
reallocation direction. It first calculates τG for all possible
candidate PE reallocation vectors, sorting them by increasing
order of predicted τG. Then, a direction is chosen that results
in a previously untried PE allocation that is expected to reduce
τG.

Note that our system depends critically on the timing history
of the various PE cohort configurations. If the load changes
at runtime, as is known to occur in climate models, previous
values of (pi, τ

comp
i) will not necessarily reflect current condi-

tions. To address this situation, we implemented a handler that
strategically deletes timing and prediction history and cancels
a scheduled reallocation when load changes are detected. Load
changes are detected by searching the LBM’s history for each
constituent to find previous τ comp

i values corresponding to its
current value of Pi, and comparing these historical values with
the most recent value of τ comp

i . If the current value of τ comp
i

differs from its historical values (for the current value of Pi)

Atm
Foreach (day) {

mctload()

Foreach (hour) {

mload()

send_cpl()

recv_cpl()

}

}

Cpl
Foreach (day) {

Foreach (hour) {

recv_atm()

mctload()

mload()
send_atm()

}

mctload()

send_ocn()

recv_ocn()

mctload()

}

Ocn
Foreach (day) {

mload()

recv_cpl()

mctload()

send_cpl()

}

Fig. 4. Synthetic climate benchmark application using mload(). The arrows
indicate the intercommunication pattern between constituents.

by more the value of an empirically determined threshold,
this is considered to be a load change, and the LBM’s timing
database is altered to remove past, stale values of (Pi, τ

comp
i).

IV. PERFORMANCE STUDIES

In our previous work, we used measured performance data
from CCSM. Here, we extend that work by using an enhanced
performance model based on a synthetic coupled model, adopt-
ing the simplified structure and intercommunication pattern of
a parallel, coupled climate model introduced in [5].

The synthetic benchmark depicted in Figure 4 comprises
atmosphere (atm), ocean (ocn), and coupler (cpl) constituents;
these exchange interfacial flux and state data. To simulate a
plausible τ comp

i values for the constituents, we implemented
modeled load (mload()) functions, which use the Unix sleep()
function to wait a period of time corresponding to τ comp

i . The
sleep time is computed by using the computational complexity
of a of parallel LU decomposition [10], combined with the
well-known LogP machine model [15]. This approach allows
us to vary mload()—and with it τ comp

i values—by varying
the values of the following parameters: the upper bound on
communications latency L; the communications overhead o;
the gap between consecutive communications g; the number
of PEs P; and the number of rows of the problem matrix N.
A cyclic (block) data layout assumption was used to model
load for cpl (atm and ocn). Modeled LogP-based costs are
converted to wall-clock time by a scaling factor chosen to
render the τ comp

i cost curves into shapes and value ranges
similar to those for benchmark measurements for CCSM’s cpl,
atm, and ocn constituents.

Two parametric tunings were used in our LogP-based
model, resulting in the load functions mload1() and mload2(),
which are shown, respectively, in the left and right panels of
Figure 5. The settings for mload1() are L = 30 and o = 2 for
all constituents, and g = {16, 8, 4} and N = {100, 120, 200}
for {cpl,atm,ocn}. The settings for mload2() are L = 4
and o = 2 for all constituents, and g = {8, 8, 4} and
N = {100, 160, 120} for {cpl,atm,ocn}, respectively. Note
the uniformity with respect to constituent in the values of
the hardware-specific parameters L and o in mload1() and
mload2(); this is because the target platform is a homogeneous
commodity cluster. The values of the parameters N and g are
functions of problem size and communications pattern and

0 10 20 30 40 50 60

Number of PEs

0

20

40

60

80

100

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

se
c)

cpl_tau_comp1 atm_tau_comp1
ocn_tau_comp1

0 10 20 30 40 50 60

Number of PEs

0

20

40

60

80

100

cpl_tau_comp2 atm_tau_comp2
ocn_tau_comp2

Fig. 5. Computation time of constituents τcomp
i simulated by mload1()

(left) and mload2() (right) based on the performance model with varying
number of PEs.

thus constituent-specific.
Simulated τ comp

i of constituents based on mload1() with
varying number of PEs is shown on the left plot in Figure 5.
Here, ocn is the slowest constituent, and the simulated τ comp

i

for all constituents slopes downward initially but upward at
some point because of the modeled communication cost that
dominates τ comp

i as the number of PEs increases. Values of
τ comp
i for each constituent, computed by using mload2(), are

depicted in the right-hand plot of Figure 5. Note that mload2()
makes atm the slowest constituent and the timing curves agree
with our assumed constituent performance model.

In addition to mload(), constituents call mctload(), send(),
and recv() in each time step. The mctload() function performs
MCT distributed data transformation. Interconstituent commu-
nications between atm and cpl and between ocn and cpl are
performed through the MCT send() and receive() communi-
cation calls. This pattern allows ocn to run concurrently while
atm performs its computation and communicates with cpl in
a nested time-loop representing 24 hours [3].

Performance studies were carried out under three scenar-
ios. In Scenario 1 and Scenario 2, the benchmark ran with
mload1() but with differing processor set sizes P 0 = 32 and
P 0 = 64, respectively. In Scenario 3, we evaluated the LBM’s
ability to cope with dynamically changing loads by switching
between load functions mload1() and mload2().

In each study we evaluated the LBM optimizer, predicting
τ
(comp,j+1)
i using both piecewise linear (SEL1) and cubic

spline (SEL2) interpolation schemes. Forecasts of τG used the
following estimation scheme, which corresponds to a nested
composition [16] with ocn on its own cohort and (atm, cpl)
composed sequentially on a shared cohort:

τG = max{τ comp
ocn , τ comp

cpl + τ comp
atm }. (2)

Reallocation requires three coupling cycles to complete be-
cause of synchronization between constituents and the LBM:
one cycle waiting for the beginning of a timing cycle, another
for timing, and a third waiting for reallocation instructions
from the LBM. The new allocation can then be used for the
next cycle.

Experiments were performed on a 64-node cluster at SUNY
Binghamton. Each node has dual 2.66 GHz Xeon dual-core
processors with 8 GB memory. Nodes communicate via an
InfiniBand 40 interconnect. The MPICH2 implementation ver-
sion 1.2.1 of the MPI-2 standard was used. We distributed each
constituent’s PEs randomly across the cluster. We found that
doing so helps prevent network congestion and packet loss,
minimizing timing variability.

Average experimental results obtained by running the
benchmark six times in three scenarios are summarized in
Table I. Included are initial values of τG with three sets of
initial configurations P 0, final values of τG obtained by SEL1
and SEL2 load-balancing schemes, the number of coupling
cycles required to find a PE configuration with the number of
reallocations (#REALLOC) and the percentage of reallocations
that were undone (UNDO(%)).

Performance analyses and studies of the three scenarios are
described in following subsections.

Note that we define a coupled model PE allocation as ~P =
(Ncpl, Natm, Nocn) and used it to describe PE allocation or
configuration of the benchmark.

A. Scenario 1: Using mload1() with 32 PEs

We calculated the ideal solution of τG = 22.4 s and PE
configuration ~P = (4, 8, 20) based on the performance model
with the specified parameter values for mload1() with 32 PEs.

For Scenario 1, we set the size of the global PE pool
P 0 = 32 in order to maximize the benchmark’s throughput.
We then ran the benchmark with mload1() from three initial
PE configurations: INIT1, with ~P 0 = (11, 11, 10), INIT2, with
~P 0 = (4, 24, 4), and INIT3, with ~P 0 = (4, 4, 24). INIT1
allocates PEs between constituents uniformly and oversupplies
cpl with PEs. INIT2 and INIT3 were intended to oversupply
atm and the slowest constituent ocn, respectively.

For all initial cases with SEL1 and SEL2, final solutions for
τG in Table I were almost identical and fairly similar to the
ideal value of τG = 22.4 s that was discovered. We emphasize
that our benchmark never obtains the ideal value of τG because
it uses mctload() in addition to mload1().

SEL1, however, found a PE allocation in 35% fewer cou-
pling cycles than did SEL2 on average for all initial cases,
since the curve of the simulated τ comp

i of constituents plotted
with the number of PEs in Figure 5 is closer to linear except
the area around the inflection point. Moreover, the cubic spline
interpolation cannot be guaranteed to fit properly to the area
around the inflection point where the curve begin to slope
upward. Moreover, the error value that is a side effect of
misprediction with SEL2 should be bigger than that from
SEL1 since the curve created by cubic spline interpolation
is more widely varying and flexible than the one by piecewise
linear interpolation. Thus SEL1, with mload1() in Scenario
1, which uses piecewise linear interpolation, made more accu-
rate predictions than did SEL2, thus preventing unnecessary
reallocations.

The convergence behavior of ~P and τG from INIT1 through
the optimization algorithm using SEL1 and SEL2 is shown

TABLE I
SUMMARY OF GLOBAL ITERATION TIME STATISTICS (SECONDS) AND LBM CONVERGENCE PROPERTIES STATISTICS.

Scenario 1 with 32 PEs and mload1 Scenario 2 with 64 PEs and mload2 Scenario 3 with 32 PEs and both mload1 and mload2
INIT1 INIT2 INIT3 INIT1 INIT2 INIT3 INIT1 INIT2 INIT3

SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2
Inital τG 25.1 25.2 34.4 34.4 24.7 24.6 32.6 32.3 33 33 28 28.1 25.2 25.2 34.4 34.4 24.8 24.8
Final τG 23.21 23.27 23.55 23.41 23.17 23.26 26.36 26.37 26.36 26.37 26.74 26.99 23.7 24.09 23.58 23.51 23.45 23.87
Found at 34.7 58.7 45.3 74.7 49.3 64.7 36.7 43.3 60.7 78.7 34 34 136.7 128.7 145 143.3 148.7 142.7
#Realloc 8.7 14.7 11.3 18.7 12.3 16.2 9.2 10.8 15.2 19.7 8.5 8.5 28.7 28.7 34.2 32.7 33 34.5
Undo(%) 31 34 28.3 31 36.6 32.1 23.9 25 27.6 29.4 29.4 35.3 31.4 31.4 31.3 31.2 31.8 29.6

0 10 20 30 40 50 60 70 80

Number of Coupling Cycles

0

5

10

15

20

N
u
m

b
e
r

o
f

P
E
s

cpl_SEL1
atm_SEL1
ocn_SEL1
cpl_SEL2
atm_SEL2
ocn_SEL2

0 10 20 30 40 50 60 70 80
20

25

30

35

40

G
lo

b
a
l
it

e
ra

ti
o
n
 t

im
e

tau_G_SEL1
tau_G_SEL2

Fig. 6. Scenario 1: Optimization using mload1() with SEL1 and SEL2 for
INIT1 case with 32 PEs: SEL1 found (5, 9, 18) with the global iteration time
τG = 23.07 s at the 36th coupling cycle, and SEL2 found (5, 8, 19) with
τG = 23.04 s at the 52nd coupling cycle.

0 10 20 30 40 50 60 70 80

Number of Coupling Cycles

0

10

20

30

40

N
u
m

b
e
r

o
f

P
E
s

cpl_SEL1
atm_SEL1
ocn_SEL1
cpl_SEL2
atm_SEL2
ocn_SEL2

0 10 20 30 40 50 60 70 80

26
28
30
32
34
36
38
40

G
lo

b
a
l
it

e
ra

ti
o
n
 t

im
e

tau_G_SEL1
tau_G_SEL2

Fig. 7. Scenario 2: Optimization using mload1() with SEL1 and SEL2 for
INIT2 case with 64 PEs: SEL1 found (6, 23, 35) with τG = 26.33 s at the
56th coupling cycle, and SEL2 found (8, 22, 34) with τG = 26.33 s at the
64th coupling cycle.

in Figure 6. Both SEL1 and SEL2 forced cpl to donate
PEs to ocn because both predicted that τG can be reduced
if the throughput of ocn is improved by expanding its PE
cohort’s size. The algorithm using SEL1 forecasted accurately
and led to reallocations with a proper number of PEs. Af-
ter two serious mispredictions that introduced unnecessary
reallocations, which were undone subsequently, at the 4th
and 30th coupling cycles, the optimization converged at the
36th coupling cycle through 9 allocations with the solution
τG = 23.07 s. By contrast, although SEL2 found an almost
equivalent ideal solution (~P , τG), the prediction by SEL2
was relatively inaccurate, introducing four more reallocations
between cpl and ocn as well as between atm and ocn than
did SEL1.

B. Scenario 2: Using mload1() with 64 PEs

For Scenario 2, we ran the benchmark using mload1() with
a total of 64 PEs, more than optimal, in comparison with the
amount of modeled load simulated by mload1(), from three
initial configurations: INIT1, with ~P 0 = (11, 11, 10), INIT2,
with ~P 0 = (4, 24, 4), and INIT3, with ~P 0 = (4, 4, 24).

We also computed the ideal solution with 64 PEs for τG
and PE allocation through the performance model, resulting
in 25.76 s with ~P = (6, 24, 34) to be used for reference.

Final values of τG obtained by the optimization with SEL1
and SEL2 for all initial cases were almost identical and close
to the ideal value of τG. Furthermore, the optimization with
SEL2 converged in 16% more coupling cycles on average than
the one with SEL1; in comparison, SEL2 required 35% more

coupling cycles than did SEL1 to converge the optimization in
Scenario 1 because the τ comp

i of the constituents in Scenario 2
were more stable relative to Scenario 1 while load balancing
through reallocation, since the oversupplied resource of 64
PEs allowed two constituents generally to be allocated more
PEs than when the τ comp

i of the constituents begin to go
up according to the modeled τ comp

i curve of constituents
simulated by mload1() in Figure 5.

Figure 7 shows the optimization convergence behavior for
SEL1 and SEL2 with INIT2 configuration in Scenario 2. As
the figure shows, atm kept donating redundant PEs to ocn
with both SEL1 and SEL2 in common until ocn’s computation
time was reduced and balanced with the sum of computation
times of cpl and ocn according to the estimation scheme
defined by Equation (2). SEL1 tried to perform reallocations
with a more appropriate number of PEs than did SEL2 with
accurate prediction, even though 4 reallocations (including
the one introduced a noticeable change of τG at the 36th
coupling cycle) were undone subsequently. By contrast, SEL2
performed reallocations conservatively and defensively, with
fewer PEs than did SEL1, because of relatively inaccurate
predictions. As a result, SEL2 required 10 more coupling
cycles than did SEL1 to finish the optimization.

Experiments with mload() providing the realistic τ comp
i

with respect to the number of PEs reveal and emphasize the
necessity of load balancing through expanding or shrinking
the global PE pool of coupled model. For example, the ideal
value of τG is 22.4 s with 32 PEs in Scenario 1. Not only

0 20 40 60 80 100 120 140 160

Number of Coupling Cycles

0

5

10

15

20

25

N
u
m

b
e
r

o
f

P
E
s

cpl_SEL1 atm_SEL1 ocn_SEL1

0 20 40 60 80 100 120 140 160
22

26

30

34

38
G

lo
b

a
l
it

e
ra

ti
o
n
 t

im
e

tau_G_SEL1

Fig. 8. Scenario 3: Optimization using mload1() and mload2() with SEL1
for INIT3 case with 32 PEs: SEL1 found (6, 8, 18) with τG = 23.22 s at the
146th coupling cycle.

0 20 40 60 80 100 120 140 160

Number of Coupling Cycles

0

5

10

15

20

25

N
u
m

b
e
r

o
f

P
E
s

cpl_SEL2 atm_SEL2 ocn_SEL2

0 20 40 60 80 100 120 140 160
22
24
26
28
30
32
34
36

G
lo

b
a
l
it

e
ra

ti
o
n
 t

im
e

tau_G_SEL2

Fig. 9. Scenario 3: Optimization using mload1() and mload2() with SEL2
for INIT3 case with 32 PEs: SEL2 found (5, 10, 17) with τG = 23.55 s at the
144th coupling cycle.

an underprovisioned but also an overprovisioned resource can
degrade the overall performance of coupled system.

C. Scenario 3: Using mload1() and mload2() with 32 PEs

To evaluate our algorithm with SEL1 and SEL2 when
computation and communication costs of constituents are
changed dynamically, we modified the benchmark slightly to
enable it to switch between mload1() and mload2() during
execution.

The benchmark employing mload1() initially began to run
with 32 PEs from the three same initial PE configurations
as those in Scenario 1. Then, the benchmark switched from
mload1() to mload2() at the 50th coupling cycle and switched
back from mload2() to mload1() at the 100th coupling cycle.
Moreover, we set the threshold value of 1.5 s to detect the load
changes so that if the τ comp

i of any constituent was increased
or decreased by more than the value of the threshold, the
handler described in Section III was invoked by the LBM.

The optimization convergence behaviors with SEL1 and
SEL2 from INIT3 to handle a dynamic changeable load of
constituents are presented in Figures 8 and 9, respectively.

Both SEL1 and SEL2 kept forcing ocn to hand over PEs
to atm, since ocn is the slowest model with mload1(),
until the computation time of constituents was changed by
switching mload1() to mload2() at the 50th coupling cycle.
We also observe that τ comp

i changes to the value of τG from
23.3 s to 24.3 s and from 23.8 s to 27 s with SEL1 and
SEL2, respectively. Once the load was changed, both SEL1
and SEL2 took PEs from ocn and donated them to atm
or cpl to balance the τ comp

i of the constituents following
the estimation scheme, since atm became the slowest model.
In contrast to the convergence behavior with SEL1, SEL2
failed to find a PE configuration that balanced the τ comp

i of
the constituents for mload2() until mload1() was employed
again at the 100th coupling cycle instead of mload2() for the
same reasons presented in Section IV-A. By contrast, SEL1
found the solution (τG, ~P) = (23.1 s, (8, 14, 10)) at the 88th
coupling cycle for mload2(). However, the algorithms with

SEL1 and SEL2 converged successfully at the 146th and the
144th coupling cycles with good solutions of τG = 23.22 s
and τG = 23.55 s, respectively.

All final τG values obtained by optimization with SEL1 and
SEL2 with the three initial PE configurations were similar to
the ideal value of τG = 22.4 s with 32 PEs; moreover, we
verified that the algorithm converged with a similar number of
coupling cycles to that presented in Scenario 1, once mload()
was switched back at the 100th coupling cycle. These results
show that our dynamic load-balancing algorithm for malleable
model coupling can support a type of coupled model whose
throughput is changed at runtime as a result of dynamic
computation and communication costs of constituents.

We also detected an issue with our algorithm during ex-
periments in Scenario 3. It could disrupt the optimization
using the derivative δτ comp

i = −τ comp
i /p0i as the initial step

for τ comp
i prediction because the optimization could converge

based on an unreliable guideline produced by only one timing
measurement. However, this issue could be addressed simply
by assigning 0 to the slope of the linear interpolation to predict
the τ comp

i of the constituents that are not the slowest if only
one timing measurement exists.

V. RELATED WORK

Malleability has previously been applied to parallel iterative
applications for dynamic load-balancing. SRS [17] adjusts PE
cohorts by allowing a parallel application to stop and restart its
execution. PCM/IOS [18], [19] profiles parallel applications
and triggers reconfigurations to support malleable, iterative
MPI applications. The ReSHAPE [20] framework changes
PE allocations of malleable parallel applications during job
scheduling for system resource utilization. Utrera et al. [21]
also utilize malleability for efficient job scheduling. None
of these approaches, however, are immediately applicable
to malleable model coupling because they concentrate on
applying malleability to monolithic parallel applications.

Ko et al. [22] presented a coupled multiphysics simu-
lation system that optimizes the PE allocation. The algo-

rithm, however, supports only coupled models with two con-
stituents and assumes that computation time scales ideally
with parallelization. The CSCAPES project [23] has as one
of its foci dynamic load-balancing for parallel applications.
Hypergraph-based repartitioning with Zoltan [24], one of
CSCAPES contributions, performs dynamic load-balancing
through data/computation migration within a model’s PE
cohort. Data/computation migration cannot, however, occur
between different constituents.

VI. CONCLUSIONS AND FUTURE WORK

Model coupling for complex scientific multiphysics and
multiscale systems is an emerging research challenge. We
are developing the Malleable Model Coupling Toolkit, which
provides a dynamic load-balancing scheme by reallocating re-
sources, specifically the PEs of a coupled model’s constituents’
cohorts.

In this paper, we have shown that by using a heuristic to
detect load changes, our algorithm can adapt to changing loads
of coupled models at runtime.

We also have presented enhanced performance studies of
our dynamic load-balancing scheme for malleable model cou-
pling using a synthetic coupled model benchmark that was run
with a modeled load of parallel LU decomposition simulating
realistic computation and communication costs of coupled
model subsystems. The experiments highlighted the need for
a load-balancing algorithm to guide how to shrink and expand
the size of the global PE cohort. Future work will explore
such an algorithm. In addition, our experiments confirmed that
the optimization algorithm balances loads of communication-
intensive constituents adequately.

We will continue to improve our dynamic load-balancing
algorithm by reducing the convergence time and improving
the accuracy of prediction. As an ultimate goal, we hope to
apply MMCT with LBM to deployed applications.

ACKNOWLEDGMENT

Work at Argonne National Laboratory is supported by
the U.S. Department of Energy under Contract DE-AC02–
6CH11357. Work at SUNY Binghamton is supported by the
National Science Foundation under award number 0941573.

REFERENCES

[1] F. Bertrand, R. Bramley, D. E. Bernholdt, J. A. Kohl, A. Sussman, J. W.
Larson, and K. Damevski, “Data redistribution and remote method in-
vocation for coupled components,” J. Parallel Distrib. Comput., vol. 66,
no. 7, pp. 931–946, 2006.

[2] R. Jacob, J. Larson, and E. Ong, “M×N communication and parallel
interpolation in CCSM3 using the Model Coupling Tookit,” Int. J. High
Perf. Comp. App., vol. 19, no. 3, pp. 293–308, 2005.

[3] J. W. Larson, “Ten organising principles for coupling in multiphysics
and multiscale models,” ANZIAM Journal, vol. 48, pp. C1090–C1111,
2009.

[4] D. G. Feitelson and L. Rudolph, “Towards convergence in job schedulers
for parallel supercomputers,” in Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing. Springer-Verlag, 1996,
pp. 1–26.

[5] D. Kim, J. W. Larson, and K. Chiu, “Toward malleable model coupling,”
Procedea Computer Science, vol. 4, pp. 312–321, 2011.

[6] ——, “Malleable model coupling with prediction,” Preprint ANL/MCS-
P1984-1211, 2011. [Online]. Available: http://www.mcs.anl.gov/
publications/

[7] J. Larson, R. Jacob, and E. Ong, “The Model Coupling Toolkit: A new
Fortran90 toolkit for building multi-physics parallel coupled models,”
Int. J. High Perf. Comp. App., vol. 19, no. 3, pp. 277–292, 2005.

[8] “Model Coupling Toolkit web site,” http://mcs.anl.gov/mct/.
[9] J. G. Michalakes, “Analysis of workload and load balancing issues

in the NCAR community climate model,” Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL, Technical
Memorandum ANL/MCS-TM-144, 1991.

[10] E. E. Santos and M. Muraleetharan, “Analysis and implementation of
parallel LU-decomposition with different data layouts,” Preprint, 2010.
[Online]. Available: http://math.ucr.edu/∼muralee/

[11] “Community Climate System Model Web Site,” http://www.cesm.ucar.
edu/models/ccsm4.0/.

[12] A. P. Craig, B. Kaufmann, R. Jacob, T. Bettge, J. Larson, E. Ong,
C. Ding, and H. He, “CPL6: The new extensible high-performance
parallel coupler for the Community Climate System Model,” Int. J. High
Perf. Comp. App., vol. 19, no. 3, pp. 309–327, 2005.

[13] “The Message Passing Interface (MPI) standard,” http://www-unix.mcs.
anl.gov/mpi/.

[14] D. B. Carl, A Practical Guide to Splines (Revised Edition). Springer,
2001.

[15] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: Towards a realistic model
of parallel computation,” in Proceedings of the fourth ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming. ACM,
1993, pp. 1–12.

[16] J. W. Larson, “Visualizing process composition and load balance in
parallel coupled models.” Procedia CS, vol. 4, pp. 831–840, 2011.

[17] S. S. Vadhiyar and J. J. Dongarra, “SRS - a framework for developing
malleable and migratable parallel applications for distributed systems,”
Parallel Processing Letters., vol. 13, no. 2, pp. 291–312, 2003.

[18] K. E. Maghraoui, B. K. Szymanski, and C. Varela, “An architecture
for reconfigurable iterative MPI applications in dynamic environments,”
in Proceedings of the Sixth International Conference on Parallel Pro-
cessing and Applied Mathematics (PPAM2005), number 3911 in LNCS.
Springer Verlag, 2005, pp. 258–271.

[19] K. El Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela,
“Dynamic malleability in iterative MPI applications,” in Proceedings of
the Seventh IEEE International Symposium on Cluster Computing and
the Grid, CCGRID ’07. IEEE, 2007, pp. 591–598.

[20] R. Sudarsan and C. Ribbens, “ReSHAPE: A framework for dynamic
resizing and scheduling of homogeneous applications in a parallel
environment,” in Parallel Processing, 2007, ICPP2007. IEEE, 2007.

[21] G. Utrera, J. Corbaln, J. Labarta, and D. D. D. Computadors, “Imple-
menting malleability on MPI jobs,” in Proceedings of the 13th Interna-
tional Conference on Parallel Architecture and Compilation Techniques
(PACT’04). IEEE Computer Society, 2004, pp. 215–224.

[22] S.-H. Ko, N. Kim, J. Kim, A. Thota, and S. Jha, “Efficient runtime envi-
ronment for coupled multi-physics simulations: Dynamic resource allo-
cation and load-balancing,” in Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, 2010,
pp. 349–358.

[23] “Institute for Combinatorial Scientific Computing and Petascale Simu-
lations,” http://www.cscapes.org/.

[24] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and
L. Riesen, “Hypergraph-based dynamic load balancing for adaptive sci-
entific computations,” in Procceedings of the 21st International Parallel
and Distributed Processing Symposium (IPDPS’07). IEEE, 2007.

DISCLAIMER

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and

perform publicly and display publicly, by or on behalf of the
Government.

