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Abstract

Performance results are presented for a multi-threaded version of the
OpenMC Monte Carlo neutronics code using OpenMP in the context of
nuclear reactor criticality calculations. Our main interest is production
computing, and thus we limit our approach to threading strategies that
both require reasonable levels of development effort and preserve the code
features necessary for robust application to real-world reactor problems.
Several approaches are developed and the results compared on several multi-
core platforms using a popular reactor physics benchmark. Our main focus
is distilling a broad range of performance studies into a simple, consistent
picture of the performance characteristics of reactor Monte Carlo algorithms
on current multi-core architectures. Additionally, we speculate on the source
of the observed scaling bottlenecks in terms of the exhaustion of shared
hardware resources, and we suggest programming approaches and strategies
to help overcome bottlenecks.

Keywords: OpenMC OpenMP reactor analysis multi-core shared
memory Monte Carlo

1. Introduction

Monte Carlo (MC) neutral particle transport methods are critical for
a broad range of scientific and engineering domains. Important exam-
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ples include the design, certification, and operation of nuclear reactors
(Azmy et al., 2010), nuclear fusion (Heifetz et al., 1982), radiation shield-
ing, weapons design, medical dosimetry (Rogers, 2006), and cloud radiation
(O’Hirok and Gautier, 1998). MC methods have a long history of success-
fully adapting to leadership-class computing architectures, including excel-
lent scalability on distributed memory platforms (Romano et al., 2011),
innovative approaches for efficient execution on vector machines (Brown
and Martin, 1984), and more recently proof-of-principle calculations for
stripped-down codes on GPGPUs (van Heerden, 2012).

For prototypical message-passing-based, distributed memory parallel ma-
chines built on scalar architectures, MC algorithms are typically formulated
by using the classical history method, where particles are followed one by
one from birth to death. Since particles do not mutually interact and load
balancing penalties are small, for many classes of applications this approach
has shown excellent performance, with current benchmarks achieving near
ideal scalability on up to 100,000 processing elements (Romano and Forget,
2013).1

Nonetheless, time to solution is still a critical bottleneck in applying
Monte Carlo robustly to many real world problems. Thus, for the fore-
seeable future research will need to focus on techniques and programming
strategies to further reduce run time for a desired level of convergence. By
the same token, multi-threaded methods will need to be developed and
improved in order to achieve good performance even for smaller problems
on commodity computing platforms. The reason is that both current and
near-future desktop and supercomputing systems will increasingly require
applications to expose greater levels of fine-grained parallelism in order to
achieve good performance. Indeed, in the near future hundreds of cores per
node are expected to be commonplace, even for commercial off-the-shelf
technologies. Making use of multi- and many-core hardware will involve
identifying new avenues for parallelism and scaling to far greater overall
levels of concurrency than current practice.

However, even where algorithmic parallelism can be identified and ex-
posed, it is far from guaranteed that speedups will approach ideal levels

IThough not the focus of the current analysis, we mention that this success depends
to a large degree on the node-by-node replication of data structures that for reactor
applications are too large to fit in node memory (Hoogenboom et al., 2011). Therefore,
significant work remains on efficient data decomposition strategies for realistic reactor
benchmarks.



(Wook and Rudolf Eigenmann, 2000). Multi-core memory hierarchies are
far more complex and less scalable than are typical distributed memory
models. Memory hierarchies often include cache coherency software for
distributed L1-cache, including significant penalties for false sharing on
cache lines, shared higher levels of cache, and a shared bus to main mem-
ory. Nonuniform memory architectures (NUMA) can even further compli-
cate performance, especially when application-friendly programming mod-
els (e.g., OpenMP) have no mechanism to express data locality. Thus, even
where a high degree of algorithmic parallelism can be formulated, one often
must carefully construct data structures and manipulate data layouts so as
to circumvent potential bottlenecks and maximize the likelihood of achiev-
ing good performance in practice (see, e.g., (Wook and Rudolf Eigenmann,
2000)).

While some of the most popular community MC codes (e.g., (Sutton
et al., 2007; X-5 Monte Carlo team, 2003; Leppénen, 2007)) have experi-
mented with on-node threading capability, and some anecdotal knowledge
on performance is shared spontaneously within the community, we are not
aware of any published work that attempts to systematically elucidate the
key issues and test the performance of MC methods on multi-core architec-
tures. In this work we present code modifications and an associated set of
numerical experiments designed to take a first step in this direction.

Several approaches can be taken to carrying out such a study, on the
one extreme using more sophisticated coding strategies and deeper analy-
ses on highly stripped down "kernel" MC applications, and on the other
hand migrating a full-featured production code in the context of real-world
benchmark calculations. Each approach has its merits and will contribute
in part to the complex overall picture of multi-core performance of MC
methods. In the present work we follow the latter approach, adopting the
production OpenMC (Romano and Forget, 2013) code together with the
OpenMP library to thread the critical areas of the application and test on
a modified version of the popular Hoogenboom-Martin (Hoogenboom et al.,
2011) reactor benchmark. We emphasize that the analysis done here is thus
of greatest relevance to nuclear reactor analysis specifically targeting clas-
sical calculations for the design and optimization of reactor cores. While
many of the conclusions are relevant to a broader class of problems, reactor
core analysis has unique requirements that result in performance profiles in
some ways distinct from other application domains. Details are described
in the following section.



As a programming model the directive-based OpenMP threading frame-
work has limited semantics for parallelism, and its performance can be
highly sensitive to compiler implementations; but it allows easy incremental
parallelism that greatly simplifies the migration of large production codes.
Furthermore, we argue that the parallelism expressed is extremely simple
and should be easily analyzable by any reasonably efficient OpenMP com-
piler, yielding code not too different from what is possible with high-level,
intrusive threading libraries.

2. Monte Carlo algorithm

At a high level and ignoring details of the complex treatment of physics
and geometry, the MC transport algorithm can be described simply. Let
P =R3xRTxS?xZ7" denote the set of particles (neutrons) uniquely defined
by a physical-space position z € R3, energy & € Rt | direction Q € S?
(where S™ denotes the n-sphere), and particle id I € Z*. Furthermore, let
B C P denote a countable subset of particles referred to as a neutron batch
of size |B| = n. The steady-state fission source algorithm then iterates
over batches of particles (batch loop) and tracks them individually (particle
loop) through a sequence of collisions from birth to death (absorption).
Some absorption events will result in nuclear fission and the subsequent
release of additional particles, which then populate the new batch at the
next stage of the algorithm. Our primary focus in this analysis is steady
state calculations, in which case the number of particles is rescaled so that
no particles are created or destroyed at each iteration of the batch loop. This
is the common strategy for handling eigenvalue problems in reactor analysis,
where the ratio of particles between batch iterations gives an estimate of
the growth rate (eigenvalue) and the problem is solved for the steady state
solution (the true eigenvalue is scaled to unity). This process is continued
until a reasonable convergence criterion is met (either on the eigenvalue or
spatial distribution, a detail that is not important for the present analysis).
A simple pseudocode description of this algorithm is given in Algorithm
1, where v represents the number of new particles generated after a given
fission event and the rescale operation denotes the resampling of particles
so that no net particles are created or destroyed between batch iterations
(to simulate steady state behavior).

As shown in Algorithm 1, arguably the most natural approach to thread-
ing is to divide particle histories among threads; that is, each thread is re-
sponsible for carrying out the tracking of a subset of particles in a batch.



Algorithm 1 Coarse-grained threading approach
initialize B
while not converged do
#pragma omp parallel for
for p € B do
repeat
move(p)
until absorbed(p)
if fissioned(p) then
create v new particles {p1,p2, - py}
Bnemt < Bnemt U {p17p27 o pu}
end if
end for
B « rescale(Byext)
test B, Byest for convergence
end while

We refer to this strategy in the present context as coarse-grained threading.
Coarse-grained threading mimics the typical strategy for carrying out dis-
tributed memory parallelism, where the particles in a batch are distributed
evenly among MPI processes (nodes) and key data structures, such as ge-
ometry, tallies, material and cross section data, are replicated across nodes.
On a hybrid shared /distributed memory system (i.e., a cluster of multi- or
many-core nodes) this approach would simply subdivide the particles by
node in the regular manner and then within each node further subdivide
by thread. In the former case the key data structures either need to be
replicated, the typical approach, or decomposed and accessed by explicit
message passing. The latter approach is not typical because of the lack
of locality in the access patterns. In the shared memory case decomposi-
tion is not necessary, but various forms of contention in the shared memory
hierarchy may potentially erode scalability.

In Algorithm 1 the move(p) method advances a particle probabilistically
through a series of collisions until absorption and possible fission. In a
reactor core this includes potentially millions of material regions (e.g., when
doing depletion analysis) with hundreds of nuclides. Let J € Z* denote the
set of all nuclides and M € Z* denote the set of all material regions in
the reactor core (identified by some integer tag). Let the atomic density
function f : M x J — R denote the atomic density of a given nuclide in



a given material region, and let g : R® — Z* denote the material lookup
function; in other words, g selects the material region associated with a
given particle position z,, € R3. Define a microscopic cross section table for
nuclide j € J as an element of (R*)V*0) where NE(j) denotes the number
of tabulated cross section energy levels for nuclide j. Then, Algorithm 2
represents the calculation of the macroscopic cross section, X (FE), used to
advance the particle in the move() routine.

Algorithm 2 Fine-grained threading approach
m e g(zy)
#pragma omp parallel for
for j € J do
X(E) « X(E) U f(m, j)a(E)
end for

In Algorithm 2, the nuclide loop at each stage in the tracking of a par-
ticle actually involves not one but multiple reaction types (depending on
specifics of the application). For typical reactor applications with hundreds
of nuclides and several reaction types, we find that this nuclide loop typically
consumes 80-85% of the total simulation execution time. Thus, an alterna-
tive approach, which we refer to as fine-grained threading in the current con-
text, involves threading the nuclide search as shown in Algorithm 2. Since
the maximum number of nuclides in a region is typically several hundred,
this strategy is ultimately limited to relatively modest core counts. When
considering many-core architectures, however, we may choose to implement
a hybrid on-node approach that combines both the coarse and fine-grained
strategies. Thus we still consider this a worthwhile approach to pursue for
both the near-term and, for example, exascale computing platforms.

3. Approach to multi-threading OpenMC

OpenMC is an open source Monte Carlo neutron transport code recently
developed at MIT and capable of performing calculations on arbitrary 3D
geometries with continuous-energy cross-sections. It was written with a
focus on scalable algorithms for leadership-class supercomputers and has
demonstrated weak scaling up to hundreds of thousands of processors on
the Blue Gene/P “Intrepid” of Argonne National Laboratory and the Jaguar
supercomputer at Oak Ridge National Laboratory (Romano and Forget,
2013). The codebase is written in Fortran 2008 with parallelism provided



via MPI. For this study, the OpenMC code was modified by using OpenMP
directives to implement the coarse-grained, fine-grained, and hybrid coarse-
fine on-node threading strategies described in the previous section. Since
OpenMC is a relatively mature code with a relatively high degree of com-
plexity aimed at doing real reactor benchmark problems (e.g., the implemen-
tations of physics interactions, geometry, and tally filters), we chose to use a
directive-based threading approach as a first step to minimize code modifi-
cations. An overview of the key code changes to implement coarse-grained,
fine-grained, and hybrid threading is given below. When completed, the
modified version of OpenMC was run through a comprehensive test suite
to verify correctness.

3.1. Coarse-grained threading

The key aspects of coarse-grained threading include (1) threading the
main particle loop using the omp parallel for construct — note that the
schedule setting (dynamic, static, or guided) should have some effect on
load imbalances among threads, a topic that is discussed in the following
section; (2) marking key global mutable data structures as threadprivate
— specifically the microscopic cross section cache, the macroscopic cross
section cache?; and the fission bank; and (3) marking all tally increments
as atomic operations during the tracking of a particle. The most common
operation, cross-section data table lookups, is a read-only operation and
thus inherently thread safe. The cross section arrays are therefore kept
in shared memory. In addition, a moderate number of code changes were
required in order to overcome shortcomings in the interaction of OpenMP
with advanced Fortran constructs, particularly Fortran pointers.

The microscopic and macroscopic cross section arrays, which store re-
spectively the per nuclide and total cross section value for a given collision,
are updated per particle per interaction and occupy small amounts of mem-
ory. Choosing to make them threadprivate is a straightforward decision
because it eliminates the possibility of cache line conflicts (real or false)
at negligible additional storage cost. The fission bank is more subtle. It
is updated continuously during the tracking of a particle and records all
necessary information each time a fission event occurs. Since it is updated
sequentially each time a thread samples a fission event, keeping it in global

2Here, cache refers to a temporary copy associated with a single interaction of an
individual particle. This is a convenient coding strategy since cross section values need
to be interpolated from large lookup tables on a per interaction basis



memory requires synchronizing access. Since the scheduling of threads is
non-deterministic, however such an approach will in general yield different
orderings for different executions (even with identical random number seed).
In order to maintain strict (bitwise) reproducibility of results (a common
requirement with reactor licensing authorities), it was necessary instead to
implement threadprivate versions of the fission bank and explicitly synchro-
nize each thread’s local bank into a global fission bank at the end of each
batch. This approach obviously increases the memory footprint but was
observed to have little impact on performance.

The specific choice of tally events and filters depends to a large extent on
the particular calculation. For depletion analysis, which is one of the most
critical applications to the reactor designer, we have estimated elsewhere an
aggregate 1 TB is necessary for robust reactor analyses (Smith, 2003). For
other reactor (and nonreactor) applications the requirements may be much
more modest. In all cases, though, the tallies require simply incrementing
counters for the range of events of interest. One then has the choice of
creating local counters and aggregating at the end of each batch, or keeping
global counters and synchronizing with atomic annotations of the counter
increments. After experimenting with both and seeing negligible impact
on performance (tally increments are a tiny fraction of overall performance
time), we have adopted the latter approach for simplicity of code structure.

3.2. Fine-grained threading

The fine grained threading approach as described in Algorithm 2 is im-
plemented in a straightforward manner by using a parallel for construct
with a reduction operation on the nuclide loop. Since this loop is called
with extremely high frequency (once per collision per particle), one early
observation is that the overhead in creating the parallel region and carrying
out the reduction nullifies any performance gain when the particle under-
goes an interaction in the non-fuel regions of the reactor (i.e. which contain
relatively few isotopes and in which the number of loop iterations is there-
fore small). Thus, using the OpenMP if clause, the threaded region was
limited to cases where the interaction took place within the fuel. We point
out that this still occupies a significant fraction of the total computational
time for a broad class of applications. Further details are discussed below.

3.3. Hybrid threading

Hybrid threading was considerably more challenging to implement in the
OpenMP framework. While OpenMP version 3 contains support for nested



threaded regions, the semantics are extremely limited and make it awkward
to express the required relationships between the variables, particularly with
advanced Fortran constructs.

The key for OpenMC threading was creating threadprivate variables at
nesting level 1 (coarse-grained threading across particles) that behaved as
global variables at nesting level 2 — variables that were private to each
particle but global for all nuclides at each particle interaction. When global
variables are used and thus marked as threadprivate, they are considered
threadprivate at all nesting levels and cannot be marked with a shared
construct in the nested region. To overcome this shortcoming required non-
trivial internal code changes.

One further issue involves the lack of flexibility within the nested threaded
region. Ideally one would like to allow threads to be assigned to the region
dynamically in order to accelerate particle tracking when particles were in-
teracting with fuel regions and, rather than remain idle, carry out particle
tracking when they were otherwise free. Such a dynamic threadpool model
was not possible to express in OpenMP and thus limited the possible avail-
able performance benefit of this approach.

4. Numerical experiments

A broad set of numerical experiments were conducted. Of these, we re-
port on a small subset that aim to give a consistent picture of the key scaling
issues. Since our interest is production computing for reactor applications,
we do not focus on the details of architecture-specific optimizations. While
a number of tuning strategies were explored on particular platforms, for the
present analysis we take a general view of modern multi-core architectures
and aim to identify potential scalability and the source of any common
bottlenecks that might erode performance.

All our numerical experiments involve the Hoogenboom-Martin (H-M)
(Hoogenboom et al., 2011) reactor criticality benchmark. We run H-M in
two different configurations generally representative of early and late phases
of a depletion cycle —what we refer to as small H-M, with 60 nuclides in
the fuel region, and large H-M, with 360 nuclides in the fuel region. For
all experiments the relevant unit of measure is the tracking rate, expressed
as the number of particles tracked per unit computational time. For each
experiment we use 10 batches, with 50,000 total particles per batch. These
figures were selected by trial and error to ensure that the batch sizes were
large and that the results were not influenced by initialization time; adding



Table 1: Summary of computing platforms used in the study

Computer Name Challenger Breadboard Knight Chimera
Institution ANL ANL ANL UDel
Processor IBM PowerPC 450 | Intel Xeon X5550 | Intel Xeon X5680 | AMD Opteron 6164HE

Clock speed 850 MHz 2.66 GHz 3.3 GHz 1.7 GHz
Cores/CPU 4 4 6 12
CPUs/node 1 2 4 4
Cores/node 4 8 24 48
Memory/node 2GB 16 GB 20 GB 64 GB
L1 cache 32 KB private 256 KB private 32 KB private 128 KB private
L2 cache 2 KB private 1 MB private 256 KB private 512 KB private
L3 cache 8 MB shared 8 MB shared 12 MB shared 12 MB shared

additional particles or batches does not change the computation rate or any
of the other conclusions of this analysis. While we ran a large range of
tally configurations, the multi-core scaling impact of additional tallies were
negligible. Thus, with no effect on our main conclusions, the results reported
here use inactive batches, where minimal tally information is computed and
the goal is to converge the source distribution. Again, the relatively low cost
of tallies is a consequence of the dominance of the macroscopic cross section
loop, a characteristic of steady state reactor physics calculations. For other
classes of applications, tally rates may represent a nontrivial fraction of
overall performance, and the conclusions drawn may differ slightly.

4.1. Platforms

We tested the benchmarks on four platforms: the University of Delaware’s
Chimera cluster, Argonne National Laboratory’s Blue Gene/P supercom-
puter, Argonnes’s Knight cluster, and Argonne’s heterogeneous platform
Breadboard. In each case, OpenMC was deployed on a single node and
used a variable number of cores with one OpenMP thread per core. Each
node of the Chimera cluster consists of 4 AMD Opteron 12-core processors
which share 64 GB of RAM (4 GB DIMMS). A single compute card of the
Blue Gene/P Challenger system contains 4 PowerPC 850 MHz cores and 2
GB of memory. The login node of Knight, on which the performance tests
were completed, is supported by 4 Intel 6-core Xeon X5680 processors. For
the Breadboard cluster, a node consists of 2 Intel Xeon 4-core 2.66 GHz
processors that share 16 GB of RAM. The technical specifications of each
platform are summarized in Table 1.




4.2. Preliminary tests

Before studying scalability and relative execution times, we carried out a
preliminary set of studies aimed at baselining our performance expectations.
The main goal was to identify a priori any scalability bottlenecks so that we
could have a basis for determining what constitutes "good" performance. In
the following section each potential scalability bottleneck is identified and
discussed in the context of these preliminary results.

1. Amdahl’s Law

A strong scaling upper bound is set by the fraction of time spent in

the threaded region. The well known Amdahl’s law points out that

an algorithm is limited to a speedup proportional to ﬁ, where P is
the percentage of time in the execution of the parallel portion of the
algorithm. Traditional supercomputers circumvent this problem by
using the memory added with each processing element to increase the
problem size in proportion to the degree of parallelization(Gustafson,
1988), but for the multi-core shared memory nodes in this study aggre-
gate on-node memory does not increase with the number of threads.
Thus, we must evaluate the fraction of time spent in the coarse-grained

loop described in Section 1.

Over a range of simulation and parameter values, we find that the
particle tracking loop accounts for 98-99% of the total execution time.
Thus, at least for the thread counts typical on modern multi-core ar-
chitectures, coarse grained threading performance should not be lim-
ited by Amdahl’s law. We note, however, that in the near-future
many-core platforms are expected to change this scenario and require
further parallel treatment of the outer-loop region.

For fine-grained threading the situation is less ideal. We find that
for the large H-M about 80-85% of the total execution time is spent in
the threaded region, but only about 50-60% for the small H-M bench-
mark. Thus, we expect diminishing returns beyond a relatively small
number of threads. We nonetheless study this approach given the
extreme simplicity of implementing it, its potential for quick payoff
on small core counts, and its potential usefulness in a hybrid approach.

2. Thread overhead
In a SIMD model the overhead cost of entering and exiting parallel



regions can potentially compete with the speedup gained from par-
allelization. We tested this in depth for the coarse-grained approach
and found that even for much smaller benchmark problems than the
current ones, the price of thread creation is negligible. This result
is not a surprise given that we leave and enter the coarse region only
after 50,000 particles are tracked, which at the minimum takes several
seconds of computation time. Thread overheads are typically reported
in tens of nanoseconds and are thus expected to have no detrimental
impact on performance in the present case.

For the fine-grained approach, the threaded region is entered once
per particle per interaction (or change in material region). On aver-
age this amounts to approximately forty times the frequency of the
coarse-grained approach but is still found to be less than 1% penalty
for the thread counts of interest. Thus, we discount thread overhead
as a potential obstacle to achieving multi-core scalability.

. Load balancing

Uneven work distributions among threads in the absence of load re-
balancing is another potential obstacle to achieving good on-node
scaling. Intuitively, given an initial equal distribution of thousands
of particles per thread, we might expect statistical fluctuations to
be smoothed out, resulting in roughly equal total tracking time per
thread. This, in fact, is the major advantage of particle-based over
physical-space domain decomposition approaches (Siegel et al., 2012),
where load imbalances can significantly erode performance on fine spa-
tial grids.

We tested this hypothesis for both the coarse- and fine-grained ap-
proaches. In the former case, we found that the maximum load im-
balance for all of the tested configurations were 5-10% of the total
tracking time. We were able to remove this penalty almost entirely by
using schedule(dynamic) construct in OpenMP, with an empirically
determined optimal value of 5. All the tests reported here are based
on this form of dynamic scheduling.

For fine-grained threading, it is not surprising that load imbalance
penalties were observed in all cases to be less than 2%. This follows



from the fact that identical operations are being performed for each
sub-batch of nuclides, the only imbalance occurring when the nuclide
count is not divisible by the number of threads.

. Synchronized code in threaded region

Atomic operations in the coarse-grained threaded region are required
to increment tally counters for a broad range of events. These incre-
ment operations overall represent only a very small fraction (< 1%) of
the total execution time, but their impact on overall performance still
needs to be measured directly. To do so, we directly compared tim-
ing results both without synchronization and with all tally operations
removed. Doing so allowed us to verify that the total performance
impact at worse was in the range of 1-2%. Thus we discount this as
a major source of performance loss. In the fine-grained case, all write
operations are to thread local variables, and synchronization is not
required.

. Scalability of memory subsystem

Although aspects of our testbed multi-core architectures vary signifi-
cantly in their details, they are all characterized by bottlenecks in their
memory subsystems that are not present on typical distributed mem-
ory platforms. Details are discussed in the following section, but our
main areas of concern are threefold: since all systems have distributed
L1 caches, both real and false sharing of cache lines can potentially
cause significant bottlenecks to scalability; since a significant amount
of time is spent in random data lookup of large cross-section tables,
contention in higher-level caches, which are shared at some level on
all our test architectures, becomes a potential scalability bottleneck;
and since the main memory bus is also shared (in different ways), we
must explore the possibility of exhausting bandwidth as we increase
the number of threads. None of these issues is simple to diagnose ro-
bustly, but we cannot rule them out as possible sources of performance
degradation compared with for example, distributed memory applica-
tions, whose extreme scalability has been demonstrated on a range of
applications (Balaji et al., 2009). This topic is discussed further in
the next section.



4.8. Observed timings

4.3.1. Coarse-grained threading

Using the above preliminary analysis as a basis of interpretation, we
measure the performance of the two benchmark problems on our target ar-
chitectures. We first present a basic birds-eye overview of results on the
target platforms before focusing on the Xeon platform in more depth in the
following section. The results presented are pared down from a broad range
of numerical experiments covering a wide range of parameters, including
different compilers and compiler versions, different compiler optimization
options, different cross section lookup techniques (creating a unionized en-
ergy grid vs. binary searches for each interaction), and using a range of
techniques to ensure minimal chance of real and false sharing of L1 cache
lines. The presented results are not necessarily chosen to portray best-case
scalability numbers but rather are typical across our wide range of tests.
Indeed, while performance does fluctuate across machines, compilers, and
other test parameters, roughly similar results are surprisingly persistent
(and consistent with qualitative comparisons in the community). Depar-
tures from these “typical” results and their underlying causes are discussed
in the following section.

Figures 1 and 2 each show the tracking rates per thread respectively for
the large and small H-M benchmark. The tracking rate measures number of
particles tracked per unit processor time and is the most natural application-
level measure of performance for MC codes. When the tracking rates are
presented per thread count, a horizontal line indicates ideal scaling, and
deviations from ideal scaling are thus more readily visible compared to other
approaches.

For the small H-M benchmark in Figure 1, single-core tracking rates
ranged from approximately 250 on a Blue Gene core to almost 4500 par-
ticles/sec on a single Intel Xeon X5680 core. This discrepancy is due in
part to the factor of 4 disparity in clock speeds; but since our main focus
in this analysis is multi-core scalability, we did not analyze the additional
source of absolute single-core performance degradation (though we did ver-
ify this tracking rate on a wide range of parameter optimization levels and
code optimizations). While the PowerPC performance was poor in an ab-
solute sense, performance on all four cores on a BG/P node achieved 97%
of ideal scaling, indicating negligible impact of the shared aspects of the
memory subsystem on the performance of each core. A general trend ob-
served across all our studies is an inverse relationship between single-core
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Figure 1: Coarse grained-threading performance of OpenMC on small H-M bench-
mark.

performance and scalability. For example, turning off optimization for the
Intel compiler yielded much poorer wall clock times but scalability of 85-
90% across all available cores, while the optimized results presented show
significant deviations from ideal scaling even for several cores. We currently
have no definitive explanation for this behavior, though some of the key
issues are addressed in the following section.

Figure 1 has several other noteworthy characteristics. The 8-core Xeon
X5550 node achieves approximately 80% of ideal scaling when all 8 cores
are used, but the performance of the 24-core Xeon X5680 node erodes more
rapidly with core count, with approximately 61% efficiency on 8 cores and
only 33% on all 24 cores. The Opteron 48-core node shows more complex
behavior but surprisingly good performance of 65% scalability using the 48



cores. Large H-M (Figure 2) shows qualitatively identical behavior with per-
haps one exception — the 24-core Intel scales nontrivially better, achieving
close to 50% efficiency on the full machine.

Large Hoogenboom—Martin benchmark performance
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Figure 2: Coarse-grained threading performance of OpenMC on large H-M bench-
mark.

4.3.2. Hybrid threading

We present our sample timings for the fine-grained /hybrid threading
cases on the 8-core Xeon node. Hybrid tests were run on the full range of
platforms, but little extra insight is gained beyond what is evident from
the Xeon results. Thus we limit our discussion to this platform. Also, the
large H-M benchmark is the most natural candidate for speedup with hybrid
threading. Thus, we limit our analysis to this benchmark problem.



ntc\nty 1 2 3 4 5 6 7 8
1 371 | 561 | 812 | 1060 | 1193 | 1210 | 1218 | 1262
2 672 | 1118 | 1496 | 1808
3 956 | 1597
4 1262 | 2122
) 1568
6 1858
7 2163
8 2275

Table 2: Performance comparison of fine (nuclide-loop) and coarse (particle-loop)
threading in OpenMC. Entries are in particles/sec. As the column number in-
creases, more threads are devoted to the inner loop over nuclides. As the row
number increases, more threads are used to divide the work of the outer loop over
particles. Using exactly 1 OMP thread/core, the only possible combinations of
threads are those that satisfy [(# coarse threads)x (# fine threads) < 8 |.

The raw timing results are shown in Table 2, which gives results for all
possible combinations of coarse/fine threads (i.e. those whose product is
less than eight). Thus, the upper-right entry is identically the fine-grained
case, and the bottom-left entry is the coarse-grained timing. Our main in-
terest is to ascertain whether fine-grained threading, or any combination of
coarse-fine threading, can produce better results than can the same number
of threads dedicated entirely to the coarse-grained approach. Our results
indicate that this is not the case. Although the hybrid results are competi-
tive and generally lie within 20% of the corresponding coarse grained values,
in all cases the greatest efficiency is achieved by dedicating all threads to
the coarse-grained loop. The fine-grained limit was the worse performing,
with the coarse-grained threads exhibiting a tracking speed twice that of
the fine-grained threads for the full eight threads.

The hybrid threading results demonstrate the subtleties that Monte
Carlo developers must contend with when programming shared-memory
models. The level of granularity at which threads operate can have a signif-
icant impact on performance returns. While this study shows that thread
resources are best devoted to the coarsest level of parallelism in order to
avoid these performance limitations in this instance, the hybrid threading
model gives us two insights. First, it clearly shows the evolution of the
performance of the code as threads move higher in the looping constructs.



Second, it proves that nested threads can still provide speedup, if other
application considerations force a division of thread allocation.

4.4. Possible sources of performance degradation

The results presented in the preceding section include diverse multi-core
architectures with a broad range of maximum thread counts, core inter-
connect technologies, and cache characteristics. The approach here was to
take an abstract view of each node as providing a collection of independent
cores capable of independently carrying out the instructions required for
particle tracking. As discussed in the preceding section in some depth, the
particle tracking algorithm itself is nearly perfectly scalable algorithmically;
any significant departures from ideal scalability must come from the inabil-
ity of the memory subsystem to deliver the data to the cores in a scalable
manner. We have viewed OpenMP as an adequate programming model for
this high level of abstraction, where it is required merely to describe how
the algorithmic work is distributed across cores, and there is no attempt to
control the flow of data to the cores.

The results in the preceding section are mixed and depend to some ex-
tent on perspective. On the one hand, they indicate very good on-node
speedup for either modest levels of work in real-world application codes.
Speedups of thirty times on 48-cores, for example, were observed on the
AMD platform. On the other hand, the scalability clearly is limited com-
pared with what is feasible in principle (e.g., on a machine where bandwidth
increases proportionally to processing elements). Furthermore, the trend is
to continue to erode as cores are added. This is not surprising given the
complexity of the shared resources in the underlying memory subsystem.
However, deeper analyses of exactly where the performance is lost are not
easy (Diamond et al., 2011; Wu and Martonosi, 2011), and we present here
only the key issues as a basis for further study.

Scaling bottlenecks for multi-core applications generally include (1) real
and false sharing on L1 cache lines (as L1 caches are distributed for all of
the target architectures), (2) contention for higher levels of shared cache,
(3) contention on the shared bus to main memory, and (4) NUMA effects
for multi-socket architectures. Since each of these aspects of the memory
subsystem is opaque to OpenMP, additional analysis tools are required in
order to gain information about which effects may be leading to performance
degradations and what algorithmic or implementation modifications may be
made to mitigate their impact.



To this end, we carefully instrumented Performance Application Pro-
gramming Interface (PAPI) (Garner et al., 2000) hardware counters on the
Intel Xeon platforms in OpenMC. The performance data enabled us to
make careful code modifications in order to guarantee the negligible impact
of L1 cache write conflicts as we increased core counts, resulting in no-
ticeable performance improvements for the tests presented here. Declaring
the macroscopic cross section variables as threadprivate and ensuring their
allocation in sufficiently disjoint memory locations (to avoid false sharing
conflicts) is one such example. However, further attempts to disambiguate
between the remaining potential causes of slowdown of the algorithm have
not yet produced definitive results. The conclusions of our analysis have
varied nontrivially with the choice of analysis tool, compiler technology,
and computing architecture. A lower-level programming model probably
will be required to implement more scalable algorithms once the perfor-
mance culprits have been identified. A follow-up study using a simplified
MC application kernel will explore the topic in depth.

5. Conclusion

We modified the Monte Carlo neutron transport code OpenMC to use
OpenMP-enabled shared-memory parallelization within each MPI process in
three different configurations. The scaling performance of the configurations
was compared with the application-relevant reactor calculation parameters
of the Hoogenboom-Martin benchmark.

Our results accomplish two primary objectives. First, they show the
practical benefits available with Monte Carlo methods as the field of high-
performance computing moves to many-core architectures. Significant speedup
of the neutron tracking rate is easily achieved with OpenMP on 4-core to 48-
core modern processing nodes. Second, the degradation of scaling at higher
core counts elucidates the complex limitations imposed by the many hard-
ware and software considerations that are imposed by the many-core model.
This study demonstrates that a variety of performance factors unique to
shared-memory programming, including NUMA memory hierarchies, cache
bottlenecks, and thread overhead, need to be considered by Monte Carlo
developers. More precise tools are needed to diagnose the exact influence
of these factors.
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