Integrated In-System Storage Architecture
for High Performance Computing

Dries Kimpe,! Kathryn Mohror? Adam Moody? Brian Van Essen?
Maya Gokhale? Rob Ross,! Bronis R. de Supinski?

! Mathematics and Computer Science Division

Argonne National Laboratory

9700 South Cass Avenue, Argonne, IL 60439, USA

2 Lawrence Livermore National Laboratory
Livermore, CA 94551, USA

{dkimpe,rross}@mcs.anl.gov, {kathryn,moody20,vanesseni,maya,bronis}@lIinl.gov

ABSTRACT

In-system solid state storage is expected to be an important
component of the I/O subsystem on the first exascale plat-
forms, as it has the potential to reduce DRAM requirements,
increase system reliability, and even out I/O load peaks.

This paper describes the design of a prototype, integrated
in-system storage architecture we are developing to serve
the diverse needs of high performance computing. We are
developing a container abstraction to perform lightweight
management of in-system storage devices, as well as meth-
ods to access containers remotely and transfer them within
the storage hierarchy. We are also working on a storage hi-
erarchy abstraction API to provide portable HPC I/0 soft-
ware with the critical information on the configuration of the
system it is running on. As currently available large-scale
HPC systems lack in-system storage, we are developing a
solid state storage simulator backed by DRAM. These ef-
forts are being integrated around an I/O-intensive workload
provided by the scalable checkpoint/restart (SCR) library.
We are hoping that once complete, our efforts with reduce
the overheads of checkpointing and data movement across
the system and thus improve the scalability and reliability
of HPC applications.

Categories and Subject Descriptors

B.4.4 Input/Output and Data Communications|: Per-
formance Analysis and Design Aids—Simulation; D.4.2 [Ope-
rating Systems]: Storage Management—Storage hierar-
chies; D.4.5 [Operating Systems]: Reliability—Checkpoint
/ restart

Keywords

in-system storage, checkpoint/restart, burst buffer, I/O for-
warding, storage simulation, storage management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION

The first exascale systems, expected around 2019-2020,
will enable transformative science discoveries in a number
of areas, including climate, combustion, nuclear energy, and
national security. A key exascale barrier is the need for
scalable storage of persistent state: one that provides the
necessary 1/O bandwidth and capacity without overwhelm-
ing the power, cooling, and cost budgets of future systems.
Traditional global storage system approaches simply cannot
scale to meet these requirements.

With the development of inexpensive, nonvolatile mem-
ory technologies such as flash and phase change memory, it
is feasible to include solid-state, persistent memory on ev-
ery node in a future exascale system—enabling in-system
storage. Such storage augments the memory hierarchy, po-
tentially reducing DRAM requirements and thus the node’s
power requirements. It streamlines and simplifies check-
pointing, increasing system reliability. In-system storage
reduces the peak bandwidth requirements of a global exa-
scale storage system, offering a scalable checkpoint/restart
solution. However, there remain considerable research chal-
lenges to realizing these potential benefits, especially if one
wants to hide from the user the complexity introduced by
another layer in the storage hierarchy.

We have been conducting a detailed assessment of the po-
tential roles and benefits of in-system storage in exascale
computational science, exploring existing hardware options
and assessing the software mechanisms that best exploit
them. One of the early conclusions of this exploration is
the identification of a need for an integrated in-system stor-
age architecture. Different machines will employ in-system
storage in different ways, and will feature devices of differ-
ent capacities and capabilities. Software components will
need accurate description of the configuration of the storage
system; to the best of our knowledge, however, no portable
APT exists that would provide such information. Section 3
outlines the interfaces that we plan to provide in a form of
a standalone library to fill that gap. In-system storage can
serve multiple purposes, such as: (1) temporary checkpoint
storage space; (2) burst buffer for application output and
prefetch buffer for application input; or (3) backing store for
out-of-core computations. Complex applications may well
wish to employ multiple of these usage scenarios simultane-
ously; an abstraction layer is needed to manage the alloca-
tion of in-system storage for different purposes. Running a
POSIX file system on top of a local storage device would

provide most of the necessary functionality. We believe,
however, that a file system is an unnecessarily heavyweight
abstraction that would introduce significant overheads, espe-
cially given the projected high performance levels of emerg-
ing solid state storage technologies. Hence, in Section 4 we
introduce containers—a lightweight management abstrac-
tion for in-system storage. In-system storage is going to
introduce new levels of hierarchy into the IO system. In
addition to a global parallel file system, we can expect to
see in-system storage devices local to every compute node,
shared between a group of compute nodes, or attached to
1/0 nodes. We will need remote access to the containers and
a high-performance data-transfer capability between differ-
ent levels of storage hierarchy; we discuss this concept in
Section 4.2. Together, these components will provide a pro-
totype in-system storage architecture. Section 5 discusses
our plans for integrating the storage architecture compo-
nents with checkpoint/restart mechanisms provided by SCR
and with an in-system storage simulation layer. The latter is
necessary because currently accessible large-scale HPC sys-
tems lack in-system storage. Using a simulator enables us
to model multiple varieties of in-system storage, including
storage hardware not yet available. In addition, the simu-
lator, yielding more detailed information than a hardware
solution, simplifies optimizing our use of the storage.

2. BACKGROUND

Our current work builds on a number of existing compo-
nents outlined below. Section 5 will detail how these com-
ponents can be used together.

2.1 SCR

The Scalable Checkpoint/Restart (SCR) [9] library en-
ables MPI applications to use storage distributed on sys-
tem’s compute nodes to attain high checkpoint and restart
I/O bandwidth [7]. We derive SCR’s approach from two
key observations. First, a job only needs its most recent
checkpoint—as soon as it writes the next checkpoint, we can
discard the previous one. Second, a typical failure disables
a small portion of the system, but it otherwise leaves most
of the system intact. Our experiments have shown that 85%
of failures disable at most one compute node on the clusters
on which we currently use SCR [7].

SCR achieves high I/O bandwidth by caching checkpoints
in storage local to the compute nodes instead of the parallel
file system. It caches checkpoints on RAM disks, magnetic
hard-drives, or SSDs, depending on what is available. SCR
caches only the most recent checkpoints, discarding an older
checkpoint with each newly saved one. SCR can apply a
redundancy scheme to the cache, so it can recover check-
points after a failure disables a small portion of the system.
It periodically flushes a cached checkpoint to the parallel
file system in order to withstand failures that disable larger
portions of the system; however, a well-chosen redundancy
scheme allows checkpoints to be flushed infrequently.

SCR is our primary driver for the project. We are adapt-
ing SCR to use the storage abstraction library (described
in Section 3) to discover in-system storage, and to access
that storage by using the container abstraction (described
in Section 4).

2.2 10OFSL

The I/O Forwarding Scalability Layer (IOFSL) [1] is a
portable I/O forwarding implementation. A recent addi-
tion to the I/O software stack, I/O forwarding addresses
a number of different I/O difficulties typical for large par-
allel machines. By forwarding I/O calls to a gateway or
I/0 node—where they are executed locally—the number of
clients visible to the file system is drastically reduced, lower-
ing the load on the file system and enabling existing parallel
file system to scale to more clients.

Another benefit of forwarding I/O is that it minimizes
the overhead of I/O on the client to the bare minimum. All
file system protocols are handled by the forwarding server.
The client’s responsibility is limited to the communication
needed to transfer the I/O data to and from the forwarding
server. This is particularly beneficial for systems with a
large number of relatively less powerful compute nodes, and
is especially relevant for systems using a microkernel on the
compute nodes, as these kernels often lack the functionality
needed to implement a full I/O stack.

We are extending IOFSL to allow for forwarding of API
calls for in-system storage (further described in Section 4.2),
leveraging its existing networking and forwarding code. In
addition, IOFSL will be responsible for coordinating and
moving data between the different storage levels (node, gate-
way or I/O node, parallel file system) in the system.

2.3 PerMA

The PerMA simulator [11] is being developed to allow
us to model the impact of future generations of I/O-bus-
attached NVRAM on application performance at scale, and
prototype the impact of a high performance memory-map
runtime. The simulator provides a memory API to the per-
sistent memory, models latencies and bandwidths ranging
from current Flash down to DRAM-like performance, and
supports hundreds of threads at native speed.

The simulator has provided new insights into the interac-
tion of algorithmic techniques (e.g., thread oversubscription
or out-of-core data structures) with future NVRAM tech-
nology generations. Furthermore, the work on the PerMA
simulator illustrates that it may be possible to get scalable
performance for out-of-core algorithms, with a high perfor-
mance memory-map runtime and the appropriate caching
algorithms. Our exploration of the current memory-map
runtime within Linux (in [11]) has identified several bottle-
necks for high performance computing, and has lead to the
initial development of the data-intensive memory-map run-
time (DI-MMAP) within the PerMA simulator.

We have implemented a simple, two-level buffering scheme

for DI-MMAP within the simulator to provide locality-optimized

page mapping. We have shown that the combination of a
latency-tolerant, concurrent algorithm, future NVRAM de-
vices, and an optimized memory-map runtime system en-
ables migration of data structures that were traditionally
heap-allocated into persistent memory.

3. STORAGE HIERARCHY ABSTRACTION

The goal of the storage hierarchy abstraction is to pro-
vide a generic interface for other components to discover
available storage resources and their properties in a scal-
able and portable way. We strive for generality given the
highly-specialized and diverse hardware and software on su-
percomputers. This will enable tools that use the interface
to be portable across a wide variety of machines, assuming

the storage hierarchy API has been ported to a particular
machine. Scalability is important on today’s machines and
will be critical on future systems. Because of this, we de-
signed the API so that the memory requirements will not
grow with the number of components in the machine.

Each storage location has a Unique Resource Identifier
(URI) as well as a set of properties. URIs are strings that
identify a unique store and can be used to locate it. As an
example, a storage URI might be storage://compute2/tmp,
which would refer to the storage location /tmp on compute
node compute?2. For flexibility, properties are attribute-value
pairs. We could have opted to define a set of properties for
each store, but this would require an API change whenever
additional properties were needed for a new storage device
or client application with different requirements. Instead,
the interface will return an array of attribute-value pairs for
each store, the values of which will be documented for a
given system. For example, an attribute could be capacity
with value 10E12.

In order to be scalable, it is important that a single com-
ponent instance need not store the entire map of the storage
hierarchy. Our approach is that components only need to
query for storage resources as needed. A component can
query the storage locations local to it as well as storage up
and down the hierarchy. For example, a component running
on an I/O node on a cluster might query the storage hierar-
chy abstraction for the location of the next level of storage
in the hierarchy, e.g., the parallel file system or some other
large, intermediate storage device. After receiving a list of
the storage device(s) at the next level, the component can
query the API to discover the properties of a store to see
if it meets the needed requirements. For example, it can
query to find out if capacity is adequate to store the data
required. If not, it can query for the levels of storage further
down the hierarchy on an as needed basis.

4. CONTAINER ABSTRACTION

Analyzing the in-system storage requirements of applica-
tions (out-of-core techniques), checkpointing and I/O sys-
tem libraries, it is clear that providing a full fledged “file”
abstraction for in-system storage is not required. Further-
more, supporting unused features such as global immediate
consistency, sparse files, arbitrarily deeply nested subdirec-
tories, and on-demand resizing incurs a high implementation
and run-time cost. At the same time, the specialized envi-
ronment and use case of in-system storage benefits from fea-
tures not commonly found in general purpose file systems.
Retrofitting these on top of an existing file concept is of-
ten not feasible. An example of such a feature is zero-copy
application I/0, made possible by leveraging the ability of
most in-system storage to be mapped directly into the node’s
memory hierarchy.

Instead, a new model, specifically designed for manag-
ing and accessing in-system store, is proposed. Designing
and implementing a special-purpose model has a number
of additional benefits, such as the flexibility to investigate
non-traditional I/O semantics and APIs. In addition, a li-
brary, user-space only implementation simplifies deployment
(for example on top of the PerMA simulator described in
Section 2.3), as no administrator access (which is often not
available) is required. To differentiate our implementation
from the traditional file concept, the basic storage entity

of our proposed in-system storage model is referred to as a
container.

4.1 Local Container Access

While a container resembles a POSIX file, there are a
number of significant differences. Containers are created
with a specific size. Writing past the end of a container
is not allowed, and will not implicitly resize the container.
However, it is possible to explicitly resize containers, but do-
ing so is a high-cost operation. While this might seem overly
restrictive, it significantly simplifies the implementation and
run-time performance of the container. In particular, it en-
ables providing direct memory access to the underlying stor-
age forming the container.

As parallel applications often exhibit highly complex I/O

patterns [3], the container API provides for fully non-contiguous

container access, both for reading and writing. This means
it is possible to transfer a non-contiguous set of bytes from
the container to a non-contiguous set of bytes in the appli-
cation’s memory, or vice-versa.

Due to cost, manufacturing, power, and space reasons,
most deployed and planned in-system storage is provided by
solid state devices such as flash or phase change memory. It
is possible to expose these devices to software by mapping
them into the system’s memory address space. This makes
it possible for the system to perform zero-copy I/O by di-
rectly generating or accessing data into the device-mapped
memory range. Where supported by the system, the con-
tainer API preserves the ability to perform zero-copy I/O by
allowing an application to retrieve the mapping between the
logical and on-device layout of a container. In most cases,
we predict that using direct access to the container enables
a better performing and less complex I/O mechanism than
performing explicit read or write calls.

Each container has a name—a set of characters—provided
at create time. Aliasing (for example through links) is not
supported. Containers only support a restricted set of op-
erations: create, delete, rename, resize, get attributes, read,
and write.

Instead of providing full directory semantics, containers
are grouped within a container set. Container sets provide
isolation from other software layers (within the same appli-
cation or from other jobs), as each container set represents
a different namespace. In addition, container sets support
space reservation, simplifying application usage by alleviat-
ing the need for the handling of out of space conditions.
By enabling reserving space ahead of time, storage fragmen-
tation of containers and sets can be kept to a miniumum.
On systems requiring data access protection, access control
can be implemented on the container set level; for example,
container sets can be protected using a cryptographic se-
cret, provided by the user at job submission time. The API
supports listing all of the containers in a set.

4.2 Distributed Container Access

While the container model is a purely local abstraction,
remote container access can be advantageous in certain situ-
ations. For example, SCR might need to access the storage
located on the I/O or gateway nodes, even though those
nodes typically don’t support running user code. To enable
this and other use cases, a remote container API enables
access to containers on locations other than the local node.
The API leverages the URI abstraction provided by the stor-

Application

Storage
Hierarchy API
Container
API

Compute
Nodes

1/0
Nodes

Figure 1: The prototype, integrated in-system storage architecture. Dotted lines indicate communicating components.

age hierarchy abstraction (see Section 3) to identify remote
containers.

It is important to note that this approach does not create
a global name space. It merely offers an abstraction for
shipping an operation and associated data to the remote
container storage, where the local container APT is used to
execute the requested operation.

In addition to enabling remote access, the extended API
also provides for third-party container transfer. This means
that a node can request for a container to be copied or moved
between two other nodes, with both source and destination
distinct from the requesting node. This functionality can
be used by SCR to incrementally drain certain checkpoints
from the on-node storage to the parallel file system.

4.3 Implementation

The local container API is provided by a C/C++ library.
Our current implementation supports multiple storage back-
ends. To simplify testing, one backend supports allocat-
ing main memory to serve as the in-system storage. How-
ever, the default backend assumes in-system storage can be
mapped into main memory using the mmap system call.
This model is supported by the PerMa simulator, enabling
easy integration between the two components.

All provided functions are fully thread-safe, and can be
called concurrently by threads within the same application
(process) or concurrently by multiple different applications.
This is needed as both SCR and IOFSL might attempt to
access the same container concurrently.

As an example, the declaration of the cs_container_read
function is shown below (the corresponding cs_container_write
has the same prototype, except for a difference in the con-
stness of the memory parameter).

int cs_container_read (cs_container_handle_t handle,
size_t memcount, void * membuf|],
size_t memsizes|], size_t filecount,
cs_off_t fileofs[|, cs_off_t filesizes] |,
cs_off_t * transferred);

The cs_off_t aliases to an appropriate integer type, guaran-
teed to be at least 64 bits wide. Both destination and source
can be described as a series of contiguous byte ranges, en-
abling scatter/gather functionality. The handle parameter,
obtained by a call to cs_container_open, identifies the con-
tainer to be accessed.

The zero-copy access functions, cs_container_zc_read and
cs_container_zc_write, are very similar to the corresponding
cs_container_read and cs_container_write functions, except for

the fact that the former do not specify where the retrieved
data has to go. Instead, the output of these functions is a
list of memory ranges. Each of these ranges refers to the
memory mapping the in-system storage. The underlying
container can then be accessed by reading or writing these
memory ranges. A mapping remains valid until the underly-
ing container is removed or resized, enabling very fast access
to the in-system storage. This is especially useful functional-
ity for the SCR redundancy schemes, as the computed data
can be directly stored in the container without first having
to go through an intermediate buffer. In addition, the zero-
copy access functions offer excellent support for applications
using an out-of-core strategy.

Except for an extra argument indicating which node to
contact, the remote container API is very similar to the local
container API. Under the covers, the remote container API
is implemented by IOFSL. IOFSL takes care of forwarding
the API call to the destination node, executes the call at
the destination using the local container API, and sends the
output of the call back to the requesting node.

Since the zero-copy API requires the ability to directly
map the storage device into the application’s memory space,
this functionality is limited to processes co-located with the
storage. Therefore, access to remote containers is restricted
to traditional read and write functions, necessarily involving
a copy from the application’s buffer to the in-system storage.

Container transfers are also handled by IOFSL. Since IOFSL
instances can communicate with one another, transfers can
be scheduled appropriately to optimize bandwidth usage.
Data can be moved between two containers or between a
container and the parallel filesystem. Once a transfer is ini-
tiated, control returns to the application while IOFSL takes
care of moving the remaining data in the background.

S. INTEGRATION

Figure 1 provides an overview of the integrated system
architecture we are working on. The figure shows a sys-
tem having two node types: compute nodes and I/O nodes.
Compute nodes make up the main part of the machine, while
a smaller number of I/O nodes provides system services such
as I/O and node monitoring. Many of the contemperorary
large HPC machines, for example the IBM Blue Gene se-
ries [5], follow this architecture.

SCR currently supports writing a checkpoint to a file and,
as indicated in Section 2.1, it supports a variety of local
storage devices to cache checkpoints, including solid state
drives, so long as there is a file system running on top. Our

container abstraction from Section 4 does not implement a
file abstraction, though we are planning to provide a lim-
ited emulation layer to ensure portability of existing check-
point /restart codes. Long term, however, we are assum-
ing that the best checkpointing interface will be through a
high performance memory-map runtime such as DI-MMAP.
Specifically, the checkpoint container will be mapped into
the address space of an application process and the data
to be checkpointed will simply be transferred using mem-
ory copy operations. Irrespective of the exact mechanism
used, SCR will ensure that the data ends up in a container
allocated on a local in-system storage device.

Container API is local, whereas SCR needs to be able
to transfer data between compute nodes to provide redun-
dancy of cached checkpoint files and periodically also needs
to flush the latest checkpoint to the parallel file system. We
will provide an infrastructure to copy containers between
different levels of the storage hierarchy as described in Sec-
tion 4.2, based on our earlier I/O forwarding project IOFSL.
The advantage of offloading that functionality from SCR to
a separate component is that the transfers can then be per-
formed asynchronously and can be coordinated across mul-
tiple nodes based on system load, the relative importance of
the data to be transferred, etc.

We will support container transfers between different lev-
els of the storage hierarchy, but for now not within a single
level, at least not between different compute nodes. Contem-
porary large-scale HPC systems such as IBM Blue Gene/Q
or Cray XE6 simply do not offer convenient interfaces to
perform such transfers independently of the application. In-
stead, we will use existing, tried and tested SCR mechanisms
of performing such transfers at application-level using MPI
primitives; hence the horizontal arrows between SCR com-
ponents in Figure 1. Please note that while the figure shows
individual components on the compute nodes as independent
entities, in practice most of them will be linked together into
the application process.

As existing large-scale HPC systems do not have in-system
storage, we will simulate such storage devices in DRAM, us-
ing the PerMA simulator as indicated in Section 2.3. The
current prototype implementation of the container library
expects the storage to be mapped into a contiguous memory
region, which is an interface well supported by the simulator.
We plan to evaluate various scenarios, such as local storage
on every compute node, storage attached to I/O nodes, or
various combinations and intermediate options. This will
also give us an opportunity to solidify the storage hierarchy
abstraction API, which SCR will depend on to obtain sys-
tem configuration information. We expect larger in-system
storage devices above the level of individual compute nodes,
such as on I/O nodes as shown in Figure 1. We plan to put
additional SCR. processing components at this level, which
will be performing comparisons of checkpoints from different
compute nodes, eliminating inter-node redundancies.

6. RELATED WORK

Several efforts provide abstractions to hierarchical rela-
tionships between components on systems. The Platform
Description Language (PDL) is a generic, XML-based lan-
guage for describing the relationships between compute com-
ponents on heterogeneous systems [8]. Using PDL, pro-
gram tasks can be mapped to appropriate computational
units based on their characteristics, including memory re-

gions and interconnects. PDL differs from our approach
in that it focuses only on components within a node and
does not address outside resources. Sequoia is a program-
ming model for abstractly describing hierarchies of tasks
and mapping them to the memory system of a target ma-
chine [4]. While Sequoia is a portable approach to describing
system components, it focuses solely on the memory hierar-
chy. The Portable Hardware Locality (hwloc) software pro-
vides a portable abstraction for discovering the hierarchical
topology of system components [2]. hwloc typically provides
information about processing units and memory but can also
discover I/0O devices. However, while hwloc can discover I/O
devices physically located on the host, our storage hierarchy
API can provide information about storage locations avail-
able from the current host as well as from other hosts on the
system.

Multiple distributed file systems have been described in
the literature, each of which was designed for high perfor-
mance with a particular workload in mind. The Google File
System (GFS) [6] and the Hadoop File System (HDF'S) [10]
were designed for a workload that typically consists of large
files, with append-only writes from concurrent writers, on
commodity clusters where failures are common. GFS and
HDF'S replicate files for high availability. They do not imple-
ment a POSIX interface, but instead support only a subset
of the usual operations. The Ceph file system was designed
for large-scale jobs with potentially hundreds of thousands of
concurrent I/0 requests [12]. Ceph also supports data repli-
cation for reliability and a near-POSIX interface; it relaxes
consistency semantics for read-write sharing when possible.
Like GFS, HDFS, and Ceph, our container APT is designed
to benefit a particular workload and does not support full
POSIX semantics. However, our workload is considerably
different from those described above. To the best of our
knowledge, ours is the first storage management system de-
signed to improve the utilization of hierarchical in-system
storage on high performance computing systems.

7. CONCLUSION

The DOE NoLoSS project conduct detailed assessment of
the potential roles and benefits of emerging storage technolo-
gies and I/O architectures in exascale computational science.
In this paper we have provided an overview of a prototype,
integrated in-system storage architecture that we are de-
veloping. It includes a checkpoint/restart library (SCR),
1/0 forwarding layer (IOFSL), solid state storage simulator
(PerMA), as well as new abstraction layers being developed
to tie these components together: the storage hierarchy API
and the container API.

The software we are developing is open source. We partic-
ularly encourage the reuse of the general-purpose libraries
such as the container abstraction or the storage hierarchy
abstraction; these will be released as independent compo-
nents once they reach the necessary level of maturity.

The integration work is ongoing, and the outcomes will be
the subject of future publications. We hope that our findings
will influence the designs of future solid state storage devices,
the I/O architectures of future extreme-scale systems, and
the exascale I/O system software.

Acknowledgments

This work was supported by the Office of Advanced Scien-
tific Computer Research, Office of Science, U.S. Department
of Energy, under Contract DE-AC02-06CH11357. This re-
search used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory.

This article has been authored by Lawrence Livermore Na-
tional Security, LL.C under Contract No. DE-AC52-07TNA27344
with the U.S. Department of Energy. Accordingly, the United
States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevo-
cable, world-wide license to publish or reproduce the pub-
lished form of this article or allow others to do so, for United
States Government purposes. LLNL-CONF-557032-DRAFT.

8. REFERENCES

[1] ALL, N., CARrNs, P., IskrA, K., KIMPE, D., LANG,
S., LatHAM, R., Ross, R., WARD, L., AND
SADAYAPPAN, P. Scalable I/O forwarding framework
for high-performance computing systems. In
Proceedings of the 11th IEEE International
Conference on Cluster Computing (CLUSTER’09)
(Tsukuba, Japan, Sept. 2009).

[2] BROQUEDIS, F., CLET-ORTEGA, J., MOREAUD, S.,
FURMENTO, N., GOGLIN, B., MERCIER, G.,
THIBAULT, S., AND NAMYST, R. hwloc: A generic
framework for managing hardware affinities in HPC
applications. In Proceedings of 18th Furomicro
International Conference on Parallel, Distributed and
Network-Based Processing (PDP’10) (Pisa, Italy, Feb.
2010), pp. 180-186.

[3] CrANDALL, P., AyDT, R., CHIEN, A., AND REED, D.
Input/output characteristics of scalable parallel
applications. In Proceedings of the IEEE/ACM
Conference on Supercomputing (SC’95) (San Diego,
CA, Nov. 1995).

[4] FaTtAaHALIAN, K., KNIGHT, T. J., HOUSTON, M.,
ERrez, M., HorN, D. R., LEEM, L., PARK, J. Y.,
REN, M., AIKEN, A., DALLY, W. J., AND HANRAHAN,
P. Sequoia: Programming the memory hierarchy. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC’06) (Tampa, FL, Nov. 2006).

[5] GARA, A., BLUMRICH, M., CHEN, D., CHiu, G.,
CoTEeus, P., GiamparA, M., HARING, R.,
HEIDELBERGER, P., HOENICKE, D., Koprcsay, G.,
ET AL. Overview of the Blue Gene/L system
architecture. IBM Journal of Research and
Development 49, 2/3 (2005), 195-212.

[6] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The
Google File System. SIGOPS Operating System
Review 37, 5 (Dec. 2003), 29-43.

[7] Moopy, A., BRONEVETSKY, G., MOHROR, K., AND
DE SUPINSKI, B. R. Design, modeling, and evaluation
of a scalable multi-level checkpointing system. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC’10) (New Orleans, LA, Nov. 2010).

[8] SANDRIESER, M., BENKNER, S., AND PLLANA, S.
Explicit platform descriptions for heterogeneous
many-core architectures. In Proceedings of the IEEE
International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, 16th
International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS’11) (Anchorage, AK, May 2011),
pp- 1292-1299.

[9] Scalable Checkpoint/Restart Library.
http://sourceforge.net/projects/scalablecr/.

[10] SuvacHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The Hadoop distributed file system. In
Proceedings of the 26th IEEE Symposium on Mass
Storage Systems and Technologies (MSST’10) (Lake
Tahoe, NV, May 2010).

[11] VAN EssEN, B., PEARCE, R., AMES, S., AND
GOKHALE, M. On the role of NVRAM in
data-intensive architectures: An evaluation. In
Proceedings of the 26th IEEE International Parallel €
Distributed Processing Symposium (IPDPS’12)
(Shanghai, China, May 2012).

[12] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG,
D. D. E., AND MaALTZAHN, C. Ceph: A scalable,
high-performance distributed file system. In
Proceedings of the Tth Symposium on Operating
Systems Design and Implementation (OSDI’06)
(Seattle, WA, Nov. 2006), pp. 307-320.

Government License

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
("Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to reproduce, pre-
pare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

