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SUMMARY

The Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI’s remote memory
access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to
greatly enhance the usability and performance of MPI RMA. We present the first complete implementation
of MPI-3 RMA and document implementation techniques and performance optimization opportunities
enabled by the new interface. Our implementation targets messaging-based networks and is publicly
available in the latest release of the MPICH MPI implementation. Using this implementation, we explore
the performance impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA
interface provides significant advantages over the MPI-2 interface by enabling increased communication
concurrency through relaxed semantics in the interface and additional routines that provide new window
types, synchronization modes, and atomic operations.
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1. INTRODUCTION

One-sided communication has become an increasingly popular and important communication
paradigm, and its impact has been demonstrated through a wide-variety of computational science
domains, including computational chemistry [34], bioinformatics [27], earthquake modeling [9],
and cosmology [30]. Unlike traditional two-sided and collective communication models, one-
sided communication decouples data movement from synchronization, eliminating overhead from
unneeded synchronization and allowing for greater concurrency. In addition, message matching and
buffering overheads that are required for two-sided communications are eliminated, leading to a
significant reduction in communication costs.

A variety of parallel programming systems, such as those in the one-sided [4, 8, 14, 24] and
Partitioned Global Address Space (PGAS) families of programming models [6, 19, 25, 26, 33],
provide a one-sided communication interface to applications. The Message Passing Interface (MPI)
Forum added support for one-sided communication (also known as remote memory access, or
RMA) in version 2.0 of the MPI standard [22], to function alongside MPI’s traditional two-sided and
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2 J. S. DINAN ET AL.

collective communication models. Like the rest of the MPI standard, the MPI-2 RMA model was
designed to be performant and extremely portable—even on systems that lack a coherent memory
subsystem. While MPI-2 was effective for a variety of applications and systems, it lacked various
communication and synchronization features, and its conservative memory model limited its ability
to efficiently utilize hardware capabilities, such as cache coherence. Combined, these factors led
some to conclude that MPI-2 RMA was not capable of supporting important classes of higher-level
programming models [5].

The MPI Forum recently ratified version 3.0 of the MPI standard [23]. MPI-3 includes a
broad update to the RMA interface that attempts to rectify the issues identified in the MPI-2
model. MPI-3 is backward compatible with MPI-2 and adds a variety of new atomic operations,
synchronization primitives, window types, and a new memory model that better exposes the
capabilities of architectures with coherent memory subsystems. It is believed that these features will
address issues in the MPI-2 model and greatly improve the usability, versatility, and performance
potential of MPI RMA.

MPICH is one of the most widely used implementations of MPI, and it has been the first fully
compliant implementation of each version of the MPI standard. In November 2012, we created
and released the first fully MPI-3 compliant implementation in MPICH 3.0. This included a broad
renovation of the RMA infrastructure to incorporate the new functionality in MPI-3 and open new
opportunities for performance-focused communication runtime research. In this paper, we present
the design details of the MPICH implementation of MPI-3 RMA. We evaluate the performance
impact of new MPI RMA features, including those enabled by the MPI-3 interface itself (compared
with the MPI-2 RMA interface) as well as those enabled by the MPICH implementation of MPI-3
RMA. Early results indicate that MPI-3 provides significant improvements in performance over the
MPI-2 RMA interface.

The presentation of our work is organized as follows. In Section 2, we discuss the MPI
RMA interface, including its history and the new additions in MPI-3. The overall architecture of
the MPICH implementation of MPI is presented in Section 3. In Section 4 we present various
design aspects of the MPICH RMA implementation. A detailed performance evaluation using our
implementation is presented in Section 5. We discuss existing research related to this effort in
Section 6. In Section 7 we conclude with a discussion of plans for future work.

2. THE MPI REMOTE MEMORY ACCESS INTERFACE

The MPI-2 specification process started in March 1995 and culminated with the release of the MPI
2.0 document in July 1997. This document included the first version of the MPI RMA interface,
which added support for one-sided communication to MPI for the first time. The design and text
of the MPI specification included contributions from several of the authors of this paper. The goals
of the MPI-2 RMA interface included providing a portable interface for one-sided communication;
separating data movement from interprocess synchronization; and supporting cache-coherent and
non-cache-coherent systems.

In spite of achieving these objectives, the MPI-2 RMA interface has been found to be inadequate
for many common one-sided use cases [5]. To correct these insufficiencies, the MPI Forum
substantially updated and revised the MPI RMA interface with the release of the MPI 3.0 standard
in September 2012. This effort involved many organizations and individuals, including the authors
of this paper, over the span of several years. The update focused on addressing issues that have
prevented MPI RMA from providing a common, portable one-sided substrate for higher-level one-
sided and global address space models, as well as adding other features that have been demonstrated
to significantly benefit application developers. These features include additional communication
operations that more closely match traditional shared-memory programming models, relaxed
synchronization rules, lighter-weight mechanisms for controlling ordering of communication
operations, and new ways to allocate and associate memory with MPI one-sided windows.
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MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 3

2.1. MPI-2 Remote Memory Access

MPI-3 RMA is a proper extension to MPI-2 RMA; as such it is backward compatible. In this
section, we describe the aspects of the MPI-3 RMA specification that are inherited from the MPI-2
RMA specification. At its core, the MPI-2 RMA interface is composed of a set of communication
operations and two data access synchronization schemes: “active target” and “passive target”
synchronization.

2.1.1. One-Sided Communication Operations All MPI RMA communication operations occur in
the context of a window. A window is composed of a group of processes, specified at window-
creation time by a communicator, and a contiguous region of memory at each process. The memory
region at each process may differ in size and address at each process. MPI window creation is a
collective, potentially synchronous operation over the input communicator that occurs via a call
MPI Win create. In addition to a communicator, buffer pointer, and buffer size parameter, the caller
must specify a “displacement unit” and an optional set of MPI Info hints used to enable potential
optimizations by the MPI implementation. Only memory that has been exposed in a window can be
accessed by using one-sided communication operations.

The MPI-2 standard defines just three communication operations: MPI Put, MPI Get, and
MPI Accumulate. The process that invokes a communication operation is designated the origin,
and the process in which data is accessed is designated the target. The origin and target may be
the same process, although performing the corresponding role in each case. Origin communication
buffers are specified by passing a 〈pointer, count, datatype〉 triple, whereas target communication
buffers are specified by passing a 〈displacement, count, datatype〉 triple. This displacement value
is scaled by the displacement unit value given by the target process at window creation time.

The put operation transmits data from the origin to the target. The get operation transmits data
from the target to the origin. The accumulate operation transmits data from the origin to the target,
then applies a predefined MPI reduction operator to reduce that data into the specified buffer at the
target. The target and origin datatypes used in the accumulate operation may be derived datatypes,
but they must be composed of only one distinct basic element type.

Each of these communication operations must occur in the context of either an active target
synchronization epoch or a passive target synchronization epoch. In MPI RMA, all communication
operations are nonblocking and are completed at the end of the synchronization epoch.

2.1.2. The MPI-2 Data Consistency Model MPI-2 RMA defined the “separate” memory model,
which specifies the consistency semantics of accesses to data exposed in an RMA window.
This model was designed to be extremely portable, even to systems without a coherent memory
subsystem. In this model, the programmer assumes that the MPI implementation may need to
maintain two copies of the exposed buffer in order to facilitate both remote and local updates on
noncoherent systems. The remotely accessible version of the window is referred to as the public
copy, and the locally accessible version is referred to as the private copy.

When a window synchronization is performed, the MPI implementation must synchronize the
public and private window copies. Thus, MPI-2 forbids concurrent overlapping operations when
any of the operations writes to the window data; the only exception is that multiple accumulate
operations can perform concurrent overlapping updates when the same operation is used. Because
RMA communication operations are nonblocking, the programmer must ensure that operations
performed within the same synchronization epoch do not perform conflicting accesses. In addition,
because the MPI library is unaware of which locations are updated when the window buffer is
directly accessed by the hosting process, local updates cannot be performed concurrently with any
other operations. Any violation of these semantics is defined to be an MPI error.

2.1.3. Active Target Synchronization In the active target mode in MPI-2, data is transmitted from
the memory of one process to the memory of another, with direct participation from both processes.

The simplest form of active target synchronization uses the concept of a “fence.” All processes in
the window collectively call MPI Win fence in order to demarcate the beginning and end of RMA
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epochs. During these epochs the application may issue zero or more MPI communication operations
or in some cases may perform direct load/store operations to that process’s portion of the window.
RMA operations issued before the fence call began will be completed before the call returns.

The simplicity offered by fences comes at a cost to application flexibility. To address this,
MPI offers a more versatile, more complex synchronization mode known as generalized active
target synchronization (GATS). This facility is sometimes also known as post/start/complete/wait
(PSCW), referring to the primary synchronization routines involved in this mode. This mode
differentiates between two different epoch types: an exposure epoch and an access epoch. Processes
that will be accessed as targets must invoke MPI Win post calls, supplying a group argument to
indicate the set of peer processes that will perform communication operations targeting the posting
process. Those origin processes must all correspondingly invoke MPI Win start to begin an access
epoch before issuing any communication operations. The start routine also takes a group argument
indicating with which target processes the calling process will communicate. When the accessing
processes have posted all RMA operations, they must call MPI Win complete to end the access
epoch and force origin completion of the previously issued communication operations. Target
processes call MPI Win wait (or MPI Win test repeatedly) in order to wait until any communication
operations initiated during the exposure epoch are completed at the target (this process).

GATS makes synchronization more flexible by making it possible to limit the number of processes
with which any given process must synchronize to a minimal subset (e.g., neighboring processes
in a halo exchange operation). Only processes that actually communicate with each other must
synchronize. Furthermore, the synchronization pattern may be asymmetric in some ways because
of the separation of the exposure epoch from the access epoch.

2.1.4. Passive Target Synchronization For applications where synchronization should be avoided
or the communication pattern is difficult to predict, MPI offers an alternative to active target
synchronization, known as passive target synchronization. Processes perform communication
operations in access epochs demarcated by MPI Win lock and MPI Win unlock calls. Despite the
names, these routines do not provide a traditional lock or mutex. Instead they serve two primary
purposes: (1) to group one-sided communication operations and certain load/store accesses that
target a particular process, and (2) to ensure completion (i.e. visibility) of specific accesses relative
to other accesses.

These purposes are compatible with a lock/unlock implementation based on strict mutual
exclusion. However, the lock routine is not required to synchronously block in order to acquire such
a lock and may instead synchronize in the background or defer synchronization and communication
altogether until the synchronizing unlock.

An RMA lock may be either exclusive or shared. Performing accesses in an exclusive lock epoch
ensures that no other lock/unlock epochs (of either type) will appear to occur concurrently. A shared
lock allows multiple origin processes to access the window at the target concurrently. If both shared
and exclusive epochs are requested, MPI ensures mutual exclusion of shared and exclusive epochs.
The application is responsible for ensuring that accesses in a shared lock epoch do not conflict with
accesses from concurrent shared lock epochs originated by other processes.

2.2. MPI-3 Remote Memory Access Extensions

The MPI-3 standard extends the MPI-2 RMA functionality with improvements to the atomic
operations interface, finer-grained control over operation completion and synchronization in passive
target epochs, relaxed access restrictions when hardware-assisted coherence is available, and new
window types that enable dynamic exposure of memory for RMA and interprocess shared memory.

2.2.1. One-Sided Atomic Operations Three new atomic operations were added in MPI-3 RMA:
MPI Get accumulate, MPI Fetch and op, and MPI Compare and swap. Get-accumulate and fetch-
and-op both provide atomic read-and-update operations; get-accumulate is general purpose and
allows the programmer to provide derived datatypes and differing communication parameters for
each buffer, whereas fetch-and-op restricts its use to a single element of a predefined MPI datatype.
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MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 5

Because of these restrictions, fetch-and-op offers numerous optimization opportunities to the MPI
implementation, potentially reducing software overhead latencies and permitting direct use of
hardware-supported atomic operations.

Compare-and-swap atomically compares a “compare buffer” at the origin with the target buffer
and replaces the target buffer contents with the (separate) origin data buffer contents if the values
are equal. The original value of the target buffer is always returned to the caller at the origin. This
operation is limited to the integer subset of predefined datatypes, and the same datatype must be
used for all buffers.

All three of these new operations are safe to use concurrently with each other and the MPI-
2 accumulate operation. Atomicity for accumulate and get-accumulate operations with derived
datatypes or a count greater than one with predefined datatype occurs elementwise, at the granularity
of basic, predefined MPI datatypes. The atomic and accumulate operations are not atomic with
respect to put and get operations. Instead, accumulate with the MPI REPLACE operation may be
used as an atomic “put,” and get-accumulate with the MPI NO OP operation may be used as an
atomic “get.”

2.2.2. Request-Generating Operations All MPI RMA communication operations are nonblocking,
but MPI-2 operations do not return a request handle. Instead, completion is managed through
synchronization operations such as fence, PSCW, and lock/unlock. MPI-3 adds “R” versions
of most of the communication operations that return request handles, such as MPI Rput and
MPI Raccumulate. In turn, these requests can be passed to the usual MPI request completion
routines, such as MPI Wait, to ensure local completion of the operation. This provides an alternative
mechanism for controlling operation completion with fine granularity. However, these request-
generating operations may be used only in passive-target synchronization epochs (i.e., with
lock/unlock).

2.2.3. MPI-3 RMA Windows MPI-3 adds three new window types: MPI-allocated windows,
dynamic windows, and shared-memory windows. MPI-allocated windows are created by calling
MPI Win allocate. In contrast to MPI-2 windows where the user supplied the window buffer, MPI
allocates the buffer for this window, enabling the MPI implementation to utilize special memory
(e.g., from a symmetric heap or a shared segment) or optimize the mapping for locality.

All MPI windows are created collectively over the input communicator, and traditionally
each process could associate only one contiguous region of memory with the window. This
restriction posed significant challenges to applications that need to dynamically allocate and
deallocate memory. MPI-3 addresses this issue by providing a new dynamic window facility,
which collectively creates a window with no initially associated memory. Memory can then
be asynchronously attached to (or detached from) this window by individual processes. The
new routines MPI Win create dynamic, MPI Win attach, and MPI Win detach facilitate this new
functionality.

Shared memory programming can provide an efficient means for utilizing on-node resources [15].
To this end, many programmers combine MPI with OpenMP or a threading library, which adds to
the complexity of managing two parallel programming systems in the same program. MPI-3 adds
a new shared-memory window, created via MPI Win allocate shared, which allows processes to
portably allocate a shared-memory segment that is mapped into the address space of all processes
participating in the window. In addition, the new MPI Win sync routine that synchronizes load/store
operations and incurs less overhead than a full window synchronization. By using MPI RMA
synchronization and atomic operations, shared-memory windows provide programmers with a
complete, portable, interprocess shared-memory programming system.

2.2.4. Unified Memory Model No coherence in the memory subsystem or network interface is
assumed by the MPI-2 RMA “separate” memory model, resulting in logically distinct “public”
and “private” copies of the window copies described in Section 2.1.2. This conservative model is a
poor match for computers with coherent memory subsystems, as it does not provide access to the
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Load	   Store	   Get	   Put	   Acc	  

Load	   OV+NOV	   OV+NOV	   OV+NOV	   NOV	   NOV	  

Store	   OV+NOV	   OV+NOV	   NOV	   X	   X	  

Get	   OV+NOV	   NOV	   OV+NOV	   NOV	   NOV	  

Put	   NOV	   X	   NOV	   NOV	   NOV	  

Acc	   NOV	   X	   NOV	   NOV	   OV+NOV	  

(a) Separate Model

Load	   Store	   Get	   Put	   Acc	  

Load	   OV+NOV	   OV+NOV	   OV+NOV	   NOV+BOV	   NOV+BOV	  

Store	   OV+NOV	   OV+NOV	   NOV	   NOV	   NOV	  

Get	   OV+NOV	   NOV	   OV+NOV	   NOV	   NOV	  

Put	   NOV+BOV	   NOV	   NOV	   NOV	   NOV	  

Acc	   NOV+BOV	   NOV	   NOV	   NOV	   OV+NOV	  

(b) Unified Model

Figure 1. Valid concurrent (possibly overlapping) operations in the “separate” and “unified” memory models.
OV: overlapping permitted. NOV: only nonoverlapping permitted. BOV: overlapping permitted at single-

byte granularity. X: not permitted.

Netmod interface

MPICH

Channel layer

Channel interface

Device layer

MPI interface

ADI3 interface

Netmod layer

Device independent layer

PAMID

Application

CH3

SockNemesis

Figure 2. Internal interfaces and layers of MPICH.

system’s full performance and programmer productivity potential. A new “unified” memory model
was added in MPI-3 to address this shortcoming.

The unified model relaxes several restrictions present in the separate model by assuming that
the public and private copies of the window are logically the same memory. These restrictions and
relaxations are summarized in Figure 1. This figure shows which operations are permitted to occur
concurrently in the same window and whether those concurrent operations are permitted to access
overlapping regions of the window.

Support for the unified model is not required by the MPI-3 standard. Users must query the
implementation via the predefined MPI WIN MODEL attribute in order to ensure that a particular
window supports the unified model before taking advantage of its relaxed consistency semantics.

2.2.5. Passive Target Synchronization New synchronization mechanisms were included in the MPI-
3 passive target synchronization mode. MPI-2 passive target mode was restricted to a simple
lock/unlock interface, where an origin process could lock only one target at a time. MPI-3 permits
locking multiple targets simultaneously. It also offers a new MPI Win lock all routine that is
equivalent to locking each target in window with a shared lock.

When using lock-all, finer-grained synchronization can be achieved with the request-generating
operations discussed in Section 2.2.2. It can also be achieved with the new “flush” routines:
MPI Win flush and MPI Win flush local. These routines specify a particular target and ensure that
all operations initiated to that target before the flush are remotely complete at the target (in the case
of flush) or locally complete at the origin (in the case of flush-local). These routines also have “all”
variants, MPI Win flush all and MPI Win flush local all, that are equivalent to flushing each target
in the window in sequence.

3. ARCHITECTURE OF MPICH

MPICH is an implementation of the MPI standard developed at Argonne National Laboratory. A
primary goal of the project is to provide a portable high-performance implementation that can
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MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 7

be ported and adapted as necessary by third-party developers to support various architectures
and interconnects. For example, IBM and Cray have ported and adapted MPICH to support their
supercomputers. To realize this goal, MPICH is designed with various internal portability interfaces
allowing third-party developers the flexibility to choose the best interface when porting MPICH for
their system. Figure 2 shows these interfaces and the internal layers of MPICH. The top layer in the
figure is the application that uses the MPI interface to communicate with MPICH. Below this layer
is the device-independent layer. This layer implements functionality such as object management
and error handler management that would be common to all derivatives of MPICH. This layer also
implements collective communication operations, which can be overridden by lower layers if needed
to provide implementations that are optimized to a particular platform. The device-independent layer
exposes the ADI3 interface to the device layer below it. A developer has the option to implement
a device at this layer to support a particular platform. For example, the PAMID device supports
platforms using the PAMI interface, such as IBM’s Blue Gene/Q.

The ADI3 interface provides the greatest flexibility for the developer; however, implementing a
device using this interface also requires considerable effort because of the number of functions that
must be implemented. For this reason MPICH has a default device called CH3. The CH3 device
implements functionality such as message matching, connection management, and handling of one-
sided communication operations and exposes a significantly simpler interface called the channel
interface. Developers can choose to implement a channel to support their platform. The figure shows
two channels: Nemesis and Sock. Although there is an additional layer between a channel and the
application as compared to a device, common cases are fast-pathed through CH3 by using function
pointers or function inlining, so the overhead of the additional layer is minimized and in some cases
avoided entirely.

The Sock channel uses TCP exclusively for communication, whereas the Nemesis channel uses
shared memory for intranode communication and a network for internode communication. Nemesis
exposes the netmod interface that allows the developer to implement a network module to support a
particular interconnect. As with CH3, although Nemesis adds an additional logical layer between the
network module and the application, common cases are fast-pathed to avoid performance overhead.
In fact, the Nemesis TCP network module outperforms the Sock channel despite the additional
logical layer.

We implemented our messaging-based one-sided implementation in CH3 because (1) at this layer,
all channels and network modules will be able to use the one-sided operations without having
to reimplement them; (2) functionality that is needed by the one-sided implementation, such as
processing of MPI datatypes and handling of packets, is available in CH3 but not at a higher level;
and (3) an implementation of MPI-2 one-sided operations has previously been implemented in
CH3, so we can reuse some of the existing functionality. Next we briefly describe three aspects
of the CH3 architecture that are relevant to the implementation of messaging-based one-sided
operations: datatype processing, sending and receiving messages, and allocating and attaching to
shared memory regions.

3.1. Datatype Processing

MPI datatypes are descriptions of the layout of data in memory. A simple datatype may
describe a contiguous buffer, whereas a more complicated datatype may describe a section of a
multidimensional matrix. While the datatypes are defined by the application in a recursive manner,
CH3 processes the datatypes in a iterative manner to improve performance. In MPI a buffer is
described by a pointer, a datatype and a count specifying the number times the datatype repeats.
CH3 internally defines a segment object, which consists of a buffer pointer, datatype and count tuple
to identify the data to by sent or received, as well as an offset specifying a location in the stream
of bytes defined by the tuple. Once a segment is constructed, it can be passed to various datatype
processing functions either to pack the data into or unpack the data from a contiguous buffer or to
generate a different representation of the buffer (e.g., an I/O vector).
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3.2. Sending and Receiving Messages

While the channel is responsible for actually putting bytes into and pulling bytes out of the network,
CH3 assembles packets for sending and processes received packets. To send a packet, CH3 creates
the packet header, then calls a channel send function passing a pointer to the header and a description
of the data to be sent. If the data is contiguous, the description is simply a pointer to the buffer and the
size. For noncontiguous data the description consists of a datatype segment. The channel uses the
datatype-processing engine either to convert the description into a form usable by the underlying
network (e.g., an I/O vector) or to pack the data into contiguous buffers. The send functions are
nonblocking and therefore need to queue packets that cannot be immediately sent.

CH3 uses packet handler functions to process incoming packets. Once an entire header has been
received from the network, the packet handler function is determined based on the packet type and
is called with a pointer to the buffer where the packet is stored along with the number of bytes that
have been received. The channel does not need to know the size of the packet, only the size of the
header. If the buffer contains the entire packet, the handler will process the packet and then return
the size of that packet. If the buffer does not contain the entire packet, the handler will process as
much of the packet as possible and then return a request indicating where the channel should put
the remainder of the packet when it is received, along with a handler function to call when the data
has been received.

3.3. Allocating and Attaching to Shared Memory

CH3 provides functionality for allocating and attaching to shared-memory regions. The shared-
memory allocation function takes the size as an input parameter and returns a pointer to the allocated
region along with the a handle. The handle can be serialized into a character string that can then be
communicated to other processes. The serialized handle can be sent by using CH3 messages or using
an out-of-band communication mechanism such as the process management interface (PMI) [1].
When the serialized handle is received by another process, it can be used to attach to the shared-
memory region allocated by the other process.

4. DESIGN OF MPI-3 RMA IN MPICH

We have extended the MPICH RMA implementation with support for new MPI-3 RMA
functionality. Our implementation is integrated in CH3 and can be used with a variety of networks
that are supported as CH3 channels and Nemesis network modules, as described in Section 3. The
MPI-2 RMA design focused on a messaging-based design, and we have developed MPI-3 RMA
within this design space; in the near future, we plan to extend this design to leverage one-sided
network capabilities.

4.1. MPI-3 RMA Windows

In the MPICH RMA design, a window object contains base pointers and displacement units for all
processes in the window’s group. When an RMA operation is issued, the origin process calculates
the effective address at the target process and transmits this in the packet header. This approach
reduces the work that the target must do and in some cases, avoids a window object lookup at the
target. However, the use of an O(P ) structure can limit scalability. In the future, we will investigate
other approaches, such as transmitting the displacement instead of the effective address, in order to
improve scalability.

MPI-3 defines several new RMA window types, referred to as window flavors: MPI-allocated
windows, dynamically allocated windows, and MPI-allocated shared memory windows. MPI-
allocated windows allow MPI to map the memory that will be targeted by RMA operations,
potentially enhancing performance. In CH3, MPI-allocated windows allocate memory using the
device’s memory allocator, which can be used to allocate memory that is associated with the device.
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MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 9

Dynamically allocated windows enable a powerful new usage pattern where memory can be
asynchronously attached to and detached from the window by the origin process. The address of
the memory is used directly as the window displacement argument to RMA operations, obviating
the need for O(P ) structures. In the MPICH design, we expose all local memory in every dynamic
window, effectively making attach and detach operations no-ops. One could validate that operations
target only attached memory; however, this check has a significant performance penalty and is not
required by the MPI standard.

4.2. Window Synchronization

MPICH maintains RMA operation queues, which are flushed when an access epoch is
completed [31]. When a given window is in active target mode, all operations are batched in a
single queue, since the completion of any active target access epoch will require the completion
of all operations. When a window is accessed by using passive target mode, individual operation
queues are created to manage communication with each target. We distinguish active and passive
target access epochs through the state tracking discussed in Section 4.4. This permits more efficient
synchronization with individual targets, for example, flushing or unlocking an individual target
process.

MPI-3 introduced several significant changes to passive target synchronization, including new
flush and lock-all operations, as well as the ability to perform passive target epochs at multiple target
processes concurrently. Active target synchronization was unchanged in the MPI-3 specification,
and the existing MPI-2 design has changed very little. In addition to adding support for per target
operation queues, the MPICH MPI-3 implementation separates release of a passive target lock from
completion of operations in order to facilitate flush and request-generating operations.

Passive target lock and lock-all operations utilize the same locking facility in the MPICH design.
Lock-all is a one-sided operation that requests a shared lock, and it must be compatible with
(possibly exclusive mode) lock operations issued by other processes. Rather than performing a
nonscalable lock operation at all targets, the lock-all implementation relies on the synchronization
state tracking (see Section 4.4) to indicate that all processes can be targeted by RMA operations. We
track the synchronization state of each target and issue a lock request on the first synchronization
with the given process.

4.3. Implementation of Communication Operations

The MPICH RMA implementation uses the message-processing capabilities to perform RMA
operations in the target process’ address space. We define new CH3 packet types, packet handlers,
and request handlers for each new MPI-3 RMA operation. When performing an operation, the origin
process generates a packet header with the corresponding operation type; populates the header
with the communication parameters; and sends the header, any datatypes, and the data payload
to the target. When the packet header is received by the target, CH3 dispatches the packet handler
corresponding the packet type field in the message header, and the packet handler performs the
operation at target and sends a response to the origin, if needed.

If a derived datatype is specified for the target, an additional step is required to transmit the
serialized datatype, whereas predefined datatypes are compact and can be embedded in the packet
header. The derived datatype is serialized at the origin and transmitted following the packet header;
the size of the derived datatype is contained within the packet header and used by the target to
determine when the full datatype has arrived. Once the target has processed the packet header, it
may need to wait for the arrival of the datatype. To facilitate this process, it generates a request and
registers the operation’s request handler which the CH3 progress engine will use to continue the
RMA operation when additional datatype data has arrived.

The receipt of user data is also facilitated by the progress engine, through the use of requests.
For put and accumulate operations, once the datatype information has arrived in the data stream, the
remaining data forms the data payload and it is received and processed by using an additional request
handler. For get operations, the origin transmits a reference to its receive request in the packet header.
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Figure 3. RMA synchronization state tracking diagram. Dashed lines indicate that a particular state is
bypassed, depending on the fence state of the process.

This reference is included in the target’s response, and is used to match the get operation with the
corresponding local request that contains the origin’s communication parameters.

The new MPI Fetch and op and MPI Compare and swap operations restrict the datatypes that
can be used to ensure higher performance. For these operations, the RMA communication protocol
is simplified significantly. Because fewer communication parameters are needed, surplus space is
available in the packet header. We use this space to embed the origin data and avoid additional steps
required to transmit the payload data.

MPI-3 also introduced request-generating operations, which return a request to the user that can
be used to wait for completion of a specific RMA operation. In the MPICH implementation, we
use the MPICH extended generalized request framework to support these operations. We enqueue
request-generating operations in the corresponding RMA operations queue and return a request
handle that contains a reference to the window. When the user completes the request, we perform
a local flush of the window to the target process. We plan to improve this design by enabling
completion of only the operation corresponding to the request.

4.4. Efficient Synchronization State Tracking and Error Detection

MPI-3 added several refinements to passive target synchronization, including a lock-all passive
target communication mode, request-generating operations, and flush operations. In addition, MPI-
2 allowed only one passive target epoch at a time using lock/unlock operations; MPI-3 has lifted this
restriction and allows a process to initiate one passive target epoch to every process in the window’s
group.

We have redesigned the RMA error detection in MPICH to detect incorrect use of RMA
synchronization operations. An important design goal was that error checking add no more than
several tens of cycles of overhead. To achieve this, we took a state machine approach to defining
correct use of RMA synchronization calls at each process. The corresponding state transition
diagram we developed is shown in Figure 3. This diagram captures all correct uses of MPI calls;
any deviation is erroneous and is reported by the MPI implementation. Examples of incorrect usage
include unmatched lock/unlock calls, mixing of passive and active target synchronization, use of
flush or request-generating operations in active target, and mixing of passive target lock and lock-all
synchronization.

As shown in the diagram, fence operations require additional state to track. The fence called state
changes only during collective calls to fence. If fence has been called without the NOSUCCEED
assertion, it is possible to enter into a fenced active target access epoch. However, it is also valid to
ignore the call to fence (i.e., it may have closed an active target phase in the program) and perform
a different RMA access type. It is invalid to perform a fenced active target access epoch if another
synchronization mode is used on the window; however, we do not currently detect this error because
of the state tracking complexity.
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4.5. Shared-Memory Windows

The unified memory model introduced in MPI 3 allows for efficient one-sided operations on systems
with coherent memory. In [15] we described the design and implementation of shared memory
windows that can use the unified memory model. In this section we briefly summarize the design
and implementation of shared-memory windows in MPICH.

When a shared-memory window is created, the processes perform an all-gather operation to
collect the sizes of the individual window segments of each process. The total size of the window
is computed, and the root process (the process with rank 0 in the communicator associated with
the window) allocates a shared memory segment of that size as described in Section 3.3. The root
then broadcasts the serialized window handle, and the other processes attach to the shared-memory
region. Because each process knows the size of every other process’s window segment, each process
can compute the offset into the shared-memory region where any process’s window segment begins.
The pointer to the beginning of each process’s window segment is stored in an array.

If alloc shared noncontig info argument is specified when the window is created, the individual
process’s window segments are not required to be contiguously arranged, and the implementation is
free to allocate them in a more optimal manner; for example, each window segment may be aligned
on a page boundary. Rather than allocating a separate shared-memory region for each window
segment, a single shared-memory region is allocated as before, except that the size of each window
segment is rounded up to the next page size. In this way only a single shared-memory region needs
to be created and attached, but each window segment is aligned on a page boundary.

Put and get operations are implemented by having the origin process directly access the memory
of the target process in the shared memory region. Accumulate operations are required to be atomic
for a given basic datatype and operation, so an interprocess mutex is created for each window to
serialize accumulate and atomic operations. In the future, native atomic operations will be used
for datatypes and operations supported by the processor (e.g. MPI SUM on integer data). Because
processes are directly accessing the memory of other processes, window synchronization operations
include appropriate memory barriers to ensure the proper ordering of memory accesses between the
processes.

5. EXPERIMENTAL EVALUATION

We use our implementation of MPI-3 RMA to evaluate the performance impact of new functionality
and semantic changes introduced in MPI-3. Our RMA implementation has been integrated into
MPICH 3.0.1 and is publicly available. We evaluate the effectiveness of several major changes in the
MPI RMA specification: the new unified memory model, new atomic communication operations,
new passive target synchronization operations, and new window types.

We conducted our experiments on the Eureka cluster at the Argonne Leadership Computing
Facility. This cluster is configured with 100 nodes, each with two quad-core Intel Xeon processors
and 32 GB of memory. Nodes are connected by using Myricom 10 Gb/s CX4 Myrinet network
interfaces, configured with a 5-stage Clos topology. MPICH was configured to use the Myrinet MX
network module.

5.1. Impact of the Unified Memory Model

MPI-3 RMA defines the unified memory model, which relaxes window access semantics for systems
where hardware can provide the needed level of data consistency. A key difference between the
unified and separate memory models is that the unified model permits RMA operations concurrent
with nonoverlapping load/store operations.

We measure the performance impact of the unified memory model through a simple benchmark
where rank 0 directly accesses its window data while other processes are attempting to write to
a nonoverlapping location in rank 0’s window. This scenario frequently arises in applications that
operate directly on data exposed in a window, for example, by performing a DGEMM operation
on a matrix that is exposed for RMA. In the separate (MPI-2) memory model, rank 0 must use an
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buffer. The direct access interval length at rank 0 is varied, and timings are shown for the separate (MPI-2)

and unified (MPI-3) memory models, for 2 (2 nodes), 16 (2 nodes), and 32 (4 nodes) processes.

exclusive access epoch in order to avoid conflict between its load/store operations and remote RMA
operations; in MPI-3, the unified model enables all processes to use shared access epochs.

We show the result of this benchmark in Figure 4. The figure shows the average time to write data
in the separate (MPI-2) and unified (MPI-3) memory models. With MPI-2, since exclusive locks are
used, operations from different processes are serialized causing the average write time to increase
fairly linearly with computational cost. With MPI-3, since shared locks can be used, operations are
not delayed by rank 0’s direct access interval, and the average write time stays fairly constant.

5.2. Impact of Atomic Operations

MPI-3 introduced several new atomic operations, including compare-and-swap, fetch-and-op,
and get-accumulate. These operations greatly increase the capabilities of MPI, especially in
the construction of higher-level synchronization operations. A significant limitation in MPI-2
was that the construction of a high-level mutex library required the use of nonscalable data
structures [11, 28]. Mutexes are required by a variety of higher-level one-sided libraries, including
shared file pointer I/O [18, 28] and PGAS models [10]. In this experiment, we demonstrate
the use of MPI-3 atomic operations through the creation of a mutex library that uses the MCS
algorithm [20], which provides better scalability and significant performance gains in the presence
of lock contention.

5.2.1. MPI-2 Mutex Algorithm The best-known mutex algorithm for MPI-2 RMA [28] uses a
byte vector B of length nproc located on the process hosting the mutex; the ith entry in this
vector indicates whether process i has requested the lock. Initially B[0 . . . nproc− 1] = 0. A lock
operation from process i performs several nonoverlapping communication operations in a single
MPI RMA exclusive access epoch: entry B[i] is set to 1, and all other entries are fetched. If all
other entries are 0, the lock operation has succeeded; otherwise the lock operation has effectively
enqueued process i in the waiting queue for the mutex. Once enqueued, the process waits on an
MPI Recv operation from a wildcard source.

When process i performs an unlock operation, it again performs an exclusive RMA access epoch
on B that sets B[i] = 0 and fetches all other entries. B is then scanned for an enqueued request
starting at entry i+ 1, which ensures fairness. If a request is found in the queue, a zero-byte
notification message is sent to this process, forwarding the lock. If no request is found, the unlock
is finished.

This algorithm has two significant drawbacks. It allocates an array of size O(P ) bytes at the
process that hosts the mutex. In addition, it requires the use of an exclusive access epoch in order to
access the mutex structure.
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Figure 5. Average time per lock-unlock cycle for a mutex on rank 0, requested by all processes 10,000 times.

5.2.2. MPI-3 Mutex Algorithm We have created a new mutex library, which uses the MCS
algorithm [20]. Like the MPI-2 algorithm, this is also a fair, queueing mutex. Rather than storing
the queue on a single process, as was the case in the MPI-2 algorithm, the MCS algorithm creates a
distributed linked queue. A shared tail pointer is created on the process that hosts the mutex and all
processes allocate one list element, which holds the next pointer, an integer value that indicates the
next process waiting on the mutex.

Initially, the tail pointer contains −1, indicating that the mutex is available. When processes
request the mutex, they perform an atomic swap to exchange their rank for the value in the tail
pointer. If the swap operation returns−1 the process has obtained the mutex; otherwise it is the new
tail of the list and it updates the next pointer of the previous tail process’s list element. In order to
ensure data consistency, list elements are updated by using the fetch-and-op operation, where the
MPI REPLACE operation is used to write to the shared location and the MPI NO OP operation is
used to read it. Once they have updated their ancestor’s next pointer, enqueued processes wait in an
MPI Recv operation for the previous process to forward the mutex.

When releasing the mutex, the last process must reset the tail pointer to −1. An atomic compare-
and-swap is performed on the tail pointer; if the process releasing the mutex is the tail, it replaces the
old tail pointer with−1. Otherwise, the process polls for its next pointer to be updated and forwards
the mutex to the next process.

In contrast with the MPI-2 algorithm, the MCS algorithm in MPI-3 uses a distributed queue,
which allocates space for one integer value per process. In addition, it utilizes new atomic compare-
and-swap, update, and read operations that enable processes to use the shared lock access mode.

5.2.3. Performance Comparison Figure 5 shows the average time to acquire and release the mutex
in the MPI-2 and MPI-3 mutex libraries. A single mutex is created, and all processes perform
10,000 lock and unlock operations. While both mutexes use a queueing algorithm that does not
poll over the network, the MPI-3 MCS algorithm uses a shared lock that enables a greater amount of
concurrency and better tolerance of contention. For smaller process counts, there is roughly an order
of magnitude difference in lock-unlock latency, which grows to nearly two orders of magnitude with
256 processes.

5.3. Impact of Accumulate Operation Ordering

MPI-3 introduced an optional capability that orders accumulate operations issued by a particular
origin process, at each target. This has a direct impact on programming models and algorithms that
require location consistency—that a given process observes the results of its own operations in the
order in which they were issued. Models such as ARMCI [24] and GA [25] utilize this consistency
model. This model is believed to be convenient because it resembles shared memory programming
and is easier to utilize at an application level.
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Lock(rank)
Put(write_data, rank)
Unlock(rank)

Lock(rank)
Get(read_data, rank)
Unlock(rank)

(a) Ordering by epoch

Lock_all()

...

Accum(write_data, rank, REPLACE)
Get_accum(read_data, rank, NO_OP)
Flush(rank)

(b) Ordered accumulate operations

Figure 6. Pseudocode for the location consistent read-after-write benchmark. In MPI-2, separate epochs are
needed to order operations; in MPI-3, ordering is provided for accumulate operations.
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Figure 7. Average time per write followed by read between processes on two nodes, using MPI-2 with and
without the lock-op-unlock optimization, and MPI-3 with ordered accumulate operations.

In Figure 6 we show pseudocode for a simple benchmark that performs a write operation followed
by a read to the same process. Location consistency can be achieved by using individual epochs (the
approach needed in MPI-2) or by using ordered accumulate operations. Accumulate operations are
ordered by default in MPI 3.0; to improve performance, this behavior can be disabled using an info
argument when the window is created.

Figure 7 shows the latency for location consistent read-after-write between two processes using
the ordered epochs (MPI-2) and ordered accumulates (MPI-3) approaches. MPICH includes an
optimization that merges the lock, RMA operation, and unlock operations into a single one-way
communication for writes and a single round-trip communication for reads [31]. We show the MPI-2
implementation with and without this optimization; when the optimization is disabled, the protocols
shown in Figures 12a and 12d are used. From this data, we see that accumulate ordering results in a
significant reduction in latency, because of the reduction in RMA synchronization overheads.

5.4. Impact of Synchronization Operations

MPI-3 has introduced new synchronization operations for passive target communication, including
lock-all and flush operations. These operations provide lighter-weight synchronization than MPI-
2 lock/unlock epochs do. In addition, MPI-3 accumulate operations allow concurrent overlap of
accumulate calls with get-accumulate calls that perform a no-op (i.e., atomic read). This allows
applications to perform concurrent reads and writes to overlapping locations in the window, with
well-defined results. The combination of these new semantics and operations allows applications to
express many algorithms by using MPI shared locks, which greatly increases the concurrency with
which data can be accessed.

5.4.1. Dynamic Linked List Construction Benchmark We have created a linked list construction
benchmark that can benefit from several of these new MPI-3 semantics. This benchmark uses a
dynamic window; processes dynamically create new list elements, attach them to the window, and
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Process 0 Process 3Process 2Process 1

Figure 8. Structure of the linked list created by the dynamic linked list construction benchmark.

for (;;) {
if (t.rank == p-1) {

Lock(EXCL, t.rank)
Put(t.rank,

elem_ptr)
Unlock(t.rank)
break

}
else {

Lock(EXCL, t.rank)
Get(t.rank,

next_t)
Unlock(t.rank)

if (new_t.rank >= 0)
t = next_t

}
}

(a) MPI-2: Exclusive Lock/Unlock

for (;;) {
if (t.rank == p-1) {

Lock(SHR, t.rank)
Acc(t.rank, REPLACE,

elem_ptr)
Unlock(t.rank)
break

}
else {

Lock(SHR, t.rank)
Get_acc(t.rank, NOP,

next_t)
Unlock(t.rank)

if (new_t.rank >= 0)
t = next_t

}
}

(b) MPI-3: Shared Lock/Unlock

for (;;) {
if (t.rank == p-1) {

Acc(t.rank, REPLACE,
elem_ptr)

Flush(t.rank)
break

}
else {

Get_acc(t.rank, NOP,
next_t)

Flush(t.rank)

if (new_t.rank >= 0)
t = next_t

}
}

(c) MPI-3: Lock-All

Figure 9. Pseudocode for linked-list traverse-and-append loop in each idiom.

append them to the list. Creation of such a dynamic, distributed data structure is not possible in
MPI-2, because windows are fixed in size and must be created collectively. Rather than storing the
tail pointer in a fixed location, all processes traverse the list to locate the tail. Thus, this benchmark
captures an application behavior where processes traverse a dynamically growing linked list—for
example, a work list in a producer-consumer computation.

In order to produce a deterministic result, each process p appends a new element only when the
tail pointer points to an element at process p− 1, as shown in Figure 8. This process repeats until
each process has appended N elements. Initially, process 0 creates the head of the list and broadcasts
the pointer to all other processes. Pointers in MPI dynamic windows are represented by using the
tuple 〈rank, displacement〉, and we use a rank of −1 to indicate a NULL next element pointer.
When the next element pointer of the current list item is NULL, processes poll on the location of
the next pointer until it is updated.

The dynamic linked list construction benchmark can be expressed by using three different
synchronization idioms that utilize varying degrees of MPI-3 synchronization. Pseudocode for
each idiom’s linked-list traverse-and-append loop is shown in Figure 9. The exclusive lock/unlock
implementation uses only MPI-2 communication and synchronization operations (but uses MPI-3
dynamic windows). The shared lock/unlock implementation uses MPI-3 accumulate operations to
enable the use of MPI-2 shared-mode locks. The lock-all implementation adds the use of flush to
complete communication and avoid repeated calls to lock.

5.4.2. Performance Evaluation In Figure 10 we compare the performance of the MPI-2 and MPI-3
implementations of the linked-list construction benchmark. A key factor in the performance of this
benchmark is the ability to deal with high amounts of reader-writer contention as each element
is appended to the list. If we assume first-come, first-served processing of RMA operations at
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Figure 11. Linked list read and write operation latency on the Eureka cluster.

target processes, each writer that appends an element to the list must wait for an average of P/2
readers to complete polling read operations before the write succeeds. For a list of N elements and
a communication latency of L, the expected execution time is O(N · P/2 · L). Under high amounts
of contention, the latency of read and write operations L increases proportional to the number of
processes, P . Thus, the expected execution time is O(N · P 2).

From this figure, we see that the MPI-2 exclusive lock communication mode provides the least
tolerance in the presence of contention. In comparison, the MPI-3 implementations use the new
accumulate operations that enable both to use a shared lock, providing greater concurrency and less
overhead. At 256 processes, the MPI-3 implementation provides an more than an order of magnitude
improvement in performance.

Comparing the MPI-3 shared lock and lock-all implementations, we see the additional protocol
overhead reduction that is provided by the MPI-3 lock-all mode of operation. We measure this
gap directly in Figure 11, which shows that lock-all provides a significant latency reduction by
eliminating the communication involved in the lock operation. The corresponding protocol for each
operation is shown in Figure 12. For the experiments in this section, we have disabled the lock-op-
unlock merging optimization to provide a fair comparison, because it is not yet implemented for
get-accumulate or flush operations.

Comparing Figures 12a and 12b, we see that exclusive write epochs can have a lower protocol
overhead than shared write epochs. The added overhead in the case of shared access is to ensure
remote completion, in case of third-party communication. When exclusive access epochs are used,
the target ensures that all operations from an epoch are complete before granting access to another
process. In Figure 10 we see the benefit from the reduced protocol on up to four processes, but
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Figure 12. Communication protocols used for linked-list pointer update and chase operations.

the serialization of exclusive access epochs quickly overcomes the performance advantages of the
simpler protocol.

5.5. Impact of Window Types

Many applications generate and operate on data that mutates in size or layout during execution. To
accommodate these types of algorithms, MPI-3 has added a dynamic window that allows processes
to asynchronously add and remove memory to and from their window. In contrast, under MPI-
2, windows are immutable and are created collectively. Thus, resizing a window required the
programmer to collectively create a new window, copy data, and destroy the old window.

Figure 13 shows the time required to double the size of an RMA window using the MPI-2
approach and using MPI-3 dynamic windows. The figure shows traces for windows with an initial
size ranging from 1kB to 16MB. For each window size, we vary the number of processes. Creating
a window requires several collective operations, including an all-gather operation, whose overhead
increases with the number of processes. In contrast, attaching memory to a dynamic window is a
local operation with a fixed cost, regardless of the buffer sizes and the number of processes.

6. RELATED WORK

A variety of low-level one-sided communication systems have been created, including Shmem [8],
ARMCI [24], and GASNet [4]. These systems have been used independently and as runtime systems
to support higher-level global address space models, such as Global Arrays [25], UPC [33], Co-
Array Fortran v1.0 [26], Coarray Fortran v2.0 [19], Chapel [6], and X10 [7].

UPC implementers were unable to utilize MPI-2 RMA as a runtime system because of a semantic
mismatch between MPI and UPC that could not be overcome at the runtime level [5]. Instead, an
active message runtime was built on top of MPI two-sided messaging [3]. It is hoped that MPI-3 has
addressed this gap and that it will be suitable as a low-level, portable runtime system for a variety
of one-sided and global address space models.
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Figure 13. Time required to double the size of a window, by reallocating the window (MPI-2) versus
attaching an additional buffer to a dynamic window (MPI-3).

The MPI-2 RMA interface has existed for over a decade, and significant effort has been invested
in improving its performance [2, 12, 13, 16, 17, 21, 29, 31, 32, 35] and in building higher-level
libraries using MPI RMA [18, 10]. MPI RMA has been demonstrated to be effective in a variety of
applications, including earthquake modeling simulations [9] and cosmological simulations [30].

7. OUTLOOK AND FUTURE WORK

MPI-2 RMA defined a conservative but extremely portable system for one-sided communication.
The MPI-2 memory model, termed the “separate” model in MPI-3 RMA, provided an efficient
and portable interface on systems such as the Earth Simulator, then the world’s fastest machine.
However, the separate model did not exploit hardware that provided stronger guarantees about
memory coherence (the MPI-3 “unified” model) or remote atomic operations; in addition, the
completion models limited some of the common uses of one-sided programming. The enhancements
provided by MPI-3 RMA have addressed these and other limitations and have resulted in a powerful,
well-defined RMA model that fits within the MPI environment and can perform efficiently on
current and future systems.

In this work, we have presented the first complete implementation of the MPI-3 RMA
specification. While our implementation is feature complete, many opportunities for performance
optimization and system integration still remain.

7.1. Management of RMA Communication and Synchronization Operations

A particularly important area for performance optimization is the management of RMA
operations and synchronizations. Two key areas of future work are (1) piggybacking and merging
synchronization messages with RMA operations and (2) efficiently managing RMA operations to
optimize for short, latency-sensitive epochs, and long, bandwidth-bound epochs.

The design of MPI RMA synchronization gives the implementation great flexibility in deciding
when to issue RMA operations. The most obvious approach is an eager approach, where operations
are issued as they are encountered; and for large transfers this is often an efficient choice. However,
for short updates such as a single word put or accumulate, this approach generates a significant
amount of network traffic as well as large latencies while waiting for operations to complete. As
shown in Figure 12, epoch synchronization operations can result in several additional messages.

An alternative lazy approach to synchronization queues all operations and waits until the unlock
call to process them. When this approach is used, synchronization operations can be piggybacked,
merged, or in some cases eliminated, yielding significant communication latency improvements. In
the case of active target synchronization, it is possible to eliminate one of the barriers within the
fence operations in exchange for a single reduce-scatter operation [12, 31]. The lazy approach is
advantageous when epochs contain few operations and perform short data transfers. However, when
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there are either large numbers of RMA operations or the operations involve large amounts of data,
it is often better to issue those operations as they are encountered. Thus, neither the eager nor lazy
methods are always the best choice.

Until recently, MPICH implemented only the lazy synchronization method. We are currently
implementing an adaptive method, described in [36], that can automatically switch from the lazy to
the eager algorithm with low overhead, providing the benefits of both approaches transparently to
the user. In addition, once both methods are implemented, it is easy to support user-supplied hints
(e.g., through an “info” key when the MPI RMA window is created) on the type of data transfers
that will occur.

7.2. Extensions for One-Sided Networks

The current messaging-based implementation of MPI RMA provides good performance for
networks that do not natively support one-sided operations. However, many modern networks
provide one-sided and RDMA support, which can yield considerable performance benefits.

We are currently investigating an extension to CH3 to better support devices that provide
one-sided primitives. Such support would require the addition of function-pointers for network-
supported one-sided operations to CH3’s per connection data structure, the virtual channel structure.
In addition, a channel can provide different function pointers per connection, depending on whether
shared-memory or network communication should be used to perform one-sided accesses at the
target. Significant challenges in this work will include the maintenance of data consistency and
operation ordering when multiple communication mechanisms are used, for example, when put/get
use RDMA, but long-double-precision accumulate requires the use of messaging.
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