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Abstract. This article presents examples of the monumental contribu-
tions of Bill McCune to mathematics, logic, computer science, and es-
pecially automated reasoning. The examples are presented in the form
of short stories and recollections of the author during his long associa-
tion with Bill. In addition to Bill’s accomplishments as a researcher, the
author provides personal memories giving glimpses into Bill’s complex
personality and his generosity as a collaborator.

1 Perspective and Genesis

Perhaps you have wondered what would result if you had the opportunity to
spend thousands of hours with a great mind. For more than two decades, I had
that opportunity as I shared research time with my esteemed colleague William
(Bill) McCune. We shared many ideas, conjectures, and, yes, guesses. Each of
us had two main goals. The first goal was to formulate enhancements for an
automated reasoning program, enhancements that would substantially add to
its power. The second goal was to employ the program in a way that would
contribute to various areas of mathematics and logic.

From the viewpoint of making contributions to mathematics and logic, Bill
and I had a marvelous automated assistant; indeed, in 1988, if memory serves,
he designed and implemented the automated reasoning program called OTTER.
(We did have access to a program designed at Argonne before OTTER was
produced.) In but four months, even though Bill was also involved in research of
different aspects, he wrote more than 30,000 lines of code, producing a program
that, from then until now, has exhibited the smallest number of bugs. Yes, his
effort was and is monumental; indeed, when you obtain a conclusion, a set of
conclusions, a proof, you can assume with almost total certainty that all is in
order. Also important is the robustness of OTTER, permitting you to have it
search for desired objects for weeks, if needed, without stopping.

In this article, I shall tell a number of short stories that provide ample ev-
idence of Bill’s inventive mind, his accurate insights, and his impeccable pro-
fessionalism. His successes in the context of enhancements have played a key
role in much of what has occurred in the past ten years. As I shall highlight
here, Bill answered (with one of his programs) open questions in areas that in-
clude group theory, lattice theory, Boolean algebra, combinatory logic, and—so
impressive—Robbins algebra; for various open questions, see Chapter 7 of [14].
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As many of you may know, Bill provided at Argonne National Laboratory
a means for researchers to easily copy OTTER. And, possibly because that
program was correctly viewed as extremely powerful, many, many copies were
taken. As but one bit of evidence of his professionalism, he enabled me to place
(on disc) a copy of OTTER, with a manual, in the back of one of my books,
thus materially adding to the usefulness of my books. Even his users manual is
well written [5]. An examination of history would reveal that OTTER provided
the basis for a large number of programs that followed its birth.

This narrative will almost certainly not follow the chronology of history. Nor
will it echo my view of the significance of Bill’s achievements. Instead, the order of
the topics will reflect, though probably somewhat hidden, some form of intensity
of my recollections, recollections coupled with memories of excitement, curiosity,
and, yes, surprising results in many cases. The field of automated reasoning is
deeply indebted to Bill for all that he provided.

2 Combinatory Logic

Our foray into combinatory logic began with our colleague Ross Overbeek, who
had read a charming book on combinatory logic by Raymond Smullyan, To Mock
a Mockingbird [12]. Ross began the study of two combinators, B and W , that
respectively satisfy the following, where expressions by convention are assumed
to be left associated unless otherwise indicated.

Bxyz = x(yz)
Wxy = xyy

The object of Ross’s study was to determine whether the fragment with basis
consisting just of B and W satisfied the strong fixed point property, in the
context of the following definition: A combinator F is a fixed point combinator
if and only if Fx = x(Fx) for all x. (As I recall, Smullyan called such combinators
“sages”.) The F in this case must be expressed solely in terms of B andW . To his
disappointment during his study, Ross found that the open question concerning
B and W had been answered by R. Statman, who found (in February 1986) a
fixed point combinator for B and W expressed in eight letters.

B(WW)(BW(BBB)) (Statman’s fixed point combinator)

Upon learning of Statman’s result, Ross asked me to find a way for an auto-
mated reasoning program to find a fixed point combinator F expressed solely in
terms of B and W . In other words, you could view his request as amounting to
answering, with a program of ours and no knowledge about whether the answer
was yes or no, the following open question: Does the fragment based on B and
W alone satisfy the strong fixed point property?

I began thinking of how paramodulation could be used. (Paramodulation,
as many of you probably know, is an inference rule that generalizes equality
substitution; its use builds in a powerful treatment of equality.) Shortly after
I initiated my effort, Bill entered my office. Upon learning of my activity, he



asked if he could join me, a request I gladly agreed to. What Bill did was have
the reasoning program ITP make two searches, one forward and one backward,
believing that insufficient memory was present to attack the question directly.
(ITP, designed and implemented by Ross and Ewing Lusk, and contributed to
heavily by Bill, preceded the birth of OTTER [3].)

Bill accumulated two sets of deductions. Then, on a weekend, he assigned the
program the task of comparing pairs of equations, one from the forward search
and one from the backward search, to see whether unit conflict could be found.
In particular, the forward search yielded (positive) equalities, and the backward
negative equalities.

On the following Monday, to the amazement of both Bill and me, five pairs
were discovered by ITP. That result showed that, rather than one fixed point
combinator for the B-and-W fragment, there were five. When Bill and I wrote
to Smullyan, he was indeed surprised and impressed at our discovery—mostly
Bill’s, to be precise [11].

For the curious reader, the discovery of the five fixed point combinators
for the B-and-W fragment eventually led to the discovery of an infinite set of
fixed point combinators for this fragment. Not too long after that discovery, an
infinite class of infinite sets of such fixed point combinators was proved (by me)
to exist. Yes, these discoveries can be traced directly to Bill’s use of ITP and
that profitable weekend. And this episode led to a second, one that illustrates
Bill’s insight.

Indeed, some time later, Bill called me at home and made the following ob-
servation: “Did you know that, if you took the five fixed point combinators, each
of length eight, and demodulated each with B, you get the same expression?”
The magical expression is the following.

(W(B(Bx))) cubed

Eventually, this expression would be called a kernel for the B-and-W fragment,
after the kernel strategy was formulated [13]. I would never have thought of this
strategy were it not for Bill’s insightful observation. That strategy proved to be
most powerful when seeking fixed point combinators.

Sometime during the study with Bill—I cannot pinpoint exactly when that
was—I proved that the B-and-L fragment was too weak to satisfy the strong
fixed point property. I am fairly certain that result also answered a question that
had been open. Bill, not too much later, generalized what I had done and showed
that various other fragments also failed to satisfy the fixed point property. That
bit of research provides yet more evidence of Bill’s research strength, nicely
illustrating his ability to think as a mathematician.

3 Boolean Algebra

During Bill’s position as a staff member at Argonne, I believe 1983 to 2006,
I was certainly not the only researcher who benefited from collaboration with
him. For example, with Ranganathan Padmanabhan he answered a number of



open questions, many of which were published in a marvelous monograph (in
1996) by the two of them [8]. One of the questions that was answered with
OTTER concerns a theorem called by Bill DUAL-BA-3. The following equations
(which rely on the notation used in that monograph) capture that theorem,
where x@ denotes the complement of x and where the two inequalities arise
from, respectively, negating the theorem to be proved and negating its dual.

x = x.
x * (y + z) = (x * y) + (x * z).
x + (y * z) = (x + y) * (x + z).
x + x@ = 1.
x * x@ = 0.
(x * y@) + ((x * x) + (y@ * x)) = x.
(x * x@) + ((x * z) + (x@ * z)) = z.
(x * y@) + ((x * y) + (y@ * y)) = x.
(x + y@) * ((x + x) * (y@ + x)) = x.
(x + x@) * ((x + z) * (x@ + z)) = z.
(x + y@) * ((x + y) * (y@ + y)) = x.
(A * B) + B != B | $ANS(A2).
(A + B) * B != B | $ANS(A4).

Bill called me at home, having in mind my interest in improving on given proofs.
First, he told me that he had a proof of the theorem; then he informed me
that the proof consisted of 816 equations, the longest proof I had ever heard
of produced by OTTER. The proof relied on a Knuth-Bendix approach and,
therefore, featured the use of demodulation. After I expressed amazement, he
asked whether I could “elegantize” the proof.

I in turn asked whether there was one or more equations in his proof that he
wished to avoid. That was not his goal. Instead, being well aware of my interest
in proof shortening, he asked me to produce a shorter proof, far shorter; I agreed
to try. But before I hung up, he interrupted to refine his request, saying that he
wished me to find a proof of length 100 or less—which I felt was either a joke
or essentially absurd. Bill, however, knew I enjoyed challenges, especially with
such a nice number as the goal. (He told me that he intended to place the proof
in a monograph, I believe written with Padmanabhan, but wished to avoid the
cited long proof, which took more than nineteen pages to display.)

Indeed, over the next couple of weeks—inspired by Bill, no doubt—with
Bill’s goal in mind, I developed methodology, much of which I still use, for proof
shortening.

I had a fine start because of one of Bill’s enhancements to OTTER, namely,
ancestor subsumption. Ancestor subsumption is a procedure that compares deriva-
tion lengths to the same conclusion and prefers the strictly shorter. Yes, Bill’s
professionalism is exhibited: he designed and implemented this procedure solely
because of my interest in finding “short” proofs.

Of course, you have anticipated what is now to be said. With that superb
procedure and the methodology I was able to formulate, Bill did get his 100-step
proof. (Bill was gratified in that the proof required only a bit more than three



pages to display.) Quite a while later, I found a 94-step proof, which, as was true
of the 100-step proof, relied on demodulation. Therefore, you could properly
object to measuring its length when demodulation steps are not counted. So, I
note that I did find a proof of length 147 in which demodulation is not used.
(If you enjoy a challenge, from what I can recall, I know of no proof of length
strictly less than 147 that relies on forward reasoning, with paramodulation,
avoids demodulation, and proves DUAL-BA-3.) For those who enjoy history,
along the way OTTER produced a proof of level 107. Bill’s request was made, I
believe, in May 2002; the 100-step proof was found perhaps in June; in November
of that year, OTTER produced a 94-step proof.

At this point, some of you may be wondering why I have not yet cited one
of Bill’s greatest successes. I shall shortly. For now, I turn to another study
Bill conducted in Boolean algebra. Specifically, he had formulated a technique
for generating thousands of candidates, when seeking a single axiom, with the
set filtered to avoid those that could not possibly succeed. Although I am not
certain, I believe he employed this technique in his search in 2002 for single
axioms for Boolean algebra in terms of not and or. Whether such is the case or
not, Bill found the following ten (given in the notation he used), each of length
22.

~ (~ (x + y) + ~ z) + ~ (~ (~ u + u) + (~ z + x)) = z.
% 13345 685 sec

~ (~ (~ (x + y) + z) + ~ (x + ~ (~ z + ~ (z + u)))) = z.
% 20615 6 sec

~ (~ (x + y) + ~ z) + ~ (x + ~ (z + ~ (~ z + u))) = z.
% 20629 19 sec

~ (~ (x + y) + ~ (~ (x + z) + ~ (~ y + ~ (y + u)))) = y
% 20775 18 sec

~ (x + ~ y) + ~ (~ (x + z) + ~ (y + ~ (~ y + u))) = y.
% 20787 80 sec

~ (~ (x + y) + ~ (~ (~ y + ~ (z + y)) + ~ (x + u))) = y.
% 24070 28 sec

~ (x + ~ y) + ~ (~ (y + ~ (z + ~ y)) + ~ (x + u)) = y
% 24086 44 sec

~ (~ (x + y) + ~ (~ (~ y + ~ (z + y)) + ~ (u + x))) = y.
% 24412 40 sec

~ (x + ~ y) + ~ (~ (y + ~ (z + ~ y)) + ~ (u + x)) = y.
% 24429 36 sec

~ (~ (~ (x + y) + z) + ~ (~ (~ z + ~ (u + z)) + y)) = z.
% 24970 47 sec

Open question: For a far greater challenge that, if met, would merit a publication,
one might study the open question concerning the possible existence of a single
axiom for Boolean algebra in terms of disjunction and negation that has length
strictly less than 22, the length of Bill’s single axioms.

And now for the long-awaited highlight of Bill’s study of Boolean algebra;
even the New York Times was impressed, enough to write an article on the suc-



cess under the byline of Gina Kolata [2]. Bill designed another automated rea-
soning program he called EQP, a program with built-in commutative/associative
unification. Perhaps one reason he did so, perhaps the main one, was his inten-
tion of answering the decades-old Robbins algebra problem. A Robbins algebra
is axiomatized with the following three axioms, where (in the notation Bill used
in this study) + denotes union and the function n denotes complement.

x + y = y + x. % commutativity
(x + y) + z = x + (y + z). % associativity
n(n(n(x) + y) + n(x + y)) = y. % Robbins

Whether a Robbins algebra is a Boolean algebra was unknown for decades.
S. Winker, I believe in the late 1970s, brought the problem to the Argonne
researchers in automated reasoning. Not too long afterwards, the problem was
attacked by various people throughout the world without success. Winker did
supply a number of conditions that, if satisfied along with the three given axioms,
sufficed to enable a deduction of the properties of a Boolean algebra. Stated a bit
differently, if one of Winker’s conditions was adjoined to the three given axioms,
then you could prove that the resulting algebra is a Boolean algebra.

Bill’s approach, with EQP, was to try to prove, from the three Robbins
algebra axioms, one of Winker’s conditions. Now, as far as I know, all the people
attempting to answer the open question focusing on Robbins algebra believed
that the key axiom (known as the Robbins axiom) was a misprint. Nevertheless,
the question proved fascinating.

In almost eight days of computing, EQP deduced one of Winker’s condi-
tions, and, therefore, the question was no longer open: Indeed, every Robbins
algebra is a Boolean algebra. Bill found the proof in late 1996, I believe [7].
Adding piquancy to the story was what occurred after Bill’s monumental suc-
cess. Specifically, Bill called Robbins to inform him of the result, commenting
that the third axiom, as we thought we knew, had been published with an
error. Robbins replied that, no, it was not an error, that he had conjectured
that the three axioms—commutativity of union, associativity of union, and the
third axiom (which focuses on a complicated expression involving complement
and union)—might axiomatize Boolean algebra. Robbins was elated at Bill’s
information—how nice for the originator, then 81 years old, to learn of this
result.

By way of what might be termed a post mortem to the story, Bill followed the
tradition of the solid mathematician. Indeed, to find the earlier-cited ten single
axioms for Boolean algebra in terms of or and not, he needed a target (as is
typical) to show that each totally axiomatized the algebra. He did not choose to
attempt to deduce the usual set of axioms for Boolean algebra. Instead, building
on his success with Robbins algebra, he chose as target to deduce the Rob-
bins basis, the set of three equations (given earlier) that characterize a Boolean
algebra. A most charming action to take.



4 Logic Calculi and More Enhancements

Various areas of logic are often referred to as calculi. Bill and I spent some time
with equivalential calculus. A possible obstacle that Bill noted was that, early in
a run, depending on the hypothesis, deduced formulas could be complex (long
in symbol count). If you permit your program to retain many complex formulas,
the program can drown in deduced conclusions. On the other hand, if you place a
tight bound on all deduced and retained information, then some key item might
not be retained. In particular, if you are using a program to study, say, XHK
or XHN , captured respectively by the following two clauses, and if you assign
a large value to retained items, you will find early in the output rather lengthy
deductions. (Predicates such as P can be thought of as meaning “is provable”.)

P(e(x,e(e(y,z),e(e(x,z),y)))). % XHK
P(e(x,e(e(y,z),e(e(z,x),y)))). % XHN

With OTTER, if you were to assign the value, say, 35 to max weight, you would
find that too many conclusions were being retained. But if instead you assigned
the value, say, 15, then you might be prevented from reaching your goal, perhaps
of deducing some known single axiom for this area of logic. Yes,XHK andXHN
each are single axioms.

Bill formulated and then encoded a feature that permits the program to
retain, early in a run, very complex conclusions, but, shortly afterwards, discard
such new conclusions. The following two commands show how it works.

assign(change_limit_after,100).
assign(new_max_weight,10).

The first of the two commands has OTTER, after 100 clauses have been chosen to
initiate application of inference rules, change the assigned value to max weight.
The second command assigns the new value of 10 to max weight. Summariz-
ing, Bill designed and implemented a feature that allows the program to both
have and eat its cake, to attack problems in which the retention of a so-called
messy formula was required (early in the study) and yet not drown before the
assignment was completed.

Bill came through again in a totally different context, the following. In the
mid-1980s, I suggested that we at Argonne have access to a new strategy, namely,
the hot list strategy [15]. You may have witnessed many, many times in a textbook
on mathematics the phenomenon in which some assumption for the theorem in
question is frequently cited. (A glance at the literature reveals that, in various
proofs in logic, researchers often do this. Branden Fitelson pointed this out, not-
ing he sometimes assigned the value 8 to the “heat” parameter. C. A. Meredith,
in effect, used the hot list strategy.) The value assigned to heat denotes how
much so-to-speak recursion is being asked for. Members of the hot list are used
to complete applications of inference rules and not to initiate applications. The
use of the hot list strategy thus enables an automated reasoning program to
briefly consider a newly retained conclusion whose complexity might otherwise



prevent its use for perhaps many CPU-hours. For example, if the textbook is
proving that commutativity holds for rings in which the cube of x is x for all x,
that property, xxx = x, may be used in many of the steps of the proof. With this
theorem, you might well include xxx = x in the hot list and assign the value of 1,
or greater, to heat. I suggested for paramodulation—and this particularization is
crucial to this story—that one of our programs offer to the user access to the hot
list strategy. The researcher would choose, at the beginning, one or more items
to be placed in the “hot list”, a list that is often consulted in making additional
deductions. The hot list strategy was shortly thereafter added, by Overbeek and
Lusk, to the repertoire of ITP.

Years passed. Then I said to Bill it would be nice to have OTTER offer the
hot list strategy, of course, in the context of paramodulation. Not too long after
our discussion, Bill called me and asked that I test, in his so-called presence,
his implementation of the strategy. However—and here again you witness his
inventiveness—he informed me that he had implemented the strategy not just
for paramodulation but for whatever inference rules were in use. Among such
rules was hyperresolution. I was, at the time, conducting various studies in the
use of condensed detachment (of course, relying on hyperresolution), an infer-
ence rule frequently used in the study of some logical calculus. The following
clause captures that rule when studying, say, two-valued sentential or (classical
propositional) calculus. (For OTTER, “-” denotes logical not and “|” denotes
logical or.)

% condensed detachment
-P(i(x,y)) | -P(x) | P(y).

Immediately, I made a run to test Bill’s version of the hot list strategy, in the
context of deducing one 3-axiom system from another. I had at the time a 22-step
proof. Astounding: With the hot list strategy, OTTER found a 21-step proof, a
proof I had been seeking for a long time.

Again, I note that Bill had generalized what I had in mind in the mid-1980s
by implementing the strategy for all inference rules in use. Further, he had
added substantially to my idea by implementing the means to, in effect, apply
the strategy recursively; you simply assign a value to heat that is 2 or greater,
depending on how much recursion you wish. Even more, he implemented an
incarnation that, if you chose to use it, had the program adjoin new elements to
the hot list during a run—the dynamic hot list strategy.

If you wonder whether researchers outside Argonne have found Bill’s various
generalizations useful, I mention as one example Fitelson, who used the strategy
heavily in various incarnations.

5 Group Theory

I do not know what motivated Bill, but he completed research in group the-
ory that had been begun by the logician John Kalman, who studied the area
in a manner quite different from what you might be familiar with. Kalman’s



study relied on condensed detachment and on the Sheffer stroke, denoted by the
function d, captured with the following clause and the use of hyperresolution.

-P(d(x,y)) | -P(x) | P(y).

Technically, Kalman focused on the right-group calculus. (For the researcher who
enjoys relationships, I note that equivalential calculus corresponds to Boolean
groups, the R-calculus and the L-calculus to Abelian groups, and the right-group
calculus to ordinary groups.) Kalman proved the following axiom system for the
right-group calculus.

P(d(z,d(z,d(d(x,d(y,y)),x)))). % R1
P(d(u,d(u,d(d(z,y),d(d(z,x),d(y,x)))))). % R2
P(d(v,d(v,d(d(u,d(z,y)),d(u,d(d(z,x),d(y,x))))))). % R3
P(d(d(d(u,d(v,y)),d(z,d(v,x))),d(u,d(z,d(y,x))))). % R4
P(d(d(v,d(z,d(u,d(y,x)))),d(d(v,d(x,u)),d(d(z,d(x,y)),x)))) % R5

As for interpretation, d(x, y) can be thought of as the Sheffer stroke (the nand
of x and y, and, when preceded by the predicate P , the formula is equivalent
to the identity. The theorems of the right-group calculus are a proper subset of
those of the R-calculus, which in turn are a proper subset of the theorems of
equivalential calculus.

Bill initiated a study of the Kalman 5-axiom system—out of simple curios-
ity, perhaps. His study produced charming results. In particular, Bill proved that
each of the second, third, and fourth of Kalman’s five axioms provides a com-
plete axiomatization (by itself) for the calculus [6]. With his model-generation
program MACE [4], you can prove that the first of Kalman’s axioms is too weak
to serve as a single axiom; you can find a 3-element model to yield this result.
Again, I offer you a challenge, an open question, actually. Indeed, the status of
the fifth remains undetermined—at least, such was the case in late 2003. (Bill’s
study was conducted, I believe, in 2001.)

Now, if you wonder about Bill and so-called standard group theory, yes, he
did study aspects of that area of abstract algebra. Indeed, relying (I am almost
certain) on his method for generating thousands of promising candidates, he
sought (I believe in 1991) single axioms of Boolean groups, groups of exponent
2. A group has exponent 2 if and only if the square of every element x is the
identity e. He was successful.

Upon learning of his achievement, I suggested he seek single axioms for groups
of exponent 3, groups in which the cube of every element x is the identity e.
Again, he succeeded, presenting to me four interesting single axioms. One im-
portant aspect of research is that it leads to further discoveries. Bill’s certainly
did. I used one of his four single axioms for groups of exponent 3 to find single
axioms for groups of exponent 5, 7, 9, ..., 19. To permit you, if you choose, to
attempt to produce the pattern that generalizes to all odd exponents, I give you
single axioms for exponents 7 and 9.

(f(x,f(x,f(x,f(f(x,f(x,f(x,f(f(x,y),z)))),f(e,f(z,f(z,f(z,
f(z,f(z,z)))))))))) = y).



(f(x,f(x,f(x,f(x,f(f(x,f(x,f(x,f(x,f(f(x,y),z))))),f(e,
f(z,f(z,f(z,f(z,f(z,f(z,f(z,z))))))))))))) = y).

If you were to seek a proof that the given equation for exponent 7 is in fact a
single axiom for the variety of groups of exponent 7, you could seek four proofs,
for each of the following given in negated form.

(f(f(a,b),c) != f(a,f(b,c))) | $ANS(assoc).
(f(a,f(a,f(a,f(a,f(a,f(a,a)))))) != e) | $ANS(exp7).
(f(e,a) != a) | $ANS(lid).
(f(a,e) != a) | $ANS(rid).

My citing of “all odd exponents” is appropriate; indeed, Ken Kunen, with his
student Joan Hart, proved [1] that my generalization through exponent 19 con-
tinues for all odd n with n greater than or equal to 3. Bill, not to be outdone
so-to-speak, produced his own generalization for 3, 5, 7, ..., a set of single axioms
in which the identity e is not explicitly present. (Tarski noted without proof that
no single axiom exists in which product, inverse, and identity are all explicitly
present; Neumann supplied a proof.) For the curious, and for an example of OT-
TER’s going where no researcher has gone before, its occasional application of
an inference rule to a set of hypotheses one or more of which is most complex has
led to breakthroughs such as a detailed proof focusing on groups of exponent 19,
a proof an unaided researcher would have found most burdensome to produce
in view of relying on equations with more than 700 symbols.

6 Other Areas of Abstract Algebra

In the early part of this twenty-first century, Bill collaborated in studies of ab-
stract algebra with Robert Veroff, Padmanahban, and (for a little while) his
student Michael Rose. These collaborations proved indeed profitable, as the fol-
lowing evidences.

I never asked Bill about his choice of variety to study. For example, did he
deliberately study a variety and then study subvarieties? For a nice example,
commutative groups form a subvariety of groups. Did he begin by explicitly
considering the following chain of algebraic varieties: Boolean algebra (BA),
modular ortholattices (MOL), orthomodular lattices (OML), ortholattices (OL),
complemented lattices (CL), lattice theory (LT), and quasilattice theory (QLT)?
If you begin with an equational basis for quasilattice theory in terms of meet and
join, with the addition of axioms, (in steps) you obtain bases for LT, CL, OL,
OML, MOL, then BA. Mainly he and Veroff did find single axioms for Boolean
algebra in terms of the Sheffer stroke; but I leave that topic for another’s paper.
And, as cited, he made other contributions to Boolean algebra, most notably
(from the world of long-standing open questions in mathematics) the splendid
result focusing on Robbins algebra.

From Bill’s many successes in algebra, I shall highlight a theorem from quasi-
lattices and some results from lattice theory. The challenge offered by a theorem



(denoted by Bill as QLT-3) in quasilattices was strikingly different from the
search for new single axioms. Specifically, only model-theoretic proofs of the
theorem existed—before OTTER, and Bill, entered the game to search for the
missing axiomatic proof. The theorem asserts that the following self-dual equa-
tion can be used to specify distributivity, where “v” denotes join (union) and
“^” denotes meet (intersection).

(((x ^ y) v z) ^ y) v (z ^ x) = (((x v y) ^ z) v y) ^ (z v x)

The first proof OTTER discovered has length 183. Access to the 183-step proof
in turn prompted the search for yet another missing proof, still axiomatic, but
simpler. With the various methodologies, a proof of length 108 was completed.

As for lattice theory, Bill did indeed make a monumental search. Bill’s goal
was not just some single axiom for lattice theory; after all, R. McKenzie had
already devised a method that produces single axioms. The use of that method
typically produces gigantic (in length) single axioms. Bill sought a single axiom
of (undefined) “reasonable” length. Through a variety of techniques that keyed
on the cited algorithm but incorporated the assistance of OTTER, he began
with a single axiom of more than 1,000,000 symbols and eventually found a 79-
symbol single axiom. The nature of his approach guaranteed that the result was
sufficient, a theorem; no proof was needed. But, after a gap in time, Bill decided
upon a new approach that would filter candidates, yielding equations that were
promising. The goal was a far shorter single axiom.

Among the candidates, after one year, he found the following promising 29-
symbol equation.

(((y v x)^x) v (((z^ (x v x)) v (u^x))^v))^ (w v ((v6 v x)^
(x v v7))) = x.

Success would be his when and if a proof of some basis could be found. One of
the standard bases (axiom systems) for lattice theory consists of the following
set of six equations.

y ^ x = x ^ y
(x ^ y) ^ z = x ^ (y ^ z)
y v x = x v y
(x v y) v z = x v (y v z)
x ^ (x v y) = x
x v (x ^ y) = x

Bill, however, preferred a 4-basis as he sought single axioms. The (nonstandard)
4-basis he chose as target was the following.

y v (x^ (y^z)) = y
y^ (x v (y v z)) = y
((x^y) v (y^z)) v y = y
((x v y)^ (y v z))^y = y



And he won [9].
But still he was not finished; indeed, as I learned, Bill had a 135-step proof

that the cited equation sufficed to axiomatize lattice theory. He called me and
asked if I would seek a shorter proof—a proof, I concluded from knowing him so
well, that would be far shorter in length than 135 applications of paramodulation.
After not too long, I did find what I thought he would like, and called and told
him so.

He asked about its length. I told him the proof was of length 50, which
brought from Bill a surprising response. “Can I buy it?” “No”, I said; “you can
have it”. And he published it, from what I know. (For the curious or for one
who might decide to seek a shorter proof, the following might be of interest.
Specifically, in July 2007, I returned to the study of that single axiom and found
a 42-step proof.)

Bill also found a second 29-letter single axiom, the following.

(((y v x) ^ x) v (((z ^ (x v x)) v (u ^ x)) ^ v)) ^ (((w v x) ^
(v6 v x)) v v7) = x.

From what I know, open questions still exist concerning Bill’s two single axioms
for lattice theory. In particular, is there a shorter single axiom, shorter than
length 29? Are there other single axioms of length 29? What is the shortest
single axiom for LT in terms of meet and join?

Bill contributed to other areas of mathematics, in geometry, with Padman-
abhan, Rose, and Veroff, by finding single axioms for OL and OML [10].

7 Introducing Bill McCune

Who was Bill, really? Yes, of course, he was a fine researcher, attacking and
answering various open questions from different fields of mathematics and logic.
He designed, from my perspective, the most powerful automated reasoning pro-
gram, OTTER, a program that I still use today, though it was designed and
implemented mainly in 1988. But, what about the so-called nonprofessional side
of Bill?

He played the piano; however, having never heard him play, I know not how
well nor what type of music he played. He cooked, rather fancy sometimes; for
example, he made his own mayonnaise. He immensely enjoyed eating; indeed, we
shared many lunches, especially Thai food and Chinese food—not Americanized.
He had a golden retriever he was deeply fond of. In the winter, they would go for
long walks, the dog emerging from cold water with icicles on its coat. As evidence
of Bill’s deep ethical concerns, when the dog was diagnosed with cancer and Bill
was given the choice of treatment or putting the dog down, he chose the latter.
Yes, he did not want the dog to experience pain, and, instead, Bill made the
supreme sacrifice of giving up his friend.

Had you worked at Argonne National Laboratory with Bill, sharing research
experiments with him, you still would have known little about him. I would not
say he was shy. Rather, his personal life was kept to himself. I did learn, after



many, many years, that he was delighted with blueberries, wandering the trails
in Maine, picking different varieties of wild blueberry. Did he enjoy dessert? Well,
I had told him about my refrigerator, that it contained twenty-eight pints of ice
cream. One late afternoon, Bill drove me home. Upon arriving, he brought up
my claim of having twenty-eight pints of ice cream and expressed strong doubt
about its accuracy. At my invitation, we entered my apartment, and I beckoned
him to the refrigerator, indicating that he should investigate, which he did. After
counting out loud, reaching the figure I had cited, he expressed amusement and
surprise—and asked if he could try some. Of course, I told him to help himself.
And he did, sampling, in one dish, three types of that frozen concoction.

Bill, as I said, was kind. Upon learning of my interests and also learning
of how I worked, he wrote special programs for me. For example, he wrote a
“subtract” program that takes as input two files and produces as output the set-
theoretic difference. Another program he wrote for me interrogates an output
file (from OTTER) containing numerous proofs, many of the same theorem, and
returns in another file the shortest proof for each of the theorems proved in the
experiment. Also, to enable the researcher to run without intervention a series
of experiments, Bill wrote otter-loop and super-loop.

And, as many of you might know, Bill was aware of the chore some experi-
enced when confronted with the array of choices OTTER offers. Perhaps because
of his knowledge, he added to OTTER the “autonomous mode”, a mode that
removes from the user the need to make choices. In that mode, his program still
proved to be of great assistance, often finding the proof(s) being sought.

Then there is the example of Bill’s kindness combined with his thoroughness
and professionalism. In particular, Kalman was writing a most detailed book
about OTTER. That book promised to provide at the most formal level es-
sentially most of what you would wish to know about OTTER. Before it was
completed, however, Kalman notified me that he could not complete it because
of a serious illness, one that eventually took his life. I promised him it would get
finished. Indeed, I knew, or was almost certain, that I could count on Bill. And
he did come through. After my informing him of the situation, Bill completed the
book, enabling it to be delivered into Kalman’s hands. A magnanimous gesture!

His sense of humor? The question is not whether Bill had one, but rather in
what way it was expressed. Sometimes you gain insight into a person’s view of life
by having some information about that person’s enjoyment of humor. I can say
that, if only occasionally, some of my remarks did cause Bill to laugh heartily, to
explode thunderously with enjoyment. For a different side of him, was he making
a joke in one sense when he added to OTTER the command set(very verbose)?
That command has the program return copious, copious detail that enables you
to, if you wish, check each inference, each application of demodulation, and such.

So long, Bill; you were unique; we do miss you. Mathematics, logic, computer
science, and, even more, automated reasoning are each indebted to you, forever.
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