Inference of Building Occupancy Signals Using

*

Moving Horizon Estimation and Fourier Regularization

Victor M. Zavala
Mathematics and Computer Science Division
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

Abstract

We study the problem of estimating time-varying occupancy and ambient air flow signals us-
ing noisy carbon dioxide and flow sensor measurements. A regularized moving horizon estima-
tion formulation is proposed that forces time-varying signals to fit smooth Fourier expansions.
We demonstrate that the regularization approach makes the estimator robust to high levels of
noise. In addition, it requires minimal information about the shape of the signals. Computational
experiments using synthetic and real data are presented to demonstrate the effectiveness of the
approach.
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1 Introduction

Occupancy estimation is key for control and measurement and verification (M&V) tasks. From a
control standpoint, such information is needed in order to determine the heating and cooling loads
as well as ventilation rates necessary to maintain comfort and air quality conditions [21, 12]. This
is particularly important in predictive control systems where load predictions (i.e., disturbances) are
necessary. Occupancy estimates are required in M&V tasks in order to construct baseline building
energy use models [6]. These baseline models are later used to assess energy savings of retrofits (in-
cluding new control systems). In both these tasks, low-resolution and building-wide estimates are
often sufficient [27, 14, 12]. Low-resolution estimates are also important because both control and
M&V systems need to be low cost. Consequently, the use of a small number of carbon dioxide and
air flow sensors is preferred. More advanced and sophisticated applications of occupancy informa-
tion include emergency response and occupancy behavior analysis for building design. These tasks
require high-accuracy and zone-level estimates [7, 13, 25, 23]. Consequently, the required sensor
networks tend to be more expensive because they involve vision and radio frequency identification
(RFID) systems, among others. In this paper, we focus on occupancy estimation using carbon dioxide

and air flow measurements.
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The literature on occupancy estimation techniques abounds. To the best of our knowledge, how-
ever, constrained moving horizon estimation (MHE) has been considered only in [13]. The rest of
the approaches available are based on simplified maximum likelihood formulations and steady-state
model approximations [25, 14, 27, 8]. The benefits of MHE are well known [5, 32, 9]. Of particular
interest is the fact that MHE provides a flexible framework to regularize estimates by using priors and
constraints derived from diverse sources of information and engineering intuition. In addition, MHE
can handle nonlinearities in a systematic manner, and it can be adapted to simultaneously estimate
time-varying input and parameter signals (e.g., errors-in-variables formulations). These practical
benefits have been demonstrated in [4, 13, 32]. Stability properties and extensions to hybrid systems
have been presented in [19, 1, 31, 3]. Techniques to estimate noise statistics have been presented in
[15, 17, 11].

In this work, we explore a different form of regularization for MHE. We propose to regularize
time-varying signals by forcing them to fit smooth Fourier expansions. The need for regularization
is motivated by the occupancy estimation problem where occupancy and air flow signals tend to
be highly sensitive to sensor noise [27]. In other words, the signals tend to be weakly observable. In
addition, limited information about the shape of the occupancy trends is normally available to enable
prior and constraint regularization. The reason is that occupancy trends strongly depend on the
building type. For instance, office buildings and schools have entirely different profiles [8, 27, 2, 20].
The problem of estimating time-varying input signals is also important in industrial systems where
trends of fouling coefficients and kinetic parameters are needed [32, 5, 22]. Other application areas
are disease infection models [29] and psychology [18].

The idea of regularizing time-varying signals using by smoothing functions has been widely used
in regression analysis [28, 18, 16]. These studies use splines and piece-wise polynomials with known
derivative and growth behavior in order to induce desired signal behavior. We exploit similar capa-
bilities within general MHE formulations to infer time-varying occupancy and air flow signals. We
use Fourier expansions to capture the inherent periodicity of occupancy and flow signals prevail-
ing in buildings. We demonstrate that MHE formulations regularized in this form can significantly
reduce estimate volatility and sustain strong levels of noise.

The paper is structured as follows. In Section 2 we describe the building system model. In Section
3 we present the MHE formulation under study and describe the Fourier regularization procedure.
A series of numerical experiments is presented in Section 4 using synthetic and real data. In Section

5 we summarize our conclusions and briefly discuss future work.

2 Occupancy Estimation

We consider the problem of inferring the number of occupants n,.(7) in a space of volume V' using
sensor signals of carbon dioxide C(7) and inlet air flow g;,, (7). The building-wide mass balance of
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the system is given by

1 dm

EE(T) = an(’r) - QOut(T) + qu(T) - QGacf(T) (21&)
V%(T) = Qm(T) - C; (7') - QOut(T) . C(T) + Qinf(T) . Cm(r) — Qeaf - C(T) + G- noc(T)- (21b)

The total air mass is given by m(7). The inlet concentration C;,(7) is the atmospheric concentra-
tion and is assumed to be constant. The outlet, infiltration, and exfiltration flows are denoted by
Qout(T); @in g (7) and ge, (), respectively. G is the average CO, generation rate per occupant, and p(7)
is the air density.

Aninternal feedback controller ensures that system pressure remains constant, which implies that
the mass m(7) is constant and 0 = ¢;n(7) — Gout(T) + @inf(T) — Gexyr(7). Using this relationship, we
have that

dc

V=
dt

(7) = (@in(7) + ding (7)) - (Cin(7) = C(7)) + G - g (7). (2.2)
Note that the exfiltration and outlet flows do not appear in the balance equation. Buildings are
typically operated under positive pressure (internal building pressure higher than atmospheric) [26,
14]. This effectively minimizes infiltration. Hence, in this case, once can assume that g;,,¢(-) ~ 0. Note
that this assumption does not hold in the case of natural ventilation [20]. With this, we have

ac

V=
dt

(1) = gin(7) - (Cin(7) = C(7)) + G - 16e(7). (2.3)
In this balance we assume that sensor measurements for C'(7) and ¢;,(7) are available while the
unknown signal is n,.(7). We treat ¢;,(7) as an unknown signal, however, in order to account for
highly noisy signals. This gives an errors-in-variables formulation.

In Section 4 we present evidence that the proposed model is sufficient to obtain consistent building-
wide occupancy estimates. The model has been used in other real occupancy estimation studies re-
ported in the literature [12, 27], but it can certainly be extended in a number of ways by including
models of infiltration and exfiltration rates and by modeling the recycle ducts [27]. These more de-
tailed models, however, will also require of additional sensor information that might not be available
in a typical building. While these model extensions can potentially improve estimates, we prefer
to leave them as a topic of future work and instead focus on the MHE formulation and explore the
benefits of regularization.

3 MHE Formulation

The sensor signals are assumed to follow Gaussian distributions C(7) ~ N(C(7),02), gin(T) ~
N (Gin (1), agm) with known and constant variances aﬁin? oZ. The means are the sensor readings
C(7), @in(7). The prior initial condition at time ¢ — 7', where T is the estimation horizon is also as-

sumed to be Gaussian C(t — T) ~ N'(C(t — T), c%) as this is also measured.
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3.1 Cost and Constraints

The estimator minimizes the following log-likelihood function at time ¢:

2
20Qin

t—t 1 (7)) — Gin (T))? )= C(()? ) dr
b= [ (o () = @) + 4oy (C0) - C)? ) e

1
207,
We constrain the estimator to the physical CO, dynamics (2.3) defined over 7 € [t — T, t].

It is well known that bound constraints are an effective way to regularize MHE problems. This
helps MHE filter out regions of high probability with no physical meaning (e.g., negative concentra-
tions, unrealistic occupancy levels) [4]. We add the following constraints to the MHE problem

Lo(r) < C(r) < Uc(r) (3.5a)
Lo (7) < oe(7) < Uny(7) (3.5b)
qu'n (T> < qin(T> < UQm (T)a (35C)

for T € [t — T,t]. Here, L;(7), U;(7) are lower- and upper-bound trajectories with i € {C, noc, ¢in }-

3.2 Fourier Regularization

In certain applications, constraints and likelihood priors are insufficient to achieve stable estimates.
The reason may be the inherent weak observability of the system [10]. As we will see in Section 4,
this is the case for occupancy estimation. We propose to regularize the problem by assuming that
occupancy and flow signals vary smoothly in time. Consequently, these can be forced to fit smooth
functions, and we can estimate the coefficients as part of the estimation procedure. Because the
signals arising in buildings are periodic, we propose to use Fourier expansions. The expansions for
occupancy and input flow are given by

Nnoc

Noe(T) = Y _ (ad,,_ - cos(j0(7)) +bj, _-sin(j6(r))) (3.6a)
7=0

gin(T) = _ (a}, - cos(jO(r)) +b], -sin(j6(7))). (3.6b)
7=0

These are defined over 7 € [t — T, t]. The expansion domain is symmetrized by using the change of

o(r) = (T_(;_T)> m— <1 - T_(tT_T)> . (3.7)

This ensures that —7 < 0(7) < +7 with 8(t — T) = —m and 0(t) = +n. The number of expansion
Iy

variables,

terms for each signal is given by n} for i € {noc, gin} with J=0,..,n, i € {noc, gin } being the
corresponding coefficients.

We highlight that it is in principle possible to tackle the occupancy inference problem by using
recent approaches for covariance estimation [17, 10]. In particular, these approaches would treat
the occupancy signal as a stochastic process for which its autocorrelation structure (i.e., its dynam-

ics) would be inferred from data. We have not tested these approaches because they are currently
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based on unconstrained Kalman estimators. In our case, we are seeking approaches to infer time-
varying signals under a general optimization-based MHE framework capable of: i) simultaneously
estimate input and disturbance signals, ii) it handles constraints, and ii) it can deal with complex
physical models for which Kalman estimators are cumbersome to implement or are computationally
intractable [32]. We acknowledge, however, that it would be of interest to compare the performance
of both approaches or consider hybrid variants. We leave this as a topic of future work.

3.3 Implementation and Computational Issues

To solve the MHE problem, we discretize the problem applying an Euler scheme with N + 1 terms
each of length At. We assume that the discretization mesh and measurement sampling intervals
coincide. After discretization the MHE problem becomes a nonlinear program of the form

min Z < (Gin (i) — Gin(Tr))* + 201%’(6'(77{;) — C_'(Tk))2> (3.8a)
QML

s.t. (3.8b)

VC(TkH)A; ) Gin(Th+1) - (Cin(1) — C(78)) + G~ Noc(Tk) (3.8¢)

Noe(Tk) = Z (at,. - cos(j0(y)) + bl - sin(j6(71))) (3.8d)
=0

Gnlm) = 3 (ad, - cos(j0(ry)) + b, -sin(j0(7e))) (3.8¢)
=0

Lo(m) < C(mk) < Uc(mk) (3.8f)

LQin (Tk) < Qin(Tk) < qu (Tk) (38g)

Lo (k) < Moe(Tk) < Unp, (T1), (3.8h)

with & = 0, ..., N — 1. We note that the Fourier expansion constraints induce a regularization effect.
When a single expansion term is used, we have a constant signal (estimator is fully constrained) and
given by a? because cos(0) = 1,sin(0) = 0, k = 0, ..., N. This gives the maximum possible cost. When
the number of expansion terms is equal to the number of discretization steps, we have that the signal
at each step can take any value desired. This gives maximum flexibility and the minimum possible
cost. In other words, the solution is equivalent to that of the unregularized MHE problem,

min Z ( (Gin (%) — qin(T]g))2 + 2%(0(77@) - C(Tk))2) (3.9a)
qm el

s.t. (3.9b)

VC(TkH)A; @ _ Gin(Te+1) - (Cin(1) — C(78)) + G~ Noc(Tk) (3.90)

Lo () < C(m) < Uc(r) (3.9d)

Ly, (1) < @in(mk) < Uy, (Tk) (3.9¢)

Lnoc (Tk) < noc(Tk) < UnoC (Tk) (39f)



We note that the expansion constraints (3.8d) and (3.8e) can be written in matrix form as

noe = Iy, .an,, +I'n, bn,. (3.10a)

Here, n,., q;n,a;, and b; are variable vectors for the signals and coefficients, respectively. The ma-
trices II; have (k,j) entries given by cos(j - (%)), k = 0,...N, 7 = 0,..,n4, i € {noc,Gin}- A
similar definition follows for matrices I'; with entries sin(j - 6(7;)). We emphasize that these are
dense (N + 1) x (n;) matrices and induce dense blocks in the Karush-Kuhn-Tucker (KKT) system of
problem (3.8). This will deteriorate the computational efficiency of sparse factorization routines used
in optimization solvers because they limit pivoting flexibility and induce large amounts of fill-in, as
we demonstrate in the following section. This situation can be managed, however, by reducing the
number of expansion terms and the horizon length. In particular, in the next section we will see that
as the horizon is shortened, the number expansion terms can also be reduced, leading to significant
improvements in computational time.
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Figure 1: Real and sensor signals for CO; and inlet flow used in synthetic study.

4 Numerical Studies

We demonstrate the effectiveness of the regularization procedure using a study with synthetic data.
We use a study with real sensor data to demonstrate that the model coupled to regularized MHE

provide realistic occupancy estimates.
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Figure 2: Real and inferred occupancy signals for MHE under no regularization (top). Real and
inferred signals for MHE with regularization (bottom).

4.1 Synthetic Data

For the synthetic study, we collected real ambient flow data from an office building and simulated a
periodic occupancy profile with a peak occupancy of 275 during weekdays and 75 during weekends.
Using these two inputs we simulate the dynamics of CO; using the model (2.3). We corrupt the
CO; and ambient flow signals with small amounts of Gaussian noise (standard deviation of 5% of
the mean). The signals are presented in Figure 1. The building under study has a total volume
of V.= 1.6 x 10° cf. We assume a CO, generation rate per occupant of G = 0.011 cfm [14]. The
maximum occupancy rate is set to 300 for weekdays and 100 for weekends. We use this to construct
piecewise constant bounds L, Uy, for the occupancy signal. The lower and upper bounds for the
input flow are set to 10,000 and 50,000 cfm, respectively. The lower and upper bounds for the CO,
concentration are set to 400 and 600, respectively. In this first set of experiments we consider a data
set with 1,280 time steps and step sizes of 30 minutes (26 days). We run the estimator using the entire
horizon. In a later set of experiments we analyze the effect of using a receding horizon approach. The
number of expansion coefficients was set to n} = 140 for each signal i € {noc, gin }-

4.1.1 Regularization Effect

We run the MHE estimator with and without Fourier regularization. The inferred occupancy signals
are presented in Figure 2, and the ambient flow signals are presented in Figure 3. As can be observed,
slight amounts of noise make the estimates highly volatile. We emphasize that volatility in estimates is
obtained even if the variance of the sensor errors is known. This indicates that the signals are weakly
observable. In other words, slight perturbations on the measurements induce large deviations in
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Figure 3: Real and inferred inlet flow signals for MHE under no regularization (top). Real and in-

ferred signals for MHE with regularization (bottom).

the estimates. The reason is the lack of sufficient sensor excitation required infer the entire signal
dynamics. This conclusion is reinforced by the fact that the estimates are much more volatile around
the flat peaks compared to the transients. The regularization procedure is effective at eliminating this
volatility. In addition, we can see that regularized MHE recovers the shape of the occupancy peaks.
In Figure 4 we present cumulative distributions (performance profiles) for the estimation error of
the occupancy and flow signals. The horizontal dashed lines indicate the 95% level (i.e., 95% of the
time steps). As can be seen, the regularized MHE approach gives errors of less than 10 occupants for
95% of the time. Relative to the peak occupancy of 275 occupants, this represents an error of 3.6%.
The unregularized approach has errors of less than 50 occupants 95% of the time and a relative error
of 18%. The regularized approach yields an improvement of 80% in the 95% error threshold. For the
ambient flow the error obtained with the regularized approach is less than 1,200 cfm for 95% of the
time while the error of the unregularized variant is less than 2,000 cfm for 95% of the time. This is
an improvement of 40%. This indicates that the benefit is more pronounced for the occupancy signal

because this is not measured, as opposed to the flow signal.

4.1.2 Robustness to Noise

To demonstrate the robustness induced by regularization, we performed an experiment with the base
level of noise and an experiment with high level of noise. The high noise case contains noise levels
of 10% relative to the mean. These levels are twice as large as those of the base noise case. In Figure
5 we present performance profiles for MHE with and without regularization for both cases. For the
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Figure 4: Real and inferred occupancy signals for MHE with and without regularization (left). Real

and inferred input flow signals for MHE with and without regularization (right).

unregularized case, we can see that the cumulative probability of an error of less than 50 occupants
goes down from 95% to 80%. For the regularized case it remains higher than 99% for both cases. For
an error of 20 occupants and below, the cumulative probability of the unregularized estimator goes
down from 60 to 45%. For the regularized estimator, the cumulative probability goes down from 98

to 90%. The benefit in robustness is significant.

4.1.3 Number of Expansion Terms

We explore the effect of the number of expansion coefficients on the performance of MHE. We ran

a sequence of experiments with a number of expansion coefficients in the range of [10, 250] for the

high noise case. In Figure 6 we present the estimator cost as a function of the number of expansion

coefficients. As expected, the cost decreases as the number of coefficients is increased. In Figure 7 we
compare the performance of MHE with different numbers of expansion coefficients. As can be seen,
the best performance (in terms of signal recovery error) is obtained for the case with 150 coefficients.
Note also that increasing or decreasing the number of coefficients leads to decreased performance, so
an optimum exists.

In a real implementation scenario the true occupancy and flow signals are not known. Conse-
quently, it is not possible to identify a suitable number of expansion coefficients as a function of signal
recovery. This situation is common in buildings where obtaining ground truth data for occupancy
can be highly expensive. In typical regularization procedures such as Tikhonov regularization, the
weight of the regularization term is chosen as the point closest to the origin in the cost-weight curve
(in our case the cost-number of coefficients curve). In our case, we have found that this approach
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Figure 5: Real and inferred occupancy signals for MHE without regularization (left). Real and in-

ferredoccupancy signals for MHE with regularization (right).

gives poor signal recoveries.
To identify a suitable number of expansion coefficients, we constructed a curve of the estimator

cost against the variance of the recovered signals. This is presented in Figure 8. This approach is

based on the observation that the variance of the recovered signal tends to decrease rapidly as we

decrease the number of expansion coefficients. We have observed that the decrease occurs at a faster
rate than the corresponding increase in cost. As can be seen in Figure 8 this is indeed the case. The
curve indicates that starting at around 140 coefficients, the variance begins decreasing rapidly with
decreasing number of coefficients. We have found that the best estimator performance in terms of
signal recovery error also occurs at around 140 coefficients, so the approach seems consistent. We

emphasize, however, that these observations are empirical in nature and thus further studies on this

topic are needed.

41.4 Computational Performance and Horizon Length

In Table 1 we present the total CPU times for an estimator with an increasing number of expansion
coefficients. These times are for a formulation with a horizon of 1, 280 time steps (full problem with
horizon of 26 days). The problems were solved by using IPOPT [24] using default options and using
MADJS?7 as linear algebra solver. The problem is small in terms of number of variables and constraints.
The problem size increases in the number of variables only with the number of coefficients. The
number of equality and inequality constraints remains the same. Note, however, that the number
of nonzeros per row in the Jacobian matrix increases rapidly, from 69 for the smallest case to 269
to the largest case. These numbers are well beyond typical numbers in other applications, which
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Table 1: Dimensions of MHE problem and solution time as a function of number of expansion coeffi-

cients.
ny n Meq  Min nnz Time [s]

50 5,319 3,837 5,117 2.66x10° 4.86
100 5519 3,837 5,117 521x10°  12.08
150 5,719 3,837 5,117 7.77x10°  28.67
200 5919 3,837 5,117 10.33x10°  44.05

range from 5 to 10 nonzeros per row [30]. This is a clear indication that the density of the Jacobian
increases significantly with the number of coefficients. This is also reflected by the solution time,
which increases nearly cubically with the number of coefficients.

We have observed that performance of MHE does not deteriorate significantly with the horizon
length. This is attributed to the inherent periodicity of the signals. To illustrate this, we compare
the performance profiles of the MHE estimator with horizons of 7,6, and 1 days. These correspond
to horizons with 336, 288, and 48 time steps of 30 minutes, respectively. The number of coefficients
is adjusted to remain proportional with the horizon length, which is key in maintaining estimator
robustness and also reducing computational time. For example, the number of coefficients for a 7

day horizon is 34, while that for 1 day is 5.

In Figure 9 we see that the signal recovery performance is not deteriorated significantly over the
entire set of 26 days. The 95% error threshold remains below 30 occupants and 2,000 cfm for the case
with a 1-day horizon. We have not found appreciable improvements in performance for horizons
beyond 7 days. The improvements in computational time, however, are significant. For a 7 day
horizon the number of coefficients is 34 and the total time 2.54 seconds per problem compared with
the 28.67 seconds required for the full problem using a 26 day horizon.
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4.2 Real Data

We test the performance of MHE using real sensor readings from the heating, ventilation, and air
conditioning (HVAC) system of the Advanced Photon Source office building located at Argonne
National Laboratory (see Figure 10). The CO; sensor is located in the return duct of the HVAC
system. Estimates of the ambient flow are obtained from the sensor readings of the supply duct flows
and the damper position of the economizer. We do not have real-time data available on the number
of occupants of the building because, as previously mentioned, this is hard to obtain. Operational
experience, however, indicates that the peak occupancy fluctuates between 300 and 400 occupants on
a typical weekday. The building was in fact designed assuming a peak occupancy of 400.

In this study, we demonstrate that the CO, model coupled with regularized MHE gives reason-
able estimates (in terms of magnitude and behavior) of the total building-wide occupancy level. The
results are presented in Figure 11. In the top two panels we present the CO, and ambient flow
signals. The solid line is a smoothed signal used to highlight the existing noise in the signals, partic-
ularly at peak times. As can be seen, the peak CO;, levels are decreased as the ambient flow levels are
increased. The data is consistent.

The bottom panel presents the estimated occupancy profiles. The MHE estimates remain con-
sistently within the expected range of 300 to 400 and behave in a consistent manner. In particular,
note that the peak occupancy levels remain fairly constant despite the wide variability of CO; levels
and ambient flow. For instance, for the two consecutive weekdays of February 28 and March 1, the
occupancy estimates remain at the same level despite the drastic difference in ambient flows. For
the consecutive weekdays of March 6 and March 7, the ambient flows and carbon dioxide remain at
the same level, and the occupancy profiles are nearly identical, as expected. We also note that MHE
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reconstructs the peak behavior in a consistent manner. In particular, the shape of the peaks indicates
an early peak near noon every day followed by a second peak around 4 p.m. This is typical observed
behavior in office buildings.

To demonstrate the advantages of regularization we compare the peak occupancy profiles for 5
days for regularized and unregularized MHE. The results shown in the left panel of Figure 12 indicate
that the occupancy inferred by unregularized MHE varies strongly and in a manner inconsistent with
typical occupancy behavior. The variations are due to the high sensitivity to noise. In particular, in
the fourth peak multiple high-frequency peaks and strong occupancy transients are present that are
not typical of this building. In particular, in the second peak the estimator indicates a decay of nearly
125 occupants within an hour (30% of the maximum occupancy), which is not typical of this office
building. The estimates of regularized MHE are more stable and consistent with typical behavior.
These differences in performance are reinforced in the bottom graph where we plot the incremental
occupancy per time step (30 min). As can be seen, unregularized MHE leads to increments above 150
occupants in 30 min. In addition, high-frequency variations of occupancy become evident in periods
of low occupancy. This volatility is significantly reduced through regularization.

5 Conclusions and Future Work

We have presented a regularization approach for moving horizon estimation motivated by occu-
pancy estimation in building systems. The approach forces input signals to fit a smooth expansion
of unknown shape and the expansion coefficients are estimated simultaneously with the states. We
demonstrate that the approach leads to significant improvements in robustness in the presence of
sensor noise and is particularly useful for recovering weakly observable signals. In addition, it is
useful for errors-in-variables formulations that reconstruct measured input signals. As part of future
work, we will need to perform additional studies with different building models incorporating ther-
mal and carbon dioxide balances and natural ventilation effects. In addition, a more systematic way
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is needed to determine appropriate number of expansion coefficients.
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