
Exascale Workload Characterization and
Architecture Implications

Prasanna Balaprakash∗, Darius Buntinas∗, Anthony Chan∗, Apala Guha†,
Rinku Gupta∗, Sri Hari Krishna Narayanan∗, Andrew A. Chien∗, Paul Hovland∗, and Boyana Norris∗

∗Argonne National Laboratory, Mathematics and Computer Science Division
†Department of Computer Science, University of Chicago

I. INTRODUCTION

Emerging exascale architectures bring forth new challenges
related to heterogeneous systems power, energy, cost, and
resilience. These new challenges require a shift from con-
ventional paradigms in understanding how to best exploit and
optimize these features and limitations.

Our objective is to identify the top few dominant character-
istics in a set of applications. Understanding these characteris-
tics will allow the community to build and exploit customized
architectures and tools best suited to optimize each dominant
characteristic in the application domain. Every application will
typically be composed of multiple characteristics and thus will
use several of the customized accelerators and tools during its
execution phases, with the eventual goal of using the entire
system efficiently.

In this poster, we describe a hybrid methodology, based
on binary instrumentation, for characterizing scientific appli-
cations such as instruction mix and memory access patterns.
We apply our methodology to proxy applications that are
representative of a broad range of DOE scientific applications.
With this empirical basis, we develop and validate statistical
models that extrapolate application properties as a function
of problem size. These models are then used to project the
first quantitative characterization of an exascale computing
workload, including computing and memory requirements. We
evaluate the potential benefit of processor under memory, a
radical new exascale architecture customization and understand
how these new customization can impact applications.

II. RESEARCH FOCUS

Our approach [1], [2] addresses several questions and
challenges. Prominent among them are: (a) understanding
what characteristics may be termed as dominant for various
applications, and understanding their trend based on input
size, scalability, and architecture heterogeneity at the current
scale; (b) understanding and building tools for characterizing
applications at the exascale level; (c) understanding emerging
accelerators, tools, and technologies that will eventually be
dominant at exascale, and building tools for mapping the dom-
inant characteristics to these technologies; and (d) researching
the right balance of general and customized architecture, keep-
ing in mind energy efficiency and performance optimization.

III. RESEARCH RESULTS

A major challenge in understanding application character-
ization is that no single analysis tool provides a complete

0%
20%
40%
60%
80%

100%

Ex10 1
Ex10 2

Ex19
Ex20

Ex30 1
Ex30 2

turbChan 1

turbChan 2

miniFE 1
miniFE 2

miniFE 3
miniMD

HPCCG

Fr
ac

tio
n 

of
 O

ps
 in

 H
ot

sp
ot

Loads
Stores

Floating Point
Integer

Branches
Other

Fig. 1. Hotspots for various applications

characterization of applications. We adopt a methodology that
employs multiple tools such as PIN, PBound, and HPCToolkit,
to build a detailed picture of application behavior. These tools
focus on source code analysis, binary instrumentation and
hardware performance counter analysis to capture application
characteristics. We then apply our methodology to a collection
of proxy applications representative of scientific workloads.
Specifically, we focus on understanding the Mantevo [3] suite
(miniFE, miniMD, and HPCCG), Nek5000-based applica-
tions [4] (eddy, vortex and turbChannel), and the PETSc [5]
suite of applications.

We focus on three attributes: basic application properties
(e.g., compute operations, memory operations); number, iden-
tity, and importance of performance-critical regions (hotspots);
and variation of basic application properties across the work-
load (e.g., memory bandwidth requirements). All these at-
tributes are characterized as a function of application input
(dataset) size. We use our tools for this characterization and
compare the results across the tools in order to demonstrate
close alignment of results.

As an example of our characterization research, Figure 1
shows the top hotspots in our application codes and their
instruction mix. Hotspots allow us to focus on particular
section of codes for reduced complexity.

Using the characterization data, we create statistical models
for extrapolating key characteristics of proxy applications.
The models can be used to explore the impact of machine
constraints on feasible application configurations and, con-
versely, the impact of application configurations on appropriate
architecture choices. While details of the models are beyond
the scope of this abstract, we note that our model follows
a classical methodology in which we first use linear models
with first- and second-order interactions and iteratively include
quadratic and cubic terms in the models if required. To evaluate



TABLE I. MEMORY SIZE PROJECTION MODEL FOR EXASCALE
WORKLOADS

Appl. Exascale Projection Models, where N = n1 · n2 · n3,
and c1, c2, c3, and c4 are constants

Ex19,Ex30 f(n1, n2, n3) = c1 + c2 · N
+ c3 · (n1 · n2) + c4 · n1

Ex20 f(n1, n2, n3) = c1 + c2 · (n1 · n2) + c3 · (n1 · n2)
2

miniFE,miniMD
HPCCG f(n1, n2, n3) = c1 + c2 · N

TABLE II. SCALING LIMITS - RUNTIME (EXAOP) AND MEMORY (100
PB)

Appl Exascale Limit Exascale Limit Crit. Limit Size
24 hrs 100 PB Time MemCap

miniMD 41G 600G 27 hrs 108 PB Compute 41G
Ex20 92G 500G 25 hrs 98 PB Compute 92G
Ex30 130G 1500G 27 hrs 110 PB Compute 130G
Ex19 5000G 1000G 23 hrs 125 PB MemCap 1000G
miniFE 5000G 250G 23 hrs 110 PB MemCap 250G
HPCCG 5000G 250G 23 hrs 110 PB MemCap 250G

model accuracy, we adopt the leave-one-out cross-validation
technique: Given a set s of input sizes {A, B, C, D, E, F, G},
a single input size from s is used as the validation point, and
the remaining as the training points. This is repeated such that
each input size in s is used once as the validation data.

As an example, Table I summarizes our memory intensity
projection model (n1, n2, and n3 refer to input parameters for
defining application size). The memory projection model is
based on the memory usage of each application (varied by its
problem size) and on the impact of the number of instructions,
loads, stores, branches, and floating-point operations that make
up the application instruction mix.

Using our models, we project the feasible application sizes
on an exascale system based on realistic runtimes (24 hours
at exaflop sustained rate) and memory capacity (100 PB).
Because of different scaling properties, the applications can
be subdivided as shown in Table II into two groups: three
(miniMD, Ex20, and Ex30) compute-limited and three (Ex19,
minFE, HPCCG) memory-capacity-limited applications. The
memory-capacity constraints are extreme for miniFE and
HPCCG, since the 100 PB constraint requires approximately
30 exaops, or around thirty seconds if high speedups can be
achieved. Ex19 is also memory-capacity limited but at a run
size approximately 100 times larger than miniFE and HPCCG,
or less than one hour at high speedups.

Given the feasible dataset sizes for each scientific appli-
cation, we estimate the memory bandwidth requirements and
then assess the potential benefit of radical proposed changes
such as processor under memory (PUM). The PUM organiza-
tion consists of close physical connection from the processing
unit to a stacked set of memory dies, which can achieve a
tenfold greater memory bandwidth (10 TB/s, compared with
the typical 1 TB/s found in current architectures).

For each application, we use two models to estimate
memory-bandwidth requirements for the exascale workload.
One is an application-level model that projects the over-
all memory bandwidth for the entire application; another
is a node-level model that projects the node-level memory-
bandwidth needs by dividing the exascale application data
size by the number of nodes in the exascale machine. We
hypothesize that the node-level estimates are conservative and

App Scaling PUM Improvement Key Limit Program
Limit App- Node- PUM -ming

Exascale level level Change
Ex19 MemCap 2.35 2.97 MemCap Local
Ex20 Compute 4.02 1.00 Compute Local
Ex30 Compute 4.08 1.00 Compute High
miniMD Compute 6.75 1.00 Compute Local
miniFE MemCap 6.57 6.56 MemCap Moderate
HPCCG MemCap 10.00 10.00 MemCap Local

TABLE III. PERFORMANCE LIMITS AND POTENTIAL IMPROVEMENT
BASED ON APPLICATION- AND NODE-LEVEL SCALING

provide a tighter bound on the memory bandwidth. Based on
these two projection models, we estimate the ability of the
PUM enhancements to improve performance. The results in
Table III show that for compute-limited applications (Ex20,
Ex30, and miniMD), adding PUM gives no benefit: there
is no runtime reduction. For the memory-capacity limited
applications, however, there is a significant runtime reduction,
showing a promise of 2.97x to 10x improvement.

IV. FUTURE WORK

We will focus on memory-access patterns of various sci-
entific applications and will study the impact of memory
optimization. We will develop rigorous statistical and machine
learning models of the exascale workloads for exploring the
architecture design space. We will continue researching emerg-
ing architectures and their impact on dominant characteristics
of scientific applications.

Acknowledgments

This work was supported by the U.S. Department of Energy
Office of Science DE-AC02-06CH11357 and NSF OCI-1-
57921.

REFERENCES

[1] M. Gahagan, A. Snavely, and A.Chien, “10x10 a General-purpose
Architectural Approach to Heterogeneity and Energy-efficiency,” in
Proceedings of the International Conference on Computational Science
(ICCS 201), 2011.

[2] A. Guha and A. Chien, “The 10x10 foundation for heterogeneity,”
UChicago, CS TR 2012-01, 1 2012.

[3] M. A. Heroux, D. W. Doerer, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, Sept. 2009.

[4] H. M. Tufo and P. F. Fischer, “Terascale spectral element algorithms
and implementations,” in ACM/IEEE conference on Supercomputing,
Portland, OR, 1999.

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient man-
agement of parallelism in object oriented numerical software libraries,” in
Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset,
and H. P. Langtangen, Eds. Birkhäuser Press, 1997, pp. 163–202.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne Na-
tional Laboratory (”Argonne”). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf
of the Government.


