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Abstract—We describe a hybrid methodology for character-
izing scientific applications and apply it to proxy applications
(mini-apps and PETSc applications) representative of the DOE’s
future high performance computing workloads. The methodology
uses source code analysis, performance counters, and binary
instrumentation to capture instruction mix and memory access
patterns for a range of model-sized datasets.

With this empirical basis, we create statistical models that
extrapolate application properties (instruction mix, memory size,
and memory bandwidth) as a function of problem size. We
validate these models empirically and use them to project the first
quantitative characterization of an exascale computing workload,
including computing and memory requirements. This exascale
application extrapolation requires classification of applications
as runtime or memory-capacity limited.

We evaluate the potential benefit of a radical new exa-scale
architecture, stacked DRAM, and processing-under-memory
(PUM). Our results show while the entire exascale workload is
memory bandwidth limited, PUM-enabled tenfold increases in
memory bandwidth can produce 1.4 to 4.2-fold speed improve-
ments and convert the majority of these workloads to compute-
limited. Additionally, the programming effort required to exploit
these PUM advantages appears to be low.

I. INTRODUCTION

Application characterization is a key ingredient in under-
standing the impact of proposed architectural changes and
identifying opportunities for architectural innovation. How-
ever, no single analysis tool provides a complete charac-
terization of applications. We describe a methodology that
employs multiple tools to build a more complete picture of
application behavior, and we project these characteristics for
future architecture scenarios. We apply this methodology to
a collection of proxy applications representative of scientific
workloads, especially the types of applications written and
used by the U.S. Department of Energy. A number of these
applications are being employed in architecture, system soft-
ware, and application codesign.

We begin by describing a set of proxy applications, ranging
from mini-drivers for parallel numerical libraries to simplified
configurations of full applications. We then describe the set
of tools used to characterize the applications, including tools
based on sampling, binary instrumentation, and source code
analysis. We also discuss some anticipated features of future
architectures onto which we would like to project these
applications. Each of the tools is well suited for gathering
different kinds of information, and we describe the quantities

measured and the observed characteristics for the applications
under consideration. For this study, we focus on instruction
mix and memory characteristics.

Using the analytical and empirical proxy application char-
acterization as a base, we build statistical models in order
to project the characteristics of each proxy application at
exascale. In each case, shaping the extrapolation appropriately
based on runtime or memory size limits for projected exascale
machines [1]. Collectively, these projections represent the first
quantitative characterization of an exascale workload. Using
this characterization, we explore different exascale architecture
scenarios, not only exposing the applications that are likely to
benefit from radical changes such as processor-under-memory
(PUM) but also quantifying to what degree they benefit and at
what programming effort. This paper includes the following
specific technical contributions.

• Hybrid characterization of scientific computing “proxy
applications” representing future high-performance com-
puting (HPC) computing, producing quantitative applica-
tion properties and requirements.

• A projected exascale workload, derived by statistical
projection of the proxy applications, that provides a
first estimate of a range of quantitative characteristics,
including operation mix, compute and memory intensity,
and memory bandwidth.

• Evaluation of one promising exascale architecture orga-
nization, PUM, indicating 1.4- to 4.2-fold performance
increases, a benefit that may be available for many
applications at a modest (localized) programming effort.

The rest of the paper is organized as follows. In Section II,
we survey related work and background. In Section III,
we analyze proxy application properties. In Section IV, we
extrapolate these results to exascale and evaluate architecture
scenarios. Section V summarizes our current efforts and briefly
discusses future research.

II. BACKGROUND

In this section we survey related work and describe the
application workload, characterization tools, and exascale ar-
chitecture scenarios we consider.

A. Related Work

Many instances of workload characterizations for existing
architectures can be found in the literature. Here we include



only those that aim to characterize multi-application scientific
computing workloads in order to enable performance projec-
tions for potential future architectures. However, none of these
explicitly address exascale workloads.

Marin and Mellor-Crummey [2] introduce a performance
characterization approach that separates the contribution of
application-specific factors from the contribution of archi-
tectural features to overall application performance. Using a
combination of static and dynamic analysis of application
binaries, they create models that can be used for cross-
architecture prediction with accuracy within 20% for the
Sweep3D application.

Carrington et al. [3] characterize performance on different
architectures by convolving application signatures (e.g., based
on memory or communication event traces) with an architec-
ture model. The cost of tracing is the main limiting factor in
this approach. Mills et al. [4] address this by introducing a
compression scheme to capture data access patterns without
storing a full trace.

Some characterization and prediction approaches (e.g., [5])
employ neural networks to make performance predictions.
These approaches typically require a large training set (e.g.,
hundreds or thousands of instances) to produce low-error
predictions. Because the neural networks are constructed with
data collected on existing architectures, they may not be able
to accurately model significantly different architectures.

Analytic models are also used to characterize the behavior
of applications. Heroux et al. [6] introduce performance mod-
els for two of the Mantevo mini-apps (miniFE and miniMD),
including characterization on commodity architectures and
scalability studies.

Guha et al. [7] analyze a collection of 34 programs using
clustering along operation and data types, as well as memory
characteristics. This analysis produces 25 multi-loop clusters
corresponding to 90% of the computations, showing that
relatively few patterns can be identified that span a much
larger and varied collection of computations. This work in
part motivated the study in this paper.

The “memory wall” or von Neumann bottleneck has been
a critical challenge in computer architecture for many years.
Extensive architecture research explores the viability of inte-
grating computing in memory, so-called processor-in-memory
(PIM) systems [8]. Such systems, however, typically suffer
from relatively slow logic and tight power/energy envelopes
implied by Si process integration. The PUM approach is a
symbiotic approach placing computing closer to memory with
die-stack integration, with heterogeneous process technologies.

Notable in the HPC space is the HTMT superconducting
processor project (late 1990s and early 2000s [9]). Here,
most relevant is the intelligent memory processor that was
used in complementary fashion to the HTMT superconducting
processor, an organization similar to our “processor under
memory” scenario. Of course, other technology and applica-
tion differences abound, so direct comparison is difficult.

We use the DOE’s mini-applications, designed as examples
to facilitate codesign of exascale architectures, to create ex-

trapolated exascale workloads. To our knowledge, this work is
the first quantitative analysis of an exascale application work-
load. Many workshops and reports (e.g., [10]) by DOE, the
international exascale community, and the broader scientific
computing community have motivated the need for exascale
systems and potential driving applications, but to date, none
include detailed quantitative analysis for projected exascale
workloads.

B. Proxy applications

We considered ten proxy applications for our initial charac-
terization: three from the Mantevo [6] suite (miniFE, miniMD,
and HPCCG), three Nek5000-based applications [11] (eddy,
vortex and turbChannel), and four PETSc [12] applications.

Mantevo’s miniFE is a proxy for implicit unstructured
finite-element codes, and miniMD is a proxy for classical
molecular dynamics simulation with short-ranged Lennard-
Jones interactions. HPCCG is a simpler proxy for the same
application class but is missing some algorithmic steps.

Nek5000 is a spectral-element computational fluid dynamics
code used in a variety of applications (e.g., nuclear reactor
simulations). The Nek5000-based proxy applications simulate
fluid flow in simple 2-D (eddy) and 3-D geometries (vortex
and turbChannel).

PETSc is a popular parallel numerical library for solving
the linear and nonlinear systems of equations resulting from
discretized PDEs. Three of the PETSc proxy applications
(Ex19, Ex20, and Ex30) represent 2-D and 3-D problems with
different stencil sizes and varying physics complexity and rely
on an iterative Newton-Krylov solver. Ex10 solves a sparse
linear system using ILU-preconditioned GMRES.

C. Characterization tools

The following tools were used in the characterization.
a) Sampling-based analysis: HPCToolkit [13] is a suite

of tools for measuring and analyzing parallel and serial appli-
cation performance, including support for fine-grained (e.g.,
loop-level or single-line) hardware counter measurements,
such as cache misses or floating-point operations. HPCToolkit
includes visualization tools for viewing profile and tracing data
together with the source code.

b) Binary instrumentation: Pin [14] is a dynamic binary
instrumentation tool and a set of application programming
interfaces (APIs) for implementing analysis tools. Pin is ca-
pable of parsing the entire executable as well as all dynam-
ically loaded libraries, sections, functions, and instructions.
Additionally, Pin can gather dynamic data, such as instruction
counts, branch outcomes, register values, memory addresses
accessed, and memory values (however, Pin is a user-level
tool and therefore cannot instrument system-level code).

c) Source code analysis: PBound [15] is a static analysis
tool that computes an upper bound on the performance of
an application. PBound takes as input C/C++ source code
along with a simple architecture description file and generates
parameterized closed-form expressions quantifying different
types of memory accesses and computations.



D. Exascale and “processor under memory”

Scientific computing is driven by the desire to model
computationally complex natural phenomena at increasing
levels of fidelity and precision and has successfully utilized
terascale (e.g., ASCI Red) and petascale (e.g., ORNL’s Jaguar)
resources. The majority of exascale systems research is based
on projections of Moore’s law [16] that reflects an increasingly
poor scaling of semiconductor technologies characterized by
continued increases in transistor density but a decreasing
ability to scale voltage (due to threshold voltage limits) and
decreasing improvements in transistor speed. A number of
exascale machine projections point to an aggregate compute
capacity of an exaflop and total memory capacity of 100
petabytes [1]. These trends present significant challenges for
both hardware and software designers, motivating a recent
international effort by the HPC community to investigate exas-
cale challenges and solutions for hardware/software codesign
and software development [17].

Memory bandwidth is widely recognized as a critical factor
in HPC systems, and the same is anticipated for exascale
systems. Current single-chip systems such as Intel’s MIC
and Nvidia’s Kepler have memory bandwidths of ≈ 100-200
GB/s = 0.2 TB/s, with only slow increases in conventional
DDR/GDDR technologies [18].

Recently, several vendors have proposed the possibility of a
new hardware organization processor-under-memory systems,
that increases memory bandwidth dramatically by placing
logic chips under DRAM die-stacks. Major new industry
consortia and standards have been established to push this
new model [19]. These efforts are similar in spirit to prior
efforts to build processor-in-memory systems but differ in
using heterogeneous semiconductor process technology for the
underlying logic die (fast transistors) and stacked DRAM dies
(low-leakage, slow transistors). PUM-based hybrid memory
cube (HMC) can potentially increase node memory bandwidth
tenfold to 10 TB/s. Motivated by this important potential
architecture change, we examine the impact of PUM scenarios
for exascale using extrapolated exascale application models.

III. CHARACTERIZING APPLICATIONS

We characterize our scientific application workload using
the analytical and empirical tools described in Section II-C.
We focus on three attributes: basic application properties (e.g.,
compute operations, memory operations), number, identity,
and importance of performance-critical regions (hotspots), and
variation of basic application properties across the workload
(e.g., memory bandwidth requirements). All these attributes
are characterized as a function of application input (dataset)
size. We use varied tools for this characterization and compare
the results across the tools in order to demonstrate close align-
ment of results. For consistency and clarity of presentation,
unless otherwise specified, quantitative application results are
based on Pin data. We use only cache miss counts from
HPCToolkit in the results. In Section IV, we leverage this
workload characterization to extrapolate an exascale workload.

A. Testbed and Experimental Methodology

The testbed environment for profiling applications consisted
of a single Ubuntu 10.04.4 Linux box with two quad-core
Intel Xeon E5520 CPUs running at 2.27 GHz with Hyper-
threading enabled, 8 MB L3 cache and 24 GB of DDR3
memory. The compiler used in our experiment is Intel compiler
suite 11.0.081.

As a part of our experimental methodology, we use several
different tools for profiling applications, with a two-fold goal:
(1) comprehensive characterization data for all applications,
and (2) validated result data.

In this paper, we differentiate between instructions and
operations. For example, a machine instruction (e.g., the FMA
floating-point multiply add instruction) may perform multiple
operations (e.g., FMA performs two floating-point operations).

We used the HPCToolkit software to profile the applications
using the hardware counters. We gathered counts of load,
store, floating-point, and branch operations as well as total
instruction counts, cycle counts, and L3 cache misses. In
addition to HPCToolkit, we also used Pin to gather counts
of load, store, floating-point, branch, and integer operations
and counted the number of bytes referenced in the load and
store operations.

Moreover, we used PBound to analyze applications. PBound
was applied to analyze kernels of interest in HPCCG (which
were simplified as required). Further, the expressions (i.e.,
floating-point loads, floating-point stores, floating-point oper-
ations) generated by PBound were manually interpreted and
processed by using knowledge about the application. In its
current form, PBound cannot analyze the entire PETSc library,
the Mantevo proxy applications, or Fortran-based applications
such as Nek5000.

We base the majority of our analysis on operation counts
obtained with Pin. Notably, we use cache miss counts from
HPCToolkit for memory bandwidth analysis. The remainder
hybrid tool data is used for validation purposes only.

B. Characterizing Applications: Results

To expose scaling characteristics, we exercise our applica-
tions with a variety of problem sizes. The proxy applications
are executed with varied problem sizes labeled as classes
A through G. The smallest benchmark is class A, which
takes about one second to run. The runtimes for classes C
and E are approximately 10 and 100 seconds, respectively.
The largest is class G, which takes about 1,000 seconds or
longer. The intermediate-size classes B, D and F are defined
in between the classes A and C, C and E, and E and G,
respectively. The runtime for each larger class is increased
either by enlarging the physical problem size (e.g., for PETSc
Ex20) or by increasing the complexity of the solution (e.g.,
for Nek5000). Not all proxy applications could be configured
for all classes; specifically, PETSc Ex10 cannot be run for
classes B, D, or F. Similarly, the Nek5000 proxy applications
eddy, vortex, and turbChannel could be run only for A and B
classes, C and D classes, and E and F classes, respectively. We
found that the runtimes in class A were too short to produce
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Fig. 1. Operation type vs. application

TABLE I
VALIDATION THROUGH PERFORMANCE COUNTERS: PIN VS. HPCTOOLKIT

VS. PBOUND

Application Total
[CLASS] Tool Loads Stores Branches Instruct.
Mantevo Pin 5.61E+11 1.11E+11 2.52E+11 1.83E+12
miniFE[G] HPCT 5.95E+11 1.13E+11 2.78E+11 1.94E+12
Nek5000 Pin 7.62E+11 6.74E+10 2.75E+10 1.77E+12
turbChan[E] HPCT 7.62E+11 6.75E+10 2.75E+10 1.77E+12
PETSc Pin 1.31E+12 3.34E+11 1.59E+11 2.71E+12
Ex30[G] HPCT 1.33E+12 3.37E+11 1.77E+11 2.79E+12
Mantevo Pin 6.60E+11 7.59E+09 1.29E+11 1.53E+12
HPCCG[G] HPCT 6.60E+11 7.60E+09 1.29E+11 1.52E+12

PBound 6.83E+11 7.60E+09 n/a n/a

interesting results but can serve as a validation test for some of
our tools. Hence, class A is not considered in our subsequent
analysis.

Figure 1 shows the operation-type composition for various
applications (in the G class, except for turbChannel which
belongs to class F). More specifically, we show the percentage
composition of significant operations such as loads, stores,
floating point, integers, and branches against the total number
of operations in the overall application. We note that load op-
erations dominate majority of the PETSc applications (Ex10,
Ex19, Ex20, and Ex30), followed by floating-point operations
and integer operations. Along with PETSc, we selected the
Nek5000 turbChannel application and the Mantevo set of ap-
plications (miniFE, HPCCG, and miniMD) because they show
a diverse operation composition of loads, stores, floating-point
operations, and integers. This data for varied applications and
application sizes (i.e., classes) helps evaluate other application
characteristics and extrapolate the characteristics to future new
machines (see the following sections).

To validate our measurements, we compare the Pin data
with HPCToolkit and PBound results. The HPCToolkit and
PBound tools can count only instructions and hence we use
instructions for validating data from the HPCToolkit, Pin, and
PBound sources. Table I shows the raw counter values for
significant instructions for diverse applications and runtime
classes. As seen from the table, there is negligible difference
between the results obtained from the three tools. Based on
this validation, we deem Pin results to be accurate, and they
form the basis for the rest of our analysis.

Figure 2 shows application operation-type composition with
increasing input sizes (classes) from left to right. For majority
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Fig. 2. Operation type vs. problem size. For each application, class increases
from left to right

of the applications, the composition is stable across the size
classes (PETSc Ex10, PETSc Ex30, Nek5000, miniFE and
HPCCG). However, two applications (PETSc Ex19 and PETSc
Ex20) vary in operation composition; both loads and floating-
point operations increase steadily with the input size at the
expense of the fraction of branches and integer operations.
These applications will become increasingly memory-intensive
and floating-point operation intensive for larger sizes. For
miniMD, however, the fraction of branches increases with
input size, while the fraction of loads and stores decreases. The
Nek5000 applications (vortex and turbChannel) show similar
operation composition, and that composition is constant with
increasing input sizes.

The previous graphs focus on analyzing the operation com-
position in various applications. As a next step, we identify
hotspots, that is, functions where the application conducts
majority of its operations. Hotspots, if present, can provide a
unique opportunity to: (1) improve application performance by
optimizing the hardware that is used by the operations during
these hotspots and, (2) improve application performance by
optimizing the hotspot code itself.

Figure 3(a) shows the top hotspots in the application codes
using the largest class, ranked based on the amount of oper-
ations performed. As seen in the graph, several applications
spent significant amounts of time in a small subset of routines.
We label as a hotspot any routine that has over 15% of
the overall application operation count. Note the diversity in
hotspot composition for the various applications. For appli-
cations such as PETSc Ex19 and Ex20, Mantevo miniMD,
and HPCCG, the majority of the time is spent in a single
routine. For example, in HPCCG, sparse matrix computation
constitutes over 80% of the application runtime. Ex10 has
two hotspots, and miniFE has three, which together constitute
about 80% of the total operation count. In contrast, PETSc
Ex30 has two hotspots, but they constitute less than 50% of
the total operation count.

Figure 3(b) shows the operation-type composition for the
hotspots in the applications. The figure considers the total
number of operations in the hotspots and shows what fraction
was contributed by each operation type. For applications such
as PETSc Ex19 and Ex20, Mantevo miniMD, and HPCCG,
where a single hotspot dominates the application, we see that
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(b) Operation types within identified hotspots
Fig. 3. Application hotspots
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(b) Chip level
Fig. 4. Operations per byte in the top hotspots of each application for various classes. For each application, class increases from left to right.

the trends are similar to those in Figure 2. We note that two
of the three hotspots of miniFE are integer intensive, whereas
one hotspot is floating-point intensive.

In Figure 4 we show the compute intensity of the top
hotspots in the applications for different classes. There is
one bar per class per application, and the bars are grouped
by application. Each bar represents the ratio of operations to
bytes transferred at the core and chip levels. In Figure 4(a) we
show bytes transferred at the core level by counting the bytes
transferred in each load or store operation, while in Figure 4(b)
we show bytes transferred at the chip level by counting the
bytes transferred due to L3 cache misses. Counting transfers at
the core level gives an upper bound on memory traffic, while
counting transfers at the chip level counts the actual traffic
generated on the specific architecture used in this evaluation.
As expected, the operations-per-byte ratio at the chip level
increases significantly over the ratio at the core level because
most of the traffic is handled by the cache. For the most
part, the operations-per-byte ratio at the core level is relatively
constant for different classes within each application. At the
chip level, however, we see that the smaller problem sizes
have larger operations-per-byte ratios, most likely because the
data fits better in the cache. In Figure 4(a), the operations-
per-byte ratio for miniMD increases with problem size. The
reason is that for smaller problem sizes there are two hotspots
with different operations-per-byte ratios, and as the problem
size increases, one of the hotspots increasingly dominates. We
see a similar increase in operations-per-byte ratio for miniMD
in Figure 4(b).

In Figure 5, we present the measured memory bandwidth
consumed in the top hotspots of the proxy applications. We
see that Ex10, Ex30 and HPCCG all achieved over 10 GB/s
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Fig. 5. Memory bandwidth for top hotspots, class increases left to right.

indicating they are already bandwidth limited, will likely
require even more bandwidth at larger sizes. Ex20 shows
an increase in bandwidth utilization as the problem size
increases indicating that it may eventually become memory
bound at larger problem sizes. The remaining applications
show relatively constant bandwidth utilization.

IV. EXASCALE INSIGHTS

A. Extrapolating an Exascale Workload

Using the characterization data, we create an extrapolative
model that projects key characteristics of proxy applications
to a range of machine and application configurations. We
perform statistical validation of these models in order to
ensure their accuracy, and we then use them to extrapolate an
exascale workload. This exascale workload projection aims
to understand exascale application requirements - compute
and memory. And, then to use these requirements to assess
potential exaflop machines [1]. We focus on two scenarios
among the wide range of potential exascale architectural
features.



TABLE II
EXASCALE WORKLOAD PROJECTION MODELS

Appl. Exascale Projection Models, where N = n1 · n2 · n3

and ci, i ∈ [1, 5] are constants
Ex19 f(n1, n2, n3) = c1 + c2 · (N · n1)
Ex20 f(n1, n2, n3) = c1 + c2 · (n1 · n2) + c3 · (n1 · n2)2

+ c4 · n2
3 + c5 · n3

3
Ex30 f(n1, n2, n3) = c1 + c2 ·N · (n1 · n2)
miniMD f(n1, n2, n3) = c1 + c2 ·N + c3 ·N2

miniFE
HPCCG f(n1, n2, n3) = c1 + c2 ·N
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Fig. 6. Projection for HPCCG

Specifically, our model projects the properties of each
application as a whole to exascale problem sizes, producing
estimates of the number of instructions, loads, stores, branches,
and floating-point operations to quantify the instruction mix
and resulting performance requirements. We use the data
obtained from the Pin tool to build the empirical models. We
model the metrics collected from six proxy applications, Ex19,
Ex20, Ex30, miniFE, miniMD, and HPCCG, because they all
have results for classes B-G.

We consider linear, quadratic, and cubic models. To evaluate
model accuracy, we adopt the leave-one-out cross-validation
technique. In this approach, in order to predict a metric for
an input size s ∈ {B, C, D, E, F, G} , all sizes except
s are used for training. This process is repeated such that
each input size is used once as the prediction input size. We
compute the coefficient of determination (R2 goodness of fit)
between the predicted values and the original values on all
the input sizes. For each application and for each metric, a
model with minimum R squared value is selected to project
the metrics for large input sizes. Table II shows the model
type that best matched each application (for all the metrics).
The distinct model for each metric and application pair has
a unique derived set of coefficients. In total, we obtain 48
models (8 metrics × 6 applications).

For each application, we project the metrics for a geometric
series of input sizes, 3×G, 10×G, 30×G, 100×G,. . .,6000×G.
Figure 6 shows the plots of the projection results for HPCCG.
We found a similar cubic growth trend on all applications.
While paper limits preclude full presentation of the model
validation, we found high R2 values between 0.96 and 0.98.

B. Projecting Exascale Workloads

First we classify the applications based on compute inten-
sity. For this purpose, we estimate the time required to run

TABLE III
MEMORY CONFIGURATION MODELS

Application Memory Configuration Models, where CS = cache size,
N = n1 · n2 · n3, and ci, i ∈ [1, 5] are constants

Ex19 f(n1, n2, n3) = CS + c1 + c2 ·N
Ex20 f(n1, n2, n3) = CS + c1

+ c2 · (n1 · n2) + c3 · (n1 · n2)2

+ c4 · n2
3 + c5 · n3

3
miniFE,miniMD
Ex30, HPCCG f(n1, n2, n3) = CS + c1 + c2 ·N + c3 ·N2
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Fig. 8. HPCCG projection for memory usage

the exascale workloads on exaflop machines. This is given by
the ratio of number of instructions in the exascale workloads
for each application and exa-ops (1018) and is shown in
Figure 7(a). Sorting the applications by runtime, we observe
that the most computationally intensive application is miniMD,
followed by Ex20, Ex30, Ex19, miniFE, and HPCCG.

Second, we classify the applications based on memory
intensity. We used Valgrind’s Massif tool to collect the total
memory usage. As described in Section IV-A, we model the
memory usage for each application as a function of workload
size, and we project the memory usage for exascale workload.
The models are shown in Table IV. Exemplary results on
HPCCG are shown in Figure 8. Total memory requirements
of exascale workloads for different applications are shown
in Figure 7(b). The most memory intensive application is
HPCCG, followed by miniFE, Ex20, miniMD, Ex19, and
Ex30.

Using Figures 7(a) and 7(b), we project the feasible appli-
cation sizes on an exascale system based on realistic runtimes
(24 hours at exaflop sustained rate) and memory capacity (100
PB). Because of different scaling properties, the applications
separate as shown in Table V with three (miniMD, Ex20,
and Ex30) compute-limited and three (Ex19, minFE, HPCCG)
memory-capacity limited. The memory capacity constraints
are extreme for miniFE and HPCCG, as the 100 PB constraints
them to runs of approximately 30 exa-ops, around thirty
seconds if high speedups can be achieved. Ex19 is also
memory capacity limited, but at a run size approximately 100
times larger than miniFE and HPCCG, less than one hour at
high speedups.

C. Exascale Workload Requirements and Evaluating PUM

We characterize the projected exascale workload in Figures
9 and 5. These characteristics provide an empirical basis for
shaping future architectures. Exascale workload instructions
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Fig. 7. Projected exascale application requirements on an exaflop machine.

TABLE IV
EXASCALE WORKLOAD: MEMORY SIZE PROJECTION MODELS

Appl. Exascale Projection Models, where N = n1 · n2 · n3,
and c1, c2, c3, and c4 are constants

Ex19,Ex30 f(n1, n2, n3) = c1 + c2 ·N
+ c3 · (n1 · n2) + c4 · n1

Ex20 f(n1, n2, n3) = c1 + c2 · (n1 · n2) + c3 · (n1 · n2)2

miniFE,miniMD
HPCCG f(n1, n2, n3) = c1 + c2 ·N

TABLE V
SCALING LIMITS - RUNTIME (EXAOP) AND MEMORY (100 PB)

Appl Exascale limit Critical Limit Feasible size
24 hrs 100PB

Ex19 5000G 1000G Memory 1000G
Ex20 92G 500G Compute 92G
Ex30 130G 1500G Compute 130G
miniMD 41G 600G Compute 41G
miniFE 5000G 250G Memory 250G
HPCCG 5000G 250G Memory 250G

mixes, compared with the small-dataset data shown in Fig-
ures 1 and 2, exhibit several interesting characteristics. The
floating-point fraction is slightly higher across the board (as
overheads reduce) and ranges from 20% to as much as 40% for
miniMD. The memory fraction increases steadily on the load
side for several applications (Ex19, Ex20), reaching over 40%.
This increase appears to correspond directly to a reduction in
integer (presumably control and indexing overhead). There is
no corresponding increase in the store fraction; and in fact,
for several applications, notably miniMD, but also Ex20 and
Ex19 to a lesser degree, the store fraction decreases steadily.

Using the projected feasible dataset sizes for each scientific
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Fig. 11. Two exascale architecture scenarios.

application, we estimate exascale memory bandwidth require-
ments. Using exascale problem sizes, we estimate runtime as
the ratio of total number of operations and exaops, assuming
good speedup. The off-chip memory bandwidth required is
the cache misses per second times block size (64 bytes).
Results are shown in Figure 10. The imposition of exa-scaling
constraints produces results different from what one might
expect, given the small-scale studies in Figure 5. For example,
Ex19, miniFE, and miniMD do not appear to be memory
bandwidth limited at small scale, but become memory-limited
at exascale because of data size increases. The rapid growth
trends of Ex20 does not make it significantly more memory
bandwidth limited than are other applications at exascale.

Subsequently, we used the memory bandwidth projections to

TABLE VI
TWO EXASCALE ARCHITECTURE SCENARIOS (EACH IS 100K NODES)

Node CPU CPU CPU PUM PUM
Size Compute Mem MemBW Compute MemBW
Trad. 10 Teraop 100 GB 1 TB/s n.a. n.a.
Trad. +
PUM 10 Teraop 100 GB 1 TB/s 1 Teraop 10 TB/s



TABLE VII
TRADITIONAL AND TRADITIONAL+PUM PERFORMANCE AT EXASCALE

App Scaling Limit PUM Key Limit Programming
Exascale Improvement PUM Effort

Ex19 Memory 4.26 Compute Low
Ex20 Compute 2.49 Compute Low
Ex30 Compute 2.45 Compute High
miniMD Compute 1.48 Compute Low

evaluate the potential benefits of radical new architecture orga-
nizations such as “processor-under-memory”. We considered
two types of exascale node architecture varying processor-
memory interconnection, as captured in Table VI and Figure
11. The first is a traditional processor and memory, with
compute rate on the CPU able to achieve 10 TF thanks
to advanced integration, but bandwidth limited to 1 TB/s
(Figure 11(a)). The second adds a processor-under-memory
(Figure 11(b)), which by virtue of its broad, close physical
connection to a stacked set of memory dies [19] can achieve a
tenfold greater memory bandwidth, or 10 TB/s. With mobile
wide I/O, a single DRAM die can deliver upwards of 13 GB/s
(2015) with 2x energy efficiency advantage. HMC, even more
aggressive, can achieve even 10x further bandwidth increases
through the use of larger numbers of thru-silicon-vias.

Our application studies show that exascale architectures
are memory bandwidth limited, despite projected increases
(< 200 GB/s to 1 TB/s). We estimate the potential runtime
reduction increased PUM memory bandwidth for exascale
problem sizes, by dividing the total memory traffic by the
increased bandwidth. Table VII shows potential PUM benefits
range from 1.48x to 4.26x. Note that we did not include
miniFE and HPCCG in the final analysis since the runtime,
which is limited by memory requirement, is too short (less
than a minute) to be significant.

Of course, the correct partition and binding of computation
to the processor and PUM are critical to achieving high
performance. The cost of data movement between primary
core and PUM is also a critical factor. Looking the breakdown
for application hotspots, we see that the programming effort to
exploit PUM may be manageable for many key applications.
Ex19, Ex20, miniMD, and HPCCG all exhibited only a single
hotspot, suggesting that partition won’t be difficult; in fact the
CPU may not be heavily exploited. The Ex10 and miniFE
codes have multiple hotspots, requiring greater programming
effort, and the Ex30 example represents high difficulty.

V. SUMMARY AND FUTURE WORK

We have created a quantitative model of an exascale work-
load and applied it to evaluate a new architectural approach.
However, there remains much opportunity to increase our
insight into the likely application properties and architectural
opportunities for exascale systems. For example, we plan
deeper analysis of the characterization data, and perhaps cre-
ation of richer statistical models of the exascale workloads that
can be used for architecture design space exploration. Here we
have considered only one architectural feature, but many other

system architecture choices remain including node granularity,
interconnect structure, or accelerator structure, which could be
addressed by this methodology.
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