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Abstract. In this work, we apply the MG/OPT framework to a multilevel-in-sample-space
discretization of optimization problems governed by PDEs with uncertain coefficients. The MG/OPT
algorithm is a template for the application of multigrid to deterministic PDE optimization problems.
We employ MG/OPT to exploit the hierarchical structure of sparse grids in order to formulate a
multilevel stochastic collocation algorithm. The algorithm is provably first-order convergent under
standard assumptions on the hierarchy of discretized objective functions as well as on the optimization
routines used as pre- and post-smoothers. We present explicit bounds on the total number of PDE
solves and an upper bound on the error for one V-cycle of the MG/OPT algorithm applied to a linear
quadratic control problem. We provide numerical results that confirm the theoretical bound on the
number of PDE solves and show a dramatic reduction in the total number of PDE solves required
to solve these optimization problems when compared with standard optimization routines applied to
the same problem.
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1. Introduction. The numerical solution of partial differential equation (PDE)
constrained optimization problems with uncertain coefficients is computationally ex-
pensive because of typically high-dimensional stochastic representations of the PDE
solution. This work applies the MG/OPT algorithm [33] to solve the optimization
problem

Minimize
z∈Z

Ĵ(z) = J(u(z), z),

where Z is a reflexive Hilbert space, U is a Banach space, and u = u(z) ∈ U is

the solution of a PDE with uncertain coefficients. We discretize Ĵ(z) in the sample
space using a hierarchical sparse grid collocation discretization [27]. We demonstrate
that applying MG/OPT to this hierarchy of semi-discretized optimization problems

may reduce the number of PDE solves required to obtain a minimizer of Ĵ(z) when
compared with other standard optimization algorithms.

The MG/OPT algorithm is an optimization-theoretic multigrid approach to solv-
ing PDE-constrained optimization problems [33, 30]. MG/OPT is a template which
allows for user-defined optimization routines, discretizations, and intergrid transfer
operators [33, 30]. Moreover, MG/OPT generalizes the full approximation scheme
(FAS) [25] to optimization and has traditionally been applied to a hierarchy of spatial
discretizations for the state and design variables. In this work, we apply the ideas of
MG/OPT to a hierarchy of stochastic discretizations.

Globalized with a line search, MG/OPT is provably convergent [33, 34]. At each
level, MG/OPT is analogous to a V-cycle (or more general cycles) of multigrid. As
in traditional multigrid, each level of MG/OPT requires pre- and post-smoothing.
These smoothing steps correspond to performing a finite number of iterations of an
optimization algorithm [33]. Recently, the authors of [21, 22, 23, 24] have developed a
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recursive trust-region algorithm that accelerates the trust-region step using multigrid
correction. Similarly, [47] has developed a line-search approach to multigrid opti-
mization. Both of the multilevel trust-region and line-search algorithms are provably
convergent and do not require pre- and post-smoothing.

Aside from MG/OPT and its adaptations, spatial multigrid has been applied
to optimization problems governed by deterministic PDEs in [44, 8, 7, 10, 11, 12]
by using multigrid solvers on the optimality system. We note that simply applying
multigrid to the optimality system need not result in a minimizer since multigrid seeks
only a stationary point of the optimality system [30]. This pitfall is circumvented by
including target functions in the multigrid formulation. These ideas are extended
to problems governed by PDEs with uncertain coefficients in [13, 14, 15]. Those
works focus on multigrid in space, however, and do not consider multilevel sampling
schemes. Unlike these multigrid algorithms for PDE-optimization with uncertain
coefficients, the algorithm presented in this paper provides a multilevel-in-sample-
space optimization routine. Moreover, one can incorporate existing spatial multigrid
algorithms within the MG/OPT framework to solve the sparse-grid subproblems.

In Section 2, we present the problem formulation for the example problems con-
sidered in this paper. The problem formulation resembles standard quadratic control
or least-squares type PDE-optimization. In Section 3, we review stochastic colloca-
tion and discuss hierarchical sparse-grid techniques. In Section 4 we extend MG/OPT
to handle optimization of uncertain PDEs, and in Section 5 we prove the first-order
convergence of MG/OPT. In Section 6, we present explicit upper bounds on V-cycle
error and computational work. In Section 7, we demonstrate the power and efficiency
of MG/OPT for stochastic collocation through numerical examples. In Section 8, we
present conclusions and future work.

The following notation and conventions are employed throughout this paper. K
denotes the finest level of sparse grid, and 1 always refers to the coarsest level of sparse
grid. The index k denotes the intermediate levels of sparse grid (i.e., k = 1, 2, . . . ,K).

2. Problem Formulation. Let D ⊂ Rd, d = 1, 2, 3, denote the physical domain
and Γ ⊆ RM denote the finite sample space. The sample space Γ is endowed with the
probability density ρ : Γ→ [0,∞) and satisfies

Γ =

M∏
m=1

[am, bm] and ρ(y) =

M∏
m=1

ρm(ym)

with am < bm and ρm : [am, bm]→ [0,∞) for m = 1, . . . ,M . Such finite-dimensional
probability spaces satisfy the finite-dimensional noise assumption [1] and typically
result from Karhunen-Loéve or polynomial chaos expansions. Let V = V(D) denote a
Banach space of deterministic functions with domain D, and let Z = Z(D) denote a
reflexive Hilbert space of deterministic functions with domain D. V is the determin-
istic state space and Z is the control space. The control space is deterministic; this
models the situation when one must determine a control prior to observing the state
of the physical system. The governing PDEs in this work have the form

A(y)u(y) + N(u(y), y) = F(z, y) ∀ y ∈ Γ, (2.1)

where A : Γ → L(V,V∗), N : V × Γ → V∗, and F : Z × Γ → V∗. Now, let the
Hilbert space W, C ∈ L(V,W), and w̄ ∈ W be given. The prototypical example for
PDE-constrained optimization is the quadratic control problem

min
z∈Z

Ĵ(z) =
1

2

∫
Γ

ρ(y)‖Cu(z; y)− w̄‖2W dy +
α

2
‖z‖2Z , (2.2)
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where u(z; y) = u(y) ∈ V solves (2.1) almost surely in Γ. The solution of this opti-
mization problem can be approximated by sampling schemes such as Monte Carlo [31]
and stochastic collocation [1, 37, 36, 48] or by projection schemes such as stochastic
Galerkin [2, 3] and polynomial chaos [49, 17].

To simplify the analysis in this section, we focus on the quadratic control problem
(2.2). The algorithm presented in this paper also applies to more general objective
functions, although the analysis is typically more complicated [27].

The solution of (2.1) is a mapping y 7→ u(y) : Γ → V and is assumed to have
finite pth moment for some fixed p ∈ [1,∞); that is, u ∈ Lpρ(Γ;V), where

Lpρ(Γ;V) = {v : Γ→ V : v strongly measurable,

∫
Γ

ρ(y)‖v(y)‖pV dy <∞}.

To sample y 7→ u(y), we further assume that u ∈ U = C0
ρ(Γ;V), where

C0
ρ(Γ;V) = {v : Γ→ V : v continuous, sup

y∈Γ
ρ(y)‖v(y)‖V <∞}

which ensures that point evaluations of y 7→ u(y) are possible. Furthermore, for
the objective function to be well-defined, we require that C0

ρ(Γ;V) be continuously
embedded in L2

ρ(Γ;V).
Assumption 2.1. The inclusion C0

ρ(Γ;V) ⊂ L2
ρ(Γ;V) holds. Moreover, for each

z ∈ Z the state equation (2.1) has a unique solution u(z; ·) ∈ C0
ρ(Γ;V) satisfying

‖u(z; ·)‖L2
ρ(Γ;V) ≤ c‖u(z; ·)‖C0

ρ(Γ;V) for some c > 0.
The algorithm described in this paper requires gradient information. We use

adjoints to derive the gradient, ∇Ĵ(z). To ensure differentiability, we require the
following assumption.

Assumption 2.2. For every y ∈ Γ, the functions v 7→ N(v, y) : V → V∗ and
z 7→ F(z, y) : Z → V∗ are Fréchet differentiable with Fréchet derivatives N′(u, y) and
F′(z, y), respectively. Moreover, the mapping z 7→ u(z; ·) : Z → C0

ρ(Γ;V) is Fréchet
differentiable, and the derivative v = u′(z; ·)δz satisfies

A(y)v(y) + N′(u(y), y)v(y) = F′(z, y)δz ∀ y ∈ Γ.

Additionally, the adjoint equation

A(y)∗p(y) + N′(u(y), y)∗p(y) = −C∗(Cu(z; y)− w̄) ∀ y ∈ Γ (2.3)

has a unique solution p ∈ C0
ρ(Γ;V).

If Assumptions 2.1 and 2.2 hold, then the gradient of the objective function Ĵ(z) is

∇Ĵ(z) = αz −
∫

Γ

ρ(y)F′(z, y)∗p(y) dy.

3. Hierarchical Sampling Approaches: Sparse Grid Collocation. Multi-
level and adaptive Monte Carlo methods for the solution of the unconstrained stochas-
tic programming problems are presented in [5, 16]. Furthermore, adaptive sparse-grid
collocation methods are developed in [27, 28]. In this section, we review sparse grids
[19, 4, 20, 42] with the goal of exposing their hierarchical nature.

We approximate the expected value in (2.2) using sparse-grid quadrature. Sparse-
grid quadrature exhibits rapid convergence when y 7→ ‖Cu(y) − w̄‖2W is sufficiently
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smooth. Tensor products of 1D quadrature operators are the foundation for sparse-
grid quadrature. Let {Ej,m}∞j=1 denote a sequence of 1D quadrature operators defined
for continuous functions on [am, bm]. We assume that the degree of polynomial exact-
ness for Ej,m is djm − 1, where {djm}∞j=1 ⊂ N is monotonically increasing. Associated
with each Ej,m is a finite set of knots Nj,m ⊂ Γm. For example, Ej,m can be Gaussian,
Hermite, or Newton-Cotes quadrature operators.

To construct the sparse grid operator, we define the one-dimensional differences

∆1,m = E1,m and ∆j,m = Ej,m − Ej−1,m j ≥ 2.

Then Ej,m =
∑j
i=1 ∆j,m. Let I ⊂ NM+ where N+ = {1, 2, · · · }. The general sparse-

grid quadrature operator is

EI =
∑
i∈I

∆i1,1 ⊗ · · · ⊗∆iM ,M . (3.1)

In order to maintain the telescoping sum property described above, the multi-index
set, I, must satisfy the following property: If i = (i1, . . . , iM ) ∈ I and j = (j1, . . . , jM )
is such that jm ≤ im for all m = 1, . . . ,M , then j ∈ I. A multi-index set satisfying
this property is called admissible [20]. Each admissible multi-index set I produces a
set of points NI ⊂ Γ called a sparse grid.

The general sparse-grid operator (3.1) can be written as a linear combination of
tensor products of 1D quadrature operators by using the combination technique [19]:

EI =
∑
i∈I

( ∑
j∈{0,1}M

(−1)|j|1χI(i + j)

)(
Ei1,1 ⊗ · · · ⊗ EiM ,M

)
, (3.2)

where |j|1 = j1 + . . .+ jM and χI(j) = 1 if j ∈ I and zero otherwise. From (3.2), one
can determine the particular form of the sparse grid, NI . Define

ϑ(i) =
∑

j∈{0,1}M
(−1)|j|1χI(i + j).

Then the sparse grid associated with I is

NI =
⋃

{i∈I : ϑ(i)6=0}

(
Ni1,1 × · · · ×NiM ,M

)
. (3.3)

Now, suppose {Ik}∞k=1 is a family of admissible multi-index sets satisfying

{(1, · · · , 1)} ⊆ I1 ⊂ I2 ⊂ · · · ⊂ NM+

and the one-dimensional nodes Nj,m are nested (i.e., Nj−1,m ⊂ Nj,m ∀ j). Then,
the resulting sparse grids are nested (i.e. Nk = NIk ⊂ Nk+1 = NIk+1

for k = 1, 2, . . .).
Nested sparse grids are desirable for computation because they allow for the reuse of
many computations in the hierarchy of sparse grids.

3.1. Exposing the Hierarchical Sampling Structure. Hierarchies of multi-
index sets Ik ⊂ Ik+1 can be generated in a multitude of ways. Some common methods
are full tensor-product and isotropic/anisotropic Smolyak algorithms [42, 36, 1]. The
multi-index sets constructed from the full tensor-product algorithm are defined as

Ik = {i ∈ NM+ : max
`=1,...,M

|i` − 1| ≤ (k − 1)}.
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On the other hand, the anisotropic Smolyak algorithm employs the multi-index set

Ik = {i ∈ NM+ :

M∑
`=1

γ`|i` − 1| ≤ γ∗(k − 1)},

where γ = (γ1, . . . , γM ) is an M-tuple of positive real numbers and γ∗ = min` γ`.
Each component of γ determines the relative importance of the associated direction;
and, in the case that γ = (1, . . . , 1), we recover the isotropic Smolyak sparse-grid
index set. For both the full tensor-product and Smolyak algorithms, the multi-index
sets create the hierarchy required above. In general, the resulting point sets Nk
produced from the Smolyak algorithm are sparser than those created from the full
tensor-product algorithm. Hence, the Smolyak multi-index sets require fewer solves
of (2.1) to evaluate the discretized objective functions, Ĵk = ĴIk .

Now, consider isotropic Smolyak sparse grids, and suppose that the one-dimensional
quadrature points satisfy |Nk,j | = O(2k) for j = 1, . . . ,M . Then, the authors of [19]
show that the resulting sparse grids satisfy

Qk = |Nk| = O(2kkM−1).

The growth rate between levels k and k − 1 is given by

qk = Qk/Qk−1 ≈ 2
( k

k − 1

)M−1

for k sufficiently large. Asymptotically, as k → ∞, the growth rate is 2, and the
largest growth occurs between levels k = 1 and k = 2, namely, q2 = Q2/Q1 ≈ 2M .
In fact, for k = 1, Q1 = 1 independent of the number of dimensions M . Therefore,
q2 = Q2 for all M . The growth rate {qk}∞k=1 is a monotonically decreasing sequence
in the interval [2, Q2].

A popular choice of 1D quadrature points on [−1, 1] are Clenshaw-Curtis points

Nm,j =

{
− cos

(
π(i− 1)

dj − 1

)
: i = 1, . . . , di

}
with d1 = 1 and di = 2j−1 + 1 for j > 1. The Clenshaw-Curtis points are nested.
Furthermore, these points satisfy the assumptions on growth rate discussed in the
previous paragraph. Therefore, the sequence of growth rates for the sparse grids built
on Clenshaw-Curtis nodes is decreasing on [2, Q2].

3.2. Sparse-Grid Collocation. Given an admissible multi-index set I ⊂ NM
and the associated quadrature rule EI , the collocation discretization of (2.2) is

min
z∈Z

ĴI(z) =
1

2
EI
[
‖Cu(z)− w̄‖2W

]
+
α

2
‖z‖2Z (3.4)

Note that the evaluation of the quadrature rule EI requires the solution of only the
QI = |NI | deterministic, decoupled PDEs

A(yI` )u` + N(u`, y
I
` ) = F(z, yI` ) ∀ ` = 1, . . . , QI ,

where NI = {yI1 , . . . , yIQI} [27, 28]. This is equivalent to a stochastic collocation
discretization of (2.1) [27]. The semi-discretized objective function can be written in
the standard quadrature form as

ĴI(z) =
1

2

QI∑
`=1

ωI` ‖Cu`(z)− w̄‖2W +
α

2
‖z‖2Z ,
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where ωI` are appropriate sparse-grid quadrature weights. Moreover, if Assump-

tions 2.1 and 2.2 hold, then ĴI(z) is Fréchet differentiable with gradient

∇ĴI(z) = αz −
QI∑
`=1

ωI` F′(z, yI` )∗p`.

In the gradient, p` ∈ V solves the decoupled deterministic adjoint equations

A(yI` )∗p` + N(u`, y
I
` )∗p` = −C∗(Cu` − w̄) ∀ ` = 1, . . . , QI .

These decoupled adjoint equations are equivalent to a stochastic collocation discretiza-
tion of the infinite-dimensional adjoint equation (2.3) [27].

We note that sparse grids typically produce both positive and negative quadrature
weights [19]. The presence of negative weights may affect optimization because ĴI(z)

may not be convex or weakly lower semi-continuous even if Ĵ(z) is [27, 26].

3.3. Collocation Error Bounds. The convergence of stochastic collocation
has been extensively studied for elliptic, parabolic, and hyperbolic PDEs. See, for
example, [37, 36, 35, 1, 32]. The standard result applies for both bounded and un-
bounded Γ. For simplicity, we assume Γ is bounded. Furthermore, we require the
following assumption on the regularity of the solution u of (2.1) with respect to
the parameters y ∈ Γ. For these assumptions, we use the following notation: for
y = (y1, . . . , yM ) ∈ Γ, y∗j = (y1, . . . , yj−1, yj+1, . . . , yM ) ∈ Γ∗j =

∏
` 6=j Γ`. Further-

more, given u ∈ C0
ρ(Γ;V), we consider the function u∗j : Γj → C0

ρ∗j
(Γ∗j ;V) to be

defined by (u∗j (ξ))(y
∗
j ) = u(y1, . . . , yj−1, ξ, yj+1, . . . , yM ), where ρ∗j =

∏
` 6=j ρj .

Assumption 3.1. Let Assumptions 2.1 and 2.2 hold. Suppose Γ is bounded, and
let u ∈ C0

ρ(Γ;V) be the solution to (2.1) for fixed z ∈ Z. Then there exists τj > 0
such that u∗j : Γj → C0

ρ∗j
(Γ∗j ;V) has an analytic extension on the set

Σ(Γj ; τj) = {ξ ∈ C : dist(ξ,Γj) ≤ τj}.

Furthermore, let p ∈ C0
ρ(Γ;V) be the solution to (2.3). Then there exists γj > 0 such

that p∗j : Γj → C0
ρ∗j

(Γ∗j ;V) has an analytic extension on the set Σ(Γj ; γj).

Similar assumptions to those in Assumption 3.1 can be found in [1, Lem. 3.2],
[37, Lem. 3.2], and [36, Lem. 2.3]. For examples of the state equation (2.1) that
satisfy Assumption 3.1, see [37, 36, 35, 1, 32]. For examples of optimization problems
(2.2) for which (2.1) and (2.3) satisfy Assumption 3.1, see [28, 27]. If Assumption 3.1
holds, then stochastic collocation provides a convergent approximation scheme. The
convergence of stochastic collocation depends on the quadrature rules used. In the case
of elliptic PDEs, convergence is proven for isotropic and anisotropic tensor product
quadrature built on 1D Gaussian abscissae, as well as isotropic and anisotropic sparse-
grid quadrature built on Gaussian and Clenshaw-Curtis abscissae. These results are
stated in [1, Thm. 4.1] for tensor products of Gaussian abscissae, in [37, Thm. 3.10,
3.11, 3.18, 3.19] for isotropic sparse grids built on Clenshaw-Curtis and Gaussian
abscissae, and in [36, Thm. 3.8, 3.13] for anisotropic sparse grids built on Clenshaw-
Curtis and Gaussian abscissae. The standard error bound has a specific form that we
assume throughout.

Assumption 3.2. Let Assumption 3.1 hold, and let τ = (τ1, . . . , τM ) and
γ = (γ1, . . . , γM ). Furthermore, suppose I ⊂ NM+ is an admissible index set with
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corresponding sparse grid NI , Q = |NI |. Then, u ∈ C0
ρ(Γ;V) solving (2.1) and

p ∈ C0
ρ(Γ;V) solving (2.3) satisfy

‖E[u]− EI [u]‖L∞ρ (Γ;V) ≤ C(r(τ ),M)Q−ν(τ ,M) (3.5)

and

‖E[p]− EI [p]‖L∞ρ (Γ;V) ≤ C(r(γ),M)Q−ν(γ,M), (3.6)

respectively. The function r : RM → RM is defined componentwise for j = 1, . . . ,M

by rj(τ) = log
(

2τ
|Γj | +

√
1 + 4τ2

|Γj |2

)
.

These results are extended to the optimization context for uniformly convex
linear-quadratic optimal control problems in [27]. In this case, if zQ ∈ Z is a first-
order necessary point of (3.4) and z∗ ∈ Z is a first-order necessary point of (2.2), then
the error between zQ and z∗ satisfies the upper bound

‖zQ − z∗‖Z ≤ C(r(γ),M)Q−ν(r(γ),M),

where ν is defined in (3.6).

4. MG/OPT as a Multilevel-in-Sample-Space Optimization Solver. Sim-
ilar to classic spatial multigrid, the hierarchy of sparse-grid operators described above
induces a hierarchy of (semi-)discretized optimization problems (2.2):

min
z∈Z

Ĵk(z) =
1

2

Qk∑
i=1

ωki ‖Cui(z)− w̄‖2W +
α

2
‖z‖2Z , k = 1, . . . ,K.

Recall that the evaluation of Ĵk(z) requires the solution of (2.1) at all points in the
sparse grid Nk (i.e., Qk = |Nk| PDE solves). MG/OPT applies to this hierarchy of
optimization problems. In addition, the variants of MG/OPT such as recursive trust-
regions [21, 22, 23, 24] and the multilevel line-search approach of [47] also apply to this
hierarchy of sparse-grid discretizations, but we restrict our attention to MG/OPT.

Unlike spatial multigrid, the hierarchy of sparse-grid collocation discretization
spaces appears implicitly in the definition of the semi-discretized objective function.
That is, the control space is fixed, and ∇Ĵk(z) ∈ Z for all k. Therefore, the intergrid
transfer operators (prolongation and interpolation) of spatial multigrid are trivially
the identity operator. Moreover, for the application of MG/OPT, it is convenient to
define the coarse-grid corrected objective functions

Jk(z) = Jk(z | vk) = Ĵk(z)− 〈vk, z〉Z for vk ∈ Z.

The MG/OPT algorithm defines vk at each level, but it is always the case that vK = 0.
The multilevel sparse grid optimization algorithm is stated in Algorithm 1.

We offer a few comments on the implementation of Algorithm 1. First, Algo-
rithm 1 defines one V-cycle of MG/OPT; and, with little modification, one can define
more general cycles such as W-cycles, F-cycles, or cascadic multigrid. Second, the
pre- and post-smoothing steps at each level, (4.2) and (4.4), can be computed by
applying a fixed number of iterations of an optimization routine as suggested in [33].
Alternatively, Borzi [9, 6] suggests applying the pre- and post-smoothing optimization
routines until the following sufficient decrease conditions are satisfied:

Jk(zk,1) < Jk(z−k )− ηk,1‖∇J (z−k )‖Z ηk,1 ∈ (0, 1)

Jk(z+
k ) < Jk(zk,3)− ηk,2‖∇J (zk,3)‖Z ηk,2 ∈ (0, 1).
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MG/OPT: z+
k = MG/OPT(k, z−k , vk)

if k = 1 then
Return z+

1 = z−1 + s1 where s1 satisfies

s1 = arg min
s∈Z

J1(z−1 + s) = Ĵ1(z−1 + s)− 〈v1, (z
−
1 + s)〉Z . (4.1)

else
Pre-Smoothing: Perform T1,k iterations of a convergent optimization
algorithm to obtain

sk,1 ≈ arg min
s∈Z

Jk(z−k + s) = Ĵk(z−k + s)− 〈vk, (z−k + s)〉Z (4.2)

and update zk,1 = z−k + sk,1.

Coarse Grid Correction: Set vk−1 = vk + (∇Ĵk−1(zk,1)−∇Ĵk(zk,1))

and approximately minimize Jk−1(z) = Ĵk−1(z)− 〈vk−1, z〉Z using

zk,2 = MG/OPT(k − 1, zk,1, vk−1). (4.3)

Line Search: Use a line search to determine λk ≥ 0 which sufficiently
reduces Jk(zk,1 + λ(zk,2 − zk,1)) and set zk,3 = zk,1 + λk(zk,2 − zk,1).
Post-Smoothing: Perform T2,k iterations of a convergent optimization
algorithm to obtain

sk,2 ≈ arg min
s∈Z

Jk(zk,3 + s) = Ĵk(zk,3 + s)− 〈vk, (zk,3 + s)〉Z (4.4)

and return z+
k = zk,3 + sk,2.

end

Algorithm 1: Recursive MG/OPT algorithm.

Third, if ∇2Ĵk(zk,1) exists and is Lipschitz continuous with Lipschitz constant Lk > 0
for k = 1, . . . ,K and if ek = (zk,2 − zk,1) is a descent direction, then Borzi [9, 6]
suggests the following a priori choice for the line-search parameter λk:

λk = min

{
2,

−〈∇Ĵk(zk,1), ek〉Z
〈∇2Ĵk(zk,1)ek, ek〉Z + Lk‖ek‖2Z

}
.

This choice of λk guarantees sufficient decrease in the objective function. In general,
Lk is unknown, and λk is computed by using a standard line-search rule such as
backtracking. As noted in [29], the a priori choice λk = 1 as commonly used in
the globalization of Newton’s method may not apply to MG/OPT. Furthermore, the
nestedness of the sparse grids Nk implies that no additional PDE solves are required
when computing vk−1. For optimization problem (2.2), vk−1 can be written as

vk−1 = vk +

Qk−1∑
i=1

(ωk−1
i − ωki )F′(z, yKi )∗pi −

Qk∑
i=Qk−1+1

ωki F
′(z, yKi )∗pi

where K denotes the finest level of sparse grid, ωki = ωIki denotes the level k sparse-

grid weights, yKi = yIKi denotes the level K sparse-grid points ordered so that

NK = {N1, N2 \N1, . . . , NK \NK−1} = {y1
1 , . . . , y

1
Q1
, . . . , yKQK−1+1, . . . , y

K
QK},

and pi ∈ V solves the adjoint equation (2.3) at y = yki for i = 1, . . . , Qk.
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5. Convergence Analysis for Algorithm 1. The analysis here follows directly
from the analysis for MG/OPT in [33, 34]. The author in [9, 6] proves similar results
using standard multigrid techniques. The convergence analysis for Algorithm 1 does
not require restriction and prolongation operators. In fact, this analysis depends only
on the sparse-grid discretization through the assumptions on the subproblems Ĵk(z).
The results in this section require the following assumptions.

Assumption 5.1. Let K ∈ N be the finest level of sparse-grid hierarchy and
assume a minimizer of ĴK(z) exists. Denote this minimizer by z∗K ∈ Z. Furthermore,
let Br(z∗K) = {z ∈ Z : ‖z − z∗K‖Z < r} denote the open ball of radius r > 0 in Z.

1. Ĵk(z) is twice continuously Fréchet differentiable and bounded below for all
k = 1, . . . ,K.

2. There exists r > 0 independent of k = 1, . . . ,K such that ∇2Ĵk(z) ∈ L(Z,Z)
is a uniformly positive-definite operator for all z ∈ Br(z∗K) and k = 1, . . . ,K;
that is, there exists κk > 0 such that

〈∇2Ĵk(z)ξ, ξ〉Z ≥ κk‖ξ‖2Z ∀ 0 6= ξ ∈ Z, ∀ z ∈ Br(z∗K). (5.1)

3. The smoothing iteration numbers satisfy

T1,k ≥ 0, T2,k ≥ 0, and T1,k + T2,k > 0 for k = 1, . . . ,K.

4. The optimization routines used in (4.1), (4.2), and (4.4) are first-order con-
vergent in the sense that

lim inf
j
‖∇Ĵk(zj)‖Z = 0.

Assumption 5.1 ensures that the semi-discretized optimization problems at each
level k are well-defined. Assumption 5.1.1 ensures that Newton-type methods are
applicable. Assumption 5.1.2 assumes that when close to a solution (basin of attrac-
tion), the Hessian operators are positive-definite. This ensures second-order sufficient
conditions hold at the minimizer. Assumptions 5.1.3-4 guarantee that Algorithm 1
makes progress toward a solution. Under these assumptions, we first prove that
eK = zK,2 − zK,1 is a descent direction.

Theorem 5.2. Let Assumption 5.1 hold, and let zK,1 ∈ Br(z∗K). Furthermore,
suppose the optimization problem (4.3) is solved to the relative gradient tolerance

‖∇ĴK−1(zK,2)− vK−1‖Z ≤ γκK−1‖zK,1 − zK,2‖Z with γ ∈ [0, 1). (5.2)

Then eK = zK,2 − zK,1 is a descent direction.
Proof. Suppose the approximate solution of (4.3) satisfies (5.2). Then there exists

η ∈ Z such that ‖η‖Z ≤ γκK−1‖zK,2 − zK,1‖Z and

∇ĴK(zK,1) = ∇ĴK−1(zK,1)−∇ĴK−1(zK,2) + η.

Therefore,〈
∇Ĵk(zK,1), eK

〉
Z

=
〈
∇ĴK−1 (zK,1)−∇ĴK−1(zK,2) + η, eK

〉
Z

=

〈∫ 1

0

∇2ĴK−1 (zK,2 − teK) (−eK) dt, eK

〉
Z

+ 〈η, eK〉Z

≤ −κK−1‖eK‖2Z + ‖η‖Z‖eK‖Z ≤ (γ − 1)κK−1‖eK‖2Z < 0.
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Hence, eK is a descent direction.
The first-order convergence of Algorithm 1 is an easy consequence of Theorem 5.2.
Corollary 5.3. Let Assumption 5.1 and inequality (5.2) hold. Furthermore,

let K ∈ N+ denote the finest level of sparse grid. Suppose {z(j)
K }∞j=1 ⊂ Z denotes a

sequence of iterations produced by Algorithm 1 with initial guess z
(0)
K ∈ Z. Then

lim inf
j
‖∇ĴK(z

(j)
K )‖Z = 0.

Proof. If for some j the iterate z
(j)
K ∈ Br(z∗K), then Theorem 5.2 ensures the

search direction eK is a descent direction, and Theorem 1 of [33] proves the result.

On the other hand, if z
(j)
K 6∈ Br(z∗K), then the search direction eK need not be a

descent direction. If eK is not a descent direction, then the line-search parameter is
λK = 0. In this case, Assumption 5.1.4 (i.e., global convergence of the smoothers)
ensures the global convergence of Algorithm 1.

Remark 5.4. Corollary 5.3 also holds if we replace Assumption 5.1.2 with the
assumption that the level set

S = {z ∈ Z : ĴK(z) ≤ ĴK(z
(0)
K )}

is compact. Under this assumption and if the pre- and post-smoothing steps are per-
formed by using a trust-region or line-search algorithm, then the proof of Corollary 5.3
must be modified to account for possibly no improvement from the recursive step [34,
Thm. 3]. On the other hand, to ensure the descent property in Theorem 5.2 under
this new assumption, the MG/OPT subproblems (4.1) and (4.3) must be replaced by

min
s∈Z

Jk(s) subject to ‖s‖Z ≤ ∆

for some ∆ > 0 sufficiently small [34, Thm. 5].

6. The Convex-Quadratic Case. The main result of this section is an explicit
error bound for one V-cycle of Algorithm 1 when the pre- and post-smoothing steps
are performed with a finite number of conjugate gradient (CG) iterations. Before
proving this result, we develop upper bounds for the total number of PDE solves
required in one V-cycle.

6.1. Problem Formulation. Consider the hierarchy of linear-quadratic opti-
mal control problems (k = 1, . . . ,K)

min
z∈Z

Ĵk(z) =
1

2

Qk∑
i=1

ωki ‖Cuk,i(z)− w̄‖2W +
α

2
‖z‖2Z ,

where uk,i(z) = uk,i ∈ V solves

A(yki )uk,i + B(yki )z = b(yki ) for i = 1, . . . , Qk.

Here, A : Γ → L(V,V∗) is assumed to have a bounded inverse for all y ∈ Γ, B :
Γ → L(Z,V∗), and b : Γ → V∗. Note that assuming A(y) has a bounded inverse
for all y ∈ Γ implies Assumption 2.1. Again, K denotes the finest level of sparse
grid discretization, while the coarsest level is always k = 1. Furthermore, suppose
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∇2Ĵk(z) ∈ L(Z,Z) is uniformly positive-definite for k = 1, . . . ,K, that is, there exists
0 < ak ≤ Ak <∞ such that

ak‖v‖2Z ≤ 〈∇2Ĵk(z)v, v〉Z ≤ Ak‖v‖2Z ∀ v ∈ Z. (6.1)

To simplify notation, denote Ak,i = A(yki ), Bk,i = B(yki ) and bk,i = b(yki ).
By assumption, Ak,i has a bounded inverse A−1

k,i ∈ L(V∗,V), and the state variable
uk,i(z) = uk,i ∈ V can be written as

uk,i = A−1
k,i(bk,i −Bk,iz).

Substituting this expression for uk,i into the objective function Ĵk(z) gives

Ĵk(z) =
1

2

Qk∑
i=1

ωki ‖CA−1
k,i(bk,i −Bk,iz)− w̄‖2W +

α

2
‖z‖2Z

=
1

2
〈Hkz, z〉Z − 〈gk, z〉Z + ck,

where Hk ∈ L(Z,Z) and gk ∈ Z are defined as

Hk = αI +

Qk∑
i=1

ωki B
∗
k,iA

−∗
k,iC

∗CA−1
k,iBk,i,

gk =

Qk∑
i=1

ωki B
∗
k,iA

−∗
k,iC

∗
(
CA−1

k,ibk,i − w̄
)
.

Here, I ∈ L(Z,Z) is the identity operator, Hk = ∇2Ĵk(z) is the the Hessian operator,

and ∇Ĵk(z) = Hkz−gk is the gradient. Furthermore, ck is the appropriately defined
constant that is irrelevant in the context of optimization. Given z0 ∈ Z, the first-order
necessary conditions are equivalent to the Newton system

∇2Ĵk(z0)s = −∇Ĵk(z0) ⇐⇒ Hks = −(Hkz0 − gk). (6.2)

6.2. Hierarchical Sparse Grids and Inexact Conjugate Gradients. Recall
that Z is a Hilbert space and that the existence of 0 < ak ≤ Ak <∞ in (6.1) ensures
Hk is a positive-definite, bounded linear operator. Moreover, the specific form of Hk

implies that Hk is self-adjoint. Under these conditions, we can apply the conjugate
gradient algorithm (CG) to solve (6.2). The convergence of CG applied to (6.2)
depends on the spectral properties of Hk as shown in the following theorem. For
this result, we define the Hk-norm and Hk-inner product, ‖z‖Hk

=
√
〈z, z〉Hk

=√
〈Hkz, z〉Z for all z ∈ Z.

Theorem 6.1. The sequence of iterates, {zj} ⊂ Z, generated by using CG applied
to (6.2) converges to z∗ ∈ Z and

‖z∗ − zj‖Hk
≤ 2

(√
Ak −

√
ak√

Ak +
√
ak

)j
‖z∗ − z0‖Hk

.

Proof. Note that Hk is a self-adjoint, positive definite, bounded linear operator.
Moreover, one can easily show that the Z- and Hk-norms are equivalent. Therefore,
Theorems 7 and 11 in [39] apply and prove the convergence of CG applied to (6.2).
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Each iteration of CG requires the application of the Hessian operator to a vec-
tor. Recall that the computation of the gradient, ∇Ĵk(z) = Hkz − gk requires 2Qk
PDE solves (i.e., a state solve, A−1

k,j , and an adjoint solve, A−∗k,j , for j = 1, . . . , Qk).
Similarly, the application of the Hessian Hk to a vector requires 2Qk PDE solves.
Therefore, applying CG to (6.2) requires 2Qk(Nk

CG + 1) PDE solves, where Nk
CG de-

notes the number of CG iterations required to solve (6.2). Note that if the control
space Z is finite-dimensional, then Nk

CG ≤ dim(Z) in exact arithmetic.
Hessian-times-a-vector computations are computationally prohibitive for large

problems even though the PDEs to be solved are linear. Fortunately we can exploit the
hierarchical nature of sparse-grid discretization to possibly reduce this computational
effort. Nested sparse grids allow us to build all levels of sparse-grid approximation
(κ < k) concurrently while computing the level k approximation. We suggest the
inexact Hessian-times-a-vector algorithm listed in Algorithm 2.

Multilevel Hessian-Times-a-Vector: Given z, v ∈ Z and τ > 0.
Set Q0 = 0 and hκ = αv for κ = 1, . . . , k.
for κ = 1, . . . , k do

for i = Qκ−1 + 1, . . . , Qκ do
Solve Aκ,iwκ,i = Bκ,iz.
Solve A∗κ,ipκ,i = C∗Cwκ,i.

for ` = κ, . . . , k do
Update h` ← h` + ω`,iB

∗
κ,ipκ,i.

end

end
if ‖hκ − hκ−1‖Z ≤ τ‖hκ−1‖Z then

Set hk = hκ and exit.
end

end
Set Hkv ≈ hk.

Algorithm 2: Inexact Hessian-times-a-vector algorithm.

In Algorithm 2 we build all quadrature estimates of Hκv for κ = 1, . . . , k concur-
rently by exploiting the sparse-grid hierarchy. Notice that no additional PDE solves
are required in the evaluation of lower-order quadrature and that computational sav-
ings occur when Algorithm 2 terminates early with κ < k. In this case, Algorithm 2
performs 2(Qk−Qκ) fewer PDE solves than does the standard Hessian-times-a-vector
algorithm at level k. In the case of early termination, Algorithm 2 inexactly applies
Hk to some vector v. Fortunately Krylov methods can be adjusted to handle such
inexactness. In [45, 41, 18] and the references within, the authors study the effects of
inexactness on Krylov subspace methods.

Denote (Hk + Ej)vj = hk,j as the application of Algorithm 2 during the jth

iteration of the inexact Krylov method. In [41], the authors present the following
bound on inexactness, which guarantees convergence of the inexact Krylov method:

‖Ej‖ ≤
`mε

‖r̃j−1‖Z
, (6.3)

where m is the maximum number of CG iterations, ε > 0 is a user-defined tolerance,
r̃j−1 is the inexact residual of (6.2) at the jth iteration of the inexact Krylov method,
and `m > 0 is a specific problem and algorithm constant. Under this condition, the
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error between the residual from the inexact Krylov method (r̃m) and the exact Krylov
method (rm) at the final iteration satisfies

‖rm − r̃m‖Z ≤ ε. (6.4)

See [41, Thm. 5.3, 5.4] for the specific form of `m for inexact GMRES and inexact
FOM. Since CG is equivalent to FOM applied to self-adjoint positive-definite operators
[40], the proof of [41, Thm. 5.4] also applies to CG.

The parameter `m in (6.3) is problem dependent and typically cannot not be
computed a priori. The authors of [41] suggest approximating `m with

`m ≈
σmin(Hk)

m

where σmin(Hk) denotes the minimum singular value of Hk. In [45], the authors
set `m = 1 and demonstrate that in many circumstances this choice of `m does not
strongly affect the convergence of the algorithm [41, p. 463]. The authors in [18]
propose replacing (6.3) with

‖Ej‖ ≤
σmin(Hk)

2
min

{
1,

˜̀
m,jε

‖r̃j‖

}

where ˜̀
m,j > 0 is computed by using quantities available at each Krylov iteration [18,

Thm. 4.2]. This condition also ensures the residual error bound (6.4).
Remark 6.2. The relative error ‖hκ − hκ−1‖Z/‖hκ−1‖Z used to terminate Al-

gorithm 2 is not an error estimate. Therefore, early termination must be monitored,
and convergence of inexact CG may not be guaranteed.

6.3. Exact Line Search. For this convex-quadratic example, the kth-level line-
search parameter, λk, can be computed exactly. Given zk ∈ Z, if ek ∈ Z is a descent
direction of Jk(zk + s) = Ĵk(zk + s)− 〈vk, (zk + s)〉Z , then minimizing Jk(zk + λek)
with respect to λ yields the explicit value

λk = −〈∇Ĵk(zk)− vk, ek〉Z
〈∇2Ĵk(zk)ek, ek〉Z

= −〈Hkzk − gk − vk, ek〉Z
〈Hkek, ek〉Z

. (6.5)

Since ek is a descent direction, Assumption 5.1 ensures that λk is positive. The
computation of the gradient requires 2Qk PDE solves, and the application of Hk

to the search direction ek requires 2Qk PDE solves. Therefore, computation of λk
requires 4Qk PDE solves.

6.4. Computational Work. We are now prepared to derive bounds on the
total number of PDE solves required for one V-cycle of MG/OPT using exact CG
smoothing. Let Wk denote the number of PDE solves per cycle of Algorithm 1 at
level k, and let W k

k+1 denote the number of PDE solves required for one cycle of
Algorithm 1 excluding the number of PDE solves required to solve (4.3). That is,
W k
k+1 is the number of PDE solves required for pre- and post-smoothing, computing

the coarse grid correction vk, and computing the line-search step length λk. The
structure of Algorithm 1 leads to the recursive definition of Wk:

W2 = W 1
2 +W1 and Wk+1 = W k

k+1 +Wk =⇒ WK =

K∑
k=2

W k−1
k +W1, (6.6)
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where W1 is the number of PDE solves required to exactly solve (4.1). See [43] for
more details on spatial multigrid work estimates. If we use CG to solve (4.1), then
W1 = 2(N1

CG + 1)Q1, where N1
CG denotes the total number of CG iterations.

For the following results, we assume the sparse-grid growth rate satisfies

qk = Qk/Qk−1 = 2

(
k

k − 1

)M−1

for k = 1, 2, . . . , (6.7)

which is satisfied for many instances of isotropic Smolyak sparse grids (recall Section 3
and [19]). We prove two results: the first result concerns pre- and post-smoothing with
a constant number of iterations, while the second results deals with level-dependent
pre- and post-smoothing.

Proposition 6.3. Let (6.7) hold. Consider Algorithm 1 with T1,k = τ1 ≥ 0
iterations of CG for pre-smoothing and T2,k = τ2 ≥ 0 iterations of CG for post-
smoothing for k = 1, . . . ,K. Then, the total number of PDE solves for a single
V-cycle of Algorithm 1 satisfies

WK ≤ 4(3 + τ1 + τ2)QK +W1.

Proof. We require 2Qk PDE solves to compute the gradient, 2τ1Qk PDE solves
for pre-smoothing, 2τ2Qk PDE solves for post-smoothing, and 4Qk PDE solves to
compute the line-search step length. Therefore, the growth rate (6.7) implies

W k−1
k = (4 + 2(1 + τ1 + τ2))Qk = (6 + 2(τ1 + τ2))QK

K∏
j=k+1

q−1
j .

Notice that

K∏
j=k+1

q−1
j =

(
1

2

)K−(k+1)+1(
k

k + 1
· . . . · K − 1

K

)M−1

=

(
1

2

)K−k (
k

K

)M−1

≤
(

1

2

)K−k
. (6.8)

Combining these facts with (6.6) and then invoking geometric series convergence yields
the desired bound.

For our second example, we vary the number of CG iterations, T1,k and T2,k, at
each level. This approach allows us to more accurately solve the smoothing problems
(4.2) and (4.4) on the coarse levels and less accurately on the fine levels.

Proposition 6.4. Let (6.7) hold and let τ1, τ2 be fixed non-negative integers.
Moreover, suppose pre- and post-smoothing are performed with

Tj,K = τj , Tj,K−1 = 2τj , . . . , Tj,2 = (K − 1)τj for j = 1, 2

CG iterations, respectively. Then the total number of PDE solves for a single V-cycle
of Algorithm 1 satisfies

WK ≤ 4(3 + 2(τ1 + τ2))QK +W1.



MULTILEVEL STOCHASTIC COLLOCATION FOR OPTIMIZATION 15

Proof. Note that 2 =
∑∞
n=0 2−n and 2 =

∑∞
n=1 n2−n. Using these facts, we

obtain from the bound (6.8) and the recursive estimate (6.6),

WK ≤ QK
K∑
k=2

(6 + 2 (τ1 + τ2) (K − (k − 1)))

(
1

2

)K−k
+W1

≤ QK
(

12 + 2(τ1 + τ2)

K∑
k=2

(K − k)
(1

2

)K−k
+ 4(τ1 + τ2)

)
+W1

≤ 4
(
3 + 2(τ1 + τ2)

)
QK +W1.

6.5. Error Estimation. We now derive an error bound for a single V-cycle
of Algorithm 1 where pre- and post-smoothers are computed by using T1,k and T2,k

iterations of CG, respectively. The error estimate in this subsection is based on the CG
error estimate given in Theorem 6.1. This subsection is organized as follows. First
we present a compact operator representation for a single V-cycle of Algorithm 1.
Using this operator formulation, we then apply the CG error estimate in Theorem 6.1
to determine an initial upper bound for the V-cycle error. Subsequently, we prove
an optimality result concerning the line-search parameter. Combining this line-search
result with the CG error estimate gives the final error bound. To conclude, we present
explicit bounds for the 2-level case (i.e., K = 2).

We seek a representation of the iterate z+
k of Algorithm 1 as an operator equation

depending on the coarse grid information z−` , v`, g`, H`, and λ` for ` = 1, . . . , k.
First, recall that Tk,i iterations of CG applied to (4.2) and (4.4) produce

zk,1 = (I−Pk,1Hk)z−k + Pk,1(gk + vk) (6.9a)

z+
k = (I−Pk,2Hk)zk,3 + Pk,2(gk + vk), (6.9b)

where Pk,i = pk,i(Hk) and pk,i is a polynomial of degree Tk,i − 1 for i = 1, 2 [40, L.
6.28]. Now, beginning on level k = 1, define S1 = H−1

1 . Then the result of the level
1 optimization problem (4.1) can be expressed as

z+
1 = (I− S1H1)z−1 + S1(g1 + v1).

Employing this expression for z+
1 and the compact representations of the smoothing

operators (6.9), we arrive at the following compact operator form for the kth-level
MG/OPT iteration:

z+
k = (I− SkHk)z−k + Sk(gk + vk), (6.10)

where Sk is defined recursively through Algorithm 1 and satisfies

(I− SkHk) = (I−Pk,2Hk)(I− λkSk−1Hk)(I−Pk,1Hk) (6.11)

for k = 2, . . . ,K.
We use the operator form (6.10) of the MG/OPT iteration to derive error bounds.

First, we apply Theorem 6.1 to prove the following partial bound.
Lemma 6.5. Let k ∈ {1, . . . ,K}, λk ∈ R be fixed, and z∗k ∈ Z satisfy

Hkz
∗
k = (gk + vk).
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Furthermore, let the assumptions of Theorem 6.1 hold, and consider one V-cycle
of Algorithm 1 where pre- and post-smoothing are performed by using T1,k and T2,k

iterations of CG, respectively. Then,

‖z∗k − z+
k ‖Hk

≤ 2

(√
Ak −

√
ak√

Ak +
√
ak

)T2,k

‖z∗k − zk,3‖Hk
.

Proof. This is a straightforward application of Theorem 6.1.
The goal now is to bound the quantity ‖z∗k − zk,3‖Hk

. To this end, recall that
ek = (zk,2 − zk,1) ∈ Z, and note that ek satisfies

ek = Sk−1(gk + vk −Hkzk,1),= Sk−1Hk(z∗k − zk,1) (6.12)

where z∗k is defined in the statement of Lemma 6.5. Substituting this expression into
the right-hand side of the error bound given in Lemma 6.5 gives

‖z∗k − zk,3‖Hk
= ‖(I− λkSk−1Hk)(z∗k − zk,1)‖Hk

.

Using this error representation, we prove the following optimality result for the exact
line-search parameter computed using equation (6.5).

Lemma 6.6. Let λk be the exact line-search parameter computed in equation
(6.5), and define v = (z∗k − zk,1). Then

λk = arg min
µ∈R

1

2
‖(I− µSk−1Hk)v‖2Hk

, (6.13)

and

‖(I− λkSk−1Hk)v‖2Hk
= 〈(I− λkSk−1Hk)v, v〉Hk

. (6.14)

Proof. Define j(µ) = 1
2‖(I − µSk−1Hk)v‖2Hk

. The objective function j : R → R
is differentiable, convex, and quadratic. Expanding j gives

j(µ) =
1

2
‖(I− µSk−1Hk)v‖2Hk

=
1

2
〈Hk(I− µSk−1Hk)v, (I− µSk−1Hk)v〉Z

=
µ2

2
〈HkSk−1Hkv,Sk−1Hkv〉Z − µ〈Sk−1Hkv,Hkv〉Z +

1

2
〈Hkv, v〉Z .

Setting the derivative, j′(µ), to zero and solving for µ gives the optimal solution

µ∗ =
〈Sk−1Hkv,Hkv〉Z

〈HkSk−1Hkv,Sk−1Hkv〉Z
.

Now, since ek = (zk,2 − zk,1) satisfies (6.12), the optimal value of µ satisfies

µ∗ =
〈ek,gk + vk −Hkzk,1〉Z

〈Hkek, ek〉Z
= λk.

This proves (6.13), and evaluating 2j(λk) proves (6.14).
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The optimality of the line-search parameter, λk, proved in Lemma 6.6 and Lemma 6.5
combined with Theorem 6.1 implies the following error bound:

‖z∗k − z+
k ‖Hk

≤ 4

(√
Ak −

√
ak√

Ak +
√
ak

)T1,k+T2,k

‖z∗k − z−k ‖Hk
.

This result is comparable to the error bound for performing T1,k + T2,k iterations of
CG with restart after T1,k iterations and is overly pessimistic because it disregards
the coarse-grid information. In the following, we show that the coarse-grid correction
is, in fact, beneficial.

Lemma 6.7. Let the assumptions of Lemma 6.5 hold, and let %(I − λkSk−1Hk)
denote the spectral radius of (I− λkSk−1Hk). Then

‖z∗k − z+
k ‖Hk

≤ 4
√
%(I− λkSk−1Hk)

(√
Ak −

√
ak√

Ak +
√
ak

)T1,k+T2,k

‖z∗k − z−k ‖Hk
. (6.15)

Proof. Lemma 6.6, in particular equality (6.14), implies

‖(I− λkSk−1Hk)(z∗k − zk,1)‖Hk
≤
√
%(I− λkSk−1Hk)‖z∗k − zk,1‖Hk

.

Therefore, Lemma 6.5 and Theorem 6.1 imply (6.15).
The goal now is to derive explicit bounds on the spectral radius of (I−λkSk−1Hk).

In particular, we wish to prove that %(I−λkSk−1Hk) < 1. This is equivalent to proving
(1 − λkµ) < 1 for all eigenvalues, µ, of Sk−1Hk. In the case of K = 2, we can prove
such bounds. Note that if (v, µ) ∈ Z × C is an eigenpair of S1H2 = H−1

1 H2, then
H2v = µH1v; in other words, µ is a generalized eigenvalue of the operator pencil
(H2,H1). Let σ(H2,H1) denote the spectrum of the pencil (H2,H1). Then the
spectral radius is %(I− λ2H

−1
1 H2) = 1− λ2 min{µ : µ ∈ σ(H2,H1)}.

Lemma 6.8. Suppose there exists ε > 0 such that

‖H2v −H1v‖Z ≤ ε ∀ v ∈ {s ∈ Z : ‖s‖Z ≤ 1}. (6.16)

Then, the spectrum σ(H2,H1) satisfies

σ(H2,H1) ⊂ [(1 + a−1
2 ε)−1, 1 + a−1

1 ε].

Proof. Let µ ∈ σ(H2,H1) and v ∈ Z be a normalized eigenfunction corresponding
to µ (i.e., ‖v‖Z = 1). First note that µ > 0; that is,

H2v = µH1v ⇒ 〈H2v, v〉Z = µ〈H1v, v〉Z ⇒ µ =
〈H1v, v〉Z
〈H2v, v〉Z

> 0

since H2 and H1 are assumed to be uniformly positive-definite operators.
Write H1 = H2 + δH, where δH = H1−H2. Then, substituting H2 + δH for H1

gives

H2v = µH2v+ µδHv ⇒ δHv =
1− µ
µ

H2v ⇒ µ−1 − 1 =
〈δHv, v〉Z
〈H2v, v〉Z

≤ a−1
2 ε.

Since µ > 0, we have µ ≥ (1 + a−1
2 ε)−1.
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On the other hand, H2 = H1 − δH, and

µH1v = H1v−δHv ⇒ (µ−1)H1v = −δHv ⇒ µ−1 =
−〈δHv, v〉Z
〈H1v, v〉Z

≤ a−1
1 ε.

Therefore, we have µ ≤ 1 + a−1
1 ε. This proves the lemma.

Lemma 6.8 implies the following bound on the spectral radius %(I− λ2H
−1
1 H2):

%(I− λ2H
−1
1 H2) ≤ 1− λ2(1 + a−1

2 ε)−1.

In the same vein as Lemma 6.8, we can bound the line-search parameter.

Lemma 6.9. Suppose (6.16) holds. Then, the line-search parameter, λ, computed
by using (6.5) satisfies

λ2 ∈ [(1 + a−1
1 ε)−1, 1 + a−1

2 ε].

Proof. First, note that

〈g2 + v2 −H2z2,1, e2〉Z = 〈H1H
−1
1 (g2 + v2 −H2z2,1), e2〉Z = 〈H1e2, e2〉Z .

Therefore, λ2 = 〈H1e2,e2〉Z
〈H2e2,e2〉Z . Substituting H1 = H2 + δH gives

λ2 = 1 +
〈δHe2, e2〉Z
〈H2e2, e2〉Z

≤ 1 + a−1
K ε.

On the other hand, substituting H1 = H2 − δH gives

λ2 =

(
1 +
〈δHe2, e2〉Z
〈H1e2, e2〉Z

)−1

≥ (1 + a−1
1 ε)−1.

This proves the desired result.

Lemmas 6.8 and 6.9 imply the final upper bound on the spectral radius

%(I− λH−1
1 H2) ≤ 1− (1 + a−1

1 ε)−1(1 + a−1
2 ε)−1 < 1.

This result shows that the spectral radius is approximately zero for small ε.

Theorem 6.10. Suppose (6.16) holds, and let K = 2. Then, one V-cycle of
Algorithm 1 with pre- and post-smoothers performed by T1,2 and T2,2 iterations of
CG, respectively, produces the iterate, z+

2 , satisfying

‖z∗2−z+
2 ‖H2

≤ 4

√
1− (1 + a−1

1 ε)−1(1 + a−1
2 ε)−1

(√
A2 −

√
a2√

A2 +
√
a2

)T1,2+T2,2

‖z∗2−z−2 ‖H2
.

Proof. This follows from Lemmas 6.7, 6.8, and 6.9.

Remark 6.11. The assumptions in Lemma 6.8 are reasonable for sparse grid
approximation. In the context of Assumption 3.2, ε ≤ C(Q−ν1 + Q−ν2 ). It is thus
important to choose an initial multi-index set I1 that results in a sparse grid N1 with
more than one point (i.e., |N1| = Q1 > 1).



MULTILEVEL STOCHASTIC COLLOCATION FOR OPTIMIZATION 19

K

1

K

V-Cycle

1 1

K

1

K

FMG

Fig. 7.1: Depiction of the classic V-cycle and FMG cycle structures used in multigrid.

7. Numerical Examples. The numerical examples presented in this section
demonstrate the dramatic reduction in the total number of PDE solves required by
Algorithm 1 when compared with other optimization routines. These examples are
presented and analyzed in detail in [28]. Furthermore, all examples are implemented
in MATLAB.

For each example, we compare the number of PDE solves required when solv-
ing the fixed high-fidelity discretized optimization problem using Newton-conjugate
gradients (Newton-CG) with the number of PDE solves required by Algorithm 1. Fur-
thermore, we compare two instances of Algorithm 1, V-cycles and F-cycles (FMG).
The FMG algorithm first solves the problem on the coarsest grid, then increases the
grid level after each V-cycle. FMG gives an efficient method for obtaining a good
initial guess for the V-cycle. Figure 7.1 demonstrates both a single V-cycle and the
FMG cycle.

7.1. Optimal Control of a 1D Elliptic PDE with Discontinuous Coeffi-
cients. In this example, the governing PDE is a steady 1D diffusion equation with
discontinuous diffusion parameter for which the location of discontinuity is uncertain
[27, 28]. The motivation for this problem is the control of subsurface flow in fractured
media.

7.1.1. Infinite-Dimensional Formulation. Let D = (−1, 1), and let ρ(y) de-
note the uniform density on Γ = [−0.1, 0.1]× [−0.5, 0.5]. Consider the governing PDE

−∂x (ε(y, x)∂xu(y, x)) = f(y, x) + z(x) (y, x) ∈ Γ×D, (7.1a)

u(y,−1) = u(y, 1) = 0 y ∈ Γ, (7.1b)

with random field coefficients

ε(y, x) =

{
0.1 if x ≤ y1

10 if x > y1
and f(y, x) = exp

(
− (x− y2)2

)
.

The optimization problem is

min
z∈L2(−1,1)

Ĵ(z) =
1

2

∫
Γ

ρ(y)

∫ 1

−1

(u(z; y, x)− 1)2 dx dy +
α

2

∫ 1

−1

z(x)2 dx, (7.2)

where u(y, x) = u(z; y, x) solves (7.1) and the penalty parameter is α = 10−4. Relating
(7.2) to (2.2), V = H1

0 (D), W = L2(D), and Z = L2(D). Furthermore, the operators
in (2.1) are defined as

〈A(y)u, v〉V∗,V = 0.1

∫ y1

−1

u′(x)v′(x) dx+ 10

∫ 1

y1

u′(x)v′(x) dx,
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N(u, y) ≡ 0, and F(z, y) = b(y)−B(y)z, where

〈b(y), v〉V∗,V =

∫ 1

−1

f(y, x)v(x) dx and 〈B(y)z, v〉V∗,V = −
∫ 1

−1

z(x)v(x) dx.

Additionally, C is the canonical injection from H1
0 (D) into L2(D) and w̄ ≡ 1. The

solution to (7.1) is continuous with respect to y ∈ Γ but need not be differentiable. To
circumvent this complication, we use the domain decomposition formulation described
in [28].

7.1.2. Discretization. We discretize the PDE (7.1) in D using piecewise linear
finite elements. The finite-element mesh varies for each collocation point and is uni-
form on each subinterval [−1, y1] and [y1, 1]. The control variable is also discretized
by using continuous piecewise linear finite elements on a uniform mesh of N = 128 in-
tervals. Furthermore, we construct the sparse-grid hierarchy using isotropic Smolyak
sparse grids built on 1D Gauss-Patterson points with maximum level fixed to K = 8.
The largest sparse grid has Q8 = 1, 793 points.

7.1.3. Spectral Analysis of the Discretized Hessians. Since Ĵ(z) is quadratic,
the estimates derived in Section 6 apply when CG is used as smoothers in Algo-
rithm 1. After discretization, the Hessian matrix at each sparse-grid level is bounded
and positive-definite. The maximum and minimum eigenvalues of the Hessian matri-
ces are relatively constant between levels. At each level, the maximum eigenvalue is
approximately 1.64 × 10−2, and the minimum is approximately 3.85 × 10−7. Since
the Hessians are positive definite, Theorem 6.1 and the work bounds derived in Sec-
tion 6 apply. The V-cycle error bound in Theorem 6.1 depends on the generalized
eigenvalues of the matrix pencils (∇2Ĵk(z),∇2Ĵk−1(z)). The maximum and minimum
generalized eigenvalues for each level for this hierarchy of matrix pencils are approxi-
mately one, as proven in Section 6. Figure 7.2 depicts the absolute difference between
one and the maximum (solid red) and minimum (solid black) generalized eigenvalues.
As expected from the analysis in Section 6, the decay of the errors is approximately
linear with respect to log10Qk. The red dashed line was fit by using the maximum
eigenvalues and decays at a rate of ν = 1.63. The black dashed line was fit by using
the minimum eigenvalues and decays at a rate of ν = 2.08.

7.1.4. Optimization Results. We solve the high fidelity problem (K = 8)
using CG, which we terminate according to the relative residual stopping criterion

‖∇2ĴK(z)s+∇ĴK(z)‖Z ≤ 10−6‖∇ĴK(z)‖Z . (7.3)

The multilevel collocation algorithm uses CG as pre- and post-smoothers at each
level. Algorithm 1 also uses CG to solve (4.1) on the coarsest grid (k = 1) using the
relative residual condition (7.3). The smoothers are computed as in Theorem 6.4 with
T1,k = K−k+1 = T2,k iterations of CG at each level. The smoother exits early if the
relative residual condition (7.3) is satisfied. Disregarding early exit of the smoothers
results in the theoretical upper bound on the number of PDE solves for one V-cycle

WK . 28QK + 2(N1
CG + 1) = 50,280 PDE solves,

where the total number of CG iterations on the coarse grid was N1
CG = 37.

The results for this example are tabulated in Table 7.1. Solving the high-fidelity
optimization problem with CG resulted in 100,408 PDE solves. For Algorithm 1, one
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Fig. 7.2: Error between one and the minimum/maximum generalized eigenvalues

of the matrix pencil (∇2Ĵk(z),∇2Ĵk−1(z)). The horizontal axis is the number of
collocation points. The error for the minimum (black lines) and maximum (red lines)
eigenvalues decays linearly with respect to log10Qk. The decay rate is ν = 1.63 for
the minimum eigenvalues and ν = 2.08 for the maximum eigenvalues.

ĴK(z) PDE Solves Ratio Theoretical Ratio
CG 0.12638509 100,408 1.00 - -
iCG 0.12638509 67,880 1.48 - -
V-Cycle(1) 0.12638715 20,586 4.88 50,280 2.00
V-Cycle(2) 0.12638510 37,758 2.66 100,560 1.00
FMG 0.12638509 18,114 5.54 - -

Table 7.1: Final objective value, number of PDE solves, ratio of PDE solves com-
pared with CG, and theoretical upper bound on the number of PDE solves for each
algorithm: CG for the high-fidelity problem (CG), inexact CG (iCG), one and two
V-cycles (V-Cycle(i), i=1,2), and one F-cycle of Algorithm 1 (FMG).

V-cycle required 36, 760 PDE solves and reduced the norm of the gradient on the
finest level K = 8 to approximately 10−5. Two V-cycles required 64,940 PDE solves
and satisfied the relative residual condition (7.3). FMG required 24,558 PDE solves
and also satisfied the relative residual condition (7.3). All instances of Algorithm 1
resulted in a reduction in PDE solves when compared with CG on the fixed high-
fidelity grid, but FMG was the clear winner with a savings of over 4 times fewer PDE
solves.

7.2. Optimal Control of Steady Burger’s Equation. We now consider the
optimal control of the steady Burger’s equation. Optimal control of the deterministic
Burger’s equation is analyzed in [46].
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7.2.1. Infinite-Dimensional Formulation. Let D = (0, 1), and let ρ(y) de-
note the uniform density on Γ = [−1, 1]4. Consider the governing PDE

−ν(y)∂xxu(y, x) + u(y, x)∂xu(y, x) = f(y, x) + z(x) (y, x) ∈ Γ×D, (7.4a)

u(y, 0) = d0(y), u(y, 1) = d1(y) y ∈ Γ, (7.4b)

where the random field coefficients are

ν(y) = 10y1−2, f(y, x) =
y2

100
, d0(y) = 1 +

y3

1000
, and d1(y) =

y4

1000
.

The optimization problem is

min
z∈L2(−1,1)

Ĵ(z) =
1

2

∫
Γ

ρ(y)

∫ 1

−1

(u(z; y, x)− 1)2 dx dy +
α

2

∫ 1

−1

z(x)2 dx, (7.5)

where u(y, x) = u(z; y, x) solves (7.4) and the penalty parameter is α = 10−3. Relating
(7.5) to (2.2), the function spaces are V = H1

0 (D), W = L2(D), and Z = L2(D). For
each y ∈ Γ, the control operator, F(·, y) : Z → V∗, can be written as

F(z, y) = −b(y)−Bz.

The operators A : Γ → L(V,V∗), B : Γ → L(Z,V∗), N : V → V∗ and b : Γ → V∗
are defined in [28]. Moreover, the observation operator C is the canonical injection of
H1

0 (D) into L2(D) and w̄ ≡ 1.

7.2.2. Discretization. We discretize the state and control variables using con-
tinuous piecewise linear finite elements on a uniform partition of D = (0, 1). To
sufficiently resolve the possible stiff behavior of (7.4), we use a mesh of N = 512
uniform intervals. To solve the resulting system of finite-dimensional nonlinear equa-
tions, we use Newton’s method with a backtracking line search. Furthermore, we
construct the sparse-grid hierarchy using isotropic Smolyak sparse grids built on 1D
Clenshaw-Curtis points with maximum level fixed to K = 8. The largest sparse grid
has Q8 = 7, 537 points.

7.2.3. Optimization Results. We solve the high-fidelity optimization problem
(K = 8) and the coarse-grid problem (4.1) using Newton-CG. We terminate CG using
the relative residual stopping condition,

‖∇2Jk(z)s+∇Jk(z)‖Z ≤ ηk(z)‖∇Jk(z)‖Z , (7.6)

where the forcing function, ηk : Z → (0, 1), is defined as

ηk(z) = min{10−2, ‖∇Ĵk(z)‖Z}. (7.7)

This choice of ηk ensures q-quadratic convergence of Newton-CG whenever the initial
guess z0 ∈ Z is sufficiently close to the optimal solution z∗ ∈ Z [38, Thm. 7.2]. To
globalize Newton-CG, we employ a backtracking line search. Furthermore, we exit
Newton-CG if the norm of the gradient of the objective function is less than the
gradient tolerance gtol. For the high-fidelity problem gtol = 10−6 whereas for the
coarse-grid problem gtol = 10−8.

Similarly, we use a finite number of iterations of inexact Newton with inexact
CG (Newton-iCG) for pre- and post-smoothing. We require inexact CG because we
use Algorithm 2 for Hessian-times-vector computations. To apply the smoothers, we
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Nonlinear Ratio Linear Ratio
Newton-CG 30,148 1.00 678,330 1.00
Newton-iCG 30,148 1.00 45,556 14.89
V-Cycle(1) 34,198 0.88 37,708 17.99
FMG 12,473 2.42 14,903 45.52

Table 7.2: Number of nonlinear and linear PDE solves required by the four different
algorithms: Newton-CG with a backtracking line search, Newton with inexact CG and
backtracking line search (Newton-iCG), one V-cycle of Algorithm 1 (V-Cycle(1)), and
one F-cycle of Algorithm 1 (FMG). “Ratio” refers to the ratio of the number of solves
for Newton-CG with the number of solves for the other algorithms.

perform T1,k = T2,k = 1 outer iterations of Newton-iCG. That is, we apply inexact
CG to approximately solve the Newton system (6.2) at each level, k. Inexact CG is
terminated according to the relative residual condition (7.6) where, for fixed z ∈ Z,
the forcing function is set to

ηk(z) = min{2−(K−k+1), ‖∇Jk(z)‖1/2Z }

for each level k. This specific choice of ηk ensures q-superlinear convergence of
Newton-CG [38, Thm. 7.2] and permits less work on the finer grids.

The primary computational work for general nonlinear PDE constrained opti-
mization problems is PDE solves. To evaluate the objective function, we must solve
Qk deterministic instances of the state equation (7.4). To compute the gradient, we
require Qk nonlinear and Qk linear PDE solves corresponding to the state and adjoint
equations, respectively. To apply the Hessian to a vector, we require the solution to
the state equation, the adjoint equation, and the state and adjoint sensitivity equa-
tions which, is a total of Qk nonlinear PDE solves and 3Qk linear PDE solves. The
total number of PDE solves can be reduced by storing state and adjoint variables,
although recomputation may be essential depending on memory limitations. We store
state and adjoint variables in our implementation.

As in the previous example, we compare the cost of the high-fidelity solution with
Newton-iCG, one V-cycle of Algorithm 1, and one F-cycle of Algorithm 1 (FMG). For
the high-fidelity problem, Newton-CG required 30, 148 nonlinear and 678, 330 linear
PDE solves to meet the gradient tolerance. By using inexact CG to solve the Newton
system, we reduce the number of linear PDE solves to 45, 556 while maintaining the
number of nonlinear solves. After one V-cycle, Algorithm 1 successfully met the
gradient tolerance. Although this V-cycle required more nonlinear PDE solves, it
reduced the number of linear PDE solves by a factor of 17.99 when compared with
Newton-CG. On the other hand, FMG successfully met the gradient tolerance and
only required 27, 376 nonlinear and linear PDE solves, 14, 903 of which were nonlinear
PDE solves. FMG reduced the total number of nonlinear PDE solves by a factor of
2.42 and linear PDE solves by a factor of 45.52 when compared with Newton-CG.
These results are tabulated in Table 7.2.

8. Conclusions. In this work, we present a hierarchical sparse-grid discretiza-
tion for optimization problems governed by PDEs with uncertain coefficients, and
we apply the MG/OPT framework [33, 30] to exploit this multilevel-in-sample-space
discretization. The MG/OPT algorithm, Algorithm 1, is provably first-order con-
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vergent under standard assumptions. The hierarchical sparse-grid discretized opti-
mization problems can similarly be handled with other globally convergent variants
of MG/OPT such as recursive trust-regions [21, 22, 23, 24] and the multilevel line-
search approach [47].

In the case of quadratic optimal control of linear PDEs, we derived explicit upper
bounds on the number of PDE solves required for a single V-cycle of Algorithm 1. We
also proved error bounds for one V-cycle when CG is used as a pre- and post-smoother.
We present numerical examples that confirm these upper bounds, and we demonstrate
the immense reduction in the number of PDE solves required by Algorithm 1 when
compared with Newton-CG applied to a fixed high-fidelity discretized problem.

The number of PDE solves can further be reduced by using the adaptive collo-
cation approach in [27, 28] as a pre- and post-smoother. Alternatively, with slight
modification, one can apply the MG/OPT algorithm to solve the trust-region sub-
problems that arise in the adaptive collocation framework of [27, 28] The framework
in [27, 28] adaptively builds a hierarchy of sparse-grid index sets that can be used in
the multilevel framework presented here. This coupling of the multilevel and adaptive
approach is ideal as both methods perform a majority of their work on coarse sparse
grids, resulting in significantly fewer PDE solves. In addition, the adaptive approach
exploits any anisotropic features of the sample space to further reduce the number of
collocation points. This coupling is left as future work.
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