Data decomposition of Monte Carlo particle transport simulations via tally
servers

Paul K. Romano®*, Andrew R. Siegel®, Benoit Forget?®, Kord Smith?

%Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Building 24-213, Cambridge,
MA 02141
bArgonne National Laboratory, Mathematics and Computer Science Division

Abstract

An algorithm for decomposing large tally data in Monte Carlo particle simulations is proposed, analyzed, and
implemented/tested in a production Monte Carlo code, OpenMC. The algorithm relies on disjoint sets of compute
processes and servers of which the former simulate particles moving through the geometry and the latter runs
in a continuous loop receiving scores from the compute processors and incrementing tallies. A performance
model is developed and shows that for a range of parameters relevant to LWR analysis, the tally server algorithm
should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm
in OpenMC was tested on the Intrepid and Titan supercomputers and was demonstrated to perform well over a
wide range of the parameters. The tally server algorithm can thus be used to analyze IWR models with a level of
fidelity that was heretofore not possible due to the need to replicate memory across all processors.

Keywords: Monte Carlo neutron transport data decomposition exascale

1. Introduction

A considerable amount of recent research and development in the reactor physics community has focused
on using Monte Carlo methods to directly simulate full-core reactor models. There are a number of potential
motivations for using Monte Carlo methods over more traditional deterministic formulations [1, 2]. Many of
the approximations made in the use of deterministic methods may complicate their use for certain classes of
problems, e.g. small-modular reactors with high leakage. Monte Carlo, being free from these approximations,
looks attractive if sufficient computing resources are available.

That being said, the availability of any given supercomputer does not necessarily go hand-in-hand with an
implementation of Monte Carlo methods that will be able to fully utilize the resources. In fact, despite the many
advances in Monte Carlo methods over the past few decades, an efficient parallel implementation for large-scale
criticality calculations capable of scaling on modern petascale supercomputers has, until very recently [3], not
been demonstrated in the literature. There are a number of factors that hinder the parallel performance of these
calculations [1, 4]. However, methods to overcome some of the traditional limitations in parallel implementations
such as synchronization of the fission bank [5, 3] and tallies [6] have now been demonstrated.

Currently, the major impediment to using Monte Carlo methods for reactor analysis is the fact that the parallel
algorithms still generally rely on each program instance storing the full geometry, interaction cross section, and
tally data in memory. There is of course good reason to use full memory replication — each process can simulate
particles independently’ of one another and the tally results can be collected at the end of the simulations. For
reactor analysis, however, the size of the cross section and tally data can easily exceed the memory available on a

*Corresponding author
Email addresses: paul .k.romano@gmail.com (Paul K. Romano), siegala@mcs.anl.gov (Andrew R. Siegel), bforget@mit.edu
(Benoit Forget), kord@mit . edu (Kord Smith)
L This is strictly only true in a fixed source calculation. In an eigenvalue calculation, there is a dependency between fission source iterations.

Preprint submitted to J. Comput. Phys. September 28, 2012

single node. Siegel et al. [2] estimate that cross section data could hypothetically exceed 100 GB and tally data
could exceed 0.5 TB.

In order to treat realistic reactor problems, an algorithm that is capable of dealing with limited per-node
memory must be employed. Two general strategies have been proposed for dealing with limited memory in Monte
Carlo simulations: domain decomposition and data decomposition. In domain decomposition, the physical space
of the problem is divided into subdomains, each of which is assigned to a different processor. When a particle
reaches the boundary of a processor’s subdomain, it is buffered and eventually sent to a neighboring process,
whose subdomain includes the region of space the particle is about to enter. In this algorithm, each processor
only has to store in memory the geometry, cross section, and tally data associated with its subdomain. In practice,
cross section data is needed everywhere in phase space, so domain decomposition generally does not alleviate the
burden of large cross section storage. However, it does provide a natural means of decomposing a large tally into
smaller chunks, each of which resides in the memory of a different processor. Domain decomposition has been
implemented in an implicit Monte Carlo code [7] as well as the Mercury [8] and Shift [9] Monte Carlo particle
transport codes. More recently, a theoretical formulation has been developed by Siegel et al. that helps to predict
the performance of domain decomposition algorithms [10, 2].

The work in [2] elucidates some important limitations of domain decomposition algorithms. One of the
classical arguments against domain decomposition has been that a properly load-balanced simulation would be
difficult to achieve for a problem with non-uniform particle densities (such as nuclear reactor). The original intent
of [2] was to simply quantify the penalty from these non-uniform particle densities in a typical light-water reactor
(LWR) simulation. However, in doing so, the theory revealed a related but perhaps more important limitation that
has implications for simulation on large-scale supercomputers. Namely, as the number of processors increases, the
subdomain size on each processor would become smaller and smaller. With an increasingly small domain size,
the leakage rates between neighboring domains will approach unity, implying that communication costs would
increase drastically. Indeed, this argument makes it hard to imagine domain decomposition being performed on
thousands of processors without incurring a seriously penalty.

While a considerable amount of work and analysis has been carried out on domain decomposition, very little
work has focused on data decomposition. The basic concept of data decomposition is that a disjoint subset of the
processes in a simulation act as servers, sending and/or receiving data to compute processes as needed. In its most
general form, the data could be geometry, cross sections, and/or tallies. The compute processes handle the actual
transport of particles from birth to death and communicate with the servers as needed. Thus, we see that data
decomposition does have some similarity to domain decomposition in the sense that the compute processes are
still tracking particles independently of one another. However, particles are never transferred from one process to
another.

The potential for data decomposition to alleviate per-node memory restrictions had been identified by Brown
and Martin as early as 2004 [11], but to-date it has not been demonstrated or even analyzed. Some early scoping
work was done to investigate whether remote memory access would be suitable for data decomposition algorithms
[12]. However, these preliminary works focused more on decomposing geometry and cross section data. In this
paper, we take a first look at an algorithm designed not to decompose geometry or cross section data but rather to
decompose large tally data.

2. Tally Server Algorithm

During a Monte Carlo simulation, estimates of physical parameters are made by keeping running sums of
scores from events such as collisions or particle tracks. These running sums are referred to as tallies. For example,
to estimate the flux in a closed volume, one could keep a running sum that is incremented by the length of
the particle’s track within the volume each time the particle travels between collisions. The simplicity of tally
incrementing makes it amenable to an atomic fetch-and-add operation (whether this be a CPU instruction or a
remote direct memory access operation). Normally, tallies are stored in local memory. Synchronization between
processors is typically performed only after simulating a predetermined number of particles, referred to as a batch.
However, since tally data is not needed for determining the random walk of a particle, it can be stored remotely.
For the sake of simplicity, we will look at an algorithm where the tally data is stored in the address space of a

process whose sole purpose is to receive scores from other processes and increment the tallies accordingly. These
processes are called tally servers by analog to a classic client-server architecture.

In the tally server data decomposition algorithm, we start with a set of p processes that are divided into ¢
compute processes and s tally servers. Each of the compute processes is assigned a set of particles that it will
track, one at a time. Within a single particle history, some events will cause scores to be tallied. However, instead
of determining a local memory location to increment for each score, a list of scores of size d bytes is sent to a tally
server. Since all tally accumulation is performed on the server, the compute processes do not need to store the
tallies in memory (other than meta-data describing the tally).

To be more explicit on the data requirements, it helps to introduce the notion of filters and scoring functions. A
filter refers to a criterion that limits what events can score to a given tally. The filter criteria generally concern the
properties of a particle. For example, a filter criterion could be that a particle has a collision within a defined mesh
cell, or that a particle’s energy is within a defined range. The scoring functions are the actual physical quantities
to be tallied, such as flux, reaction rates, currents, etc. If an event satisfies all filter criteria for a tally, a tally bin
for each scoring function would be incremented by an estimate of the scoring function. Thus, a single event can
increment more than just a single location in memory. As an example, a tally could specify that the reaction rate
in each of 300 nuclides should be determined. In such a case, each scoring event would have to increment 300
tally bins. We see that the fact that we have d bytes where d > 8 stems from the fact that a single scoring event
may need to score to hundreds of scoring functions. The message sent to a server at a scoring event consists of
the scores for each scoring function.

Each process that has been designated as a server does not track any particles but instead continuously receives
data from the compute processes and increments the appropriate tally bins. The server implementation could use
one-sided operations (remote memory access) or regular point-to-point communication by running a continuous
receive loop. The entire tally data can be divided in any arbitrary manner. In practice, assigning sequential blocks
of the tally data to each server should be sufficient. This could be equivalent to dividing the tallies by spatial
region as in domain decomposition since the tally data itself can be arranged by spatial region. Note again that in
this algorithm, the tally servers only need to store a subset of the tally data; they do not need to store geometry or
cross section data since it is only needed for particle tracking and interactions.

3. Analysis

3.1. Derivation of performance model

Let us now develop a model for estimating the performance of a simulation using tally servers relative to a
simulation where no tally servers are used. As defined earlier, p is the total number of processes, ¢ is the number of
compute processes, and s is the number of servers. It is assumed that there is a one-to-one correspondence between
processes and processor cores, SO we may interchangeably refer to compute processes or compute processors.
We shall also define t, and t as the expected amount of time to simulate N particles on p processes without and
with tally servers respectively. The goal of the following analysis will be to relate ¢ to t, through a number of
representative parameters. We will treat two cases separately: using blocking point-to-point communication and
using non-blocking point-to-point communication.

3.1.1. Blocking Communication

When sending data to tally servers using blocking communication, we can divide ¢ into two components: the
time to simulate particles, t., and the time to send messages to servers, t,. Note that for the purposes of this
analysis, we shall ignore all other communication including synchronization of global tallies and the fission bank.
The amount of communication associated with these aspects of the algorithm will not differ appreciably whether
or not tally servers are used.

The actual time to simulate any given particle will vary widely based on the random walk of each particle;
some particles will have many more collisions and tracks than others. We can assume that the time to simulate
a particle is given by a distribution with a known mean u. This parameter will be influenced by hardware and
software characteristics such as the processor, the cache and memory hierarchy, compiler optimizations, etc. While
it is generally difficult to predict u a priori, it is straightforward to measure it with an actual simulation. Once u is

3

known, the expected time to complete a batch of N particles is Nu. Without tally servers, we can assume perfect
parallel scaling within a single batch such that

to = (1)

The time to simulate N particles using the tally server algorithm is generally expected to be larger than that
without tally servers for two reasons: 1) there are fewer processors available to simulate particles (i.e. ¢ < p),
and 2) communicating tally data to the servers will incur overhead. The expected time to simulate the N particles
over ¢ compute processes is

_ i
T

(2

tC

The overhead of tally communication is strongly dependent on the performance of the network interconnect. Let
us assume that the time to send a message with d bytes of data between a compute process and a server is given
by a + df, where a is the communication latency and f3 is the inverse bandwidth. We are implicitly assuming
that the latency and bandwidth are uniform regardless of which compute process and server are communicating.
This is obviously not strictly true since the communication time will depend on the relative distance between
processors in the network topology as well as network contention. However, for the sake of analysis we can
assume some gross average application-level latency and bandwidth to develop an intuition for the performance
of the tally server model. At the software level, the effective application-level latency can in general depend on
the message size?. For our analysis, we assume no such dependency as it would be both software and platform
dependent. As we will see later, the cases of most practical interest are naturally bandwidth-dominated and thus
the assumptions regarding latency are of minimal consequence.

Having knowledge of the network latency and bandwidth allows us to determine the tally server communica-
tion per scoring event. We also need to know how many scoring events occur per particle in order to determine
the tally server overhead. Let us call f the expected number of scoring events per particle. This parameter will
depend mostly on what filter criteria are applied to a tally. By definition, f (a + df) is the expected tally server
communication time for one particle. If each compute process is simulating N /c particles, then the expected
communication time is

tS:fTN(a+d/5). 3)

Combining (2) and (3), the expected time to simulate N particles using the tally server algorithm can be expressed
as

N N
t=tc+ts=TM+fT(a+d/5)- 4
We can now divide (4) by (1) to obtain a relationship between t and t,:
t
—=I—)+li(a+d/5). 5)
ty ¢ cu

The first term on the right hand side of (5) represents the loss in efficiency due to the fact that not all p processes
are available to simulate particles. The second term in (5) represents the loss in efficiency due to the need to
send messages at every scoring event. One can see that the performance of the tally server algorithm will depend
on many parameters. Three of these parameters are constant for a given computer architecture: the number of
particles simulated per second and the network latency and bandwidth. The other two parameters, d and f, are
application dependent. A detailed discussion of the choice of d and f is given below.

It is desirable to further develop equation (5) to eliminate the dependence on p and c. Ideally, one would
want as few servers as possible to maximize the number of compute processes available. However, we need to

2For example, MPI implementations generally use different protocols for “small” messages and “large” messages.

4

have at least enough servers to ensure that messages can be received continuously, i.e. that no single server is
inundated with messages. This can be stated mathematically by saying that the amount of time each server spends
receiving messages is less than or equal to the expected time for the compute processes to finishing simulating
particles. Since the total time receiving messages is ct,, we have that

ct,
— Sttt (6)

Combining (2), (3), and (6) and solving for c/s, we can obtain a rough estimate for an upper bound on the
number of compute processes that can be supported by one server, which we call the support ratio:

c u
;Sf(a+d[5) +1

By substituting s = p — ¢ in (7) and rearranging terms, we obtain an estimate for the minimum value of p/c:

7

P 1+% (a+dp)

f__ w7 ®
¢ 1+L(atdp)
Substituting (8) into (5), we see that
t 2f
—=1+—(a+dpB). C))
i o ()
Finally, we can define the overhead due to tally servers, A as the difference in times relative to t.
t—ty 2f
Ablocking == (a + dﬁ) . (10)
to u

3.1.2. Non-blocking communication

The derivation of an expression similar to (9) but for non-blocking communication follows the same general
procedure. The expressions for t. and t, are the same as before but are applied slightly differently. On the
compute processes, there is no longer any overhead from blocking communication. Thus, the time to complete a
batch of N neutrons is the greater of the time to simulate the particles on the compute processes and the time to
receive the messages on the servers, i.e.

ct,
t = max (tC’T)' 11

As noted earlier, the support ratio would be determined in such a manner that the time to receive messages on the
servers does not exceed t.. Thus, the time to complete the batch is simply t = t,. Dividing (2) by (1), we can
relate t to the expected time to complete a batch without tally servers using non-blocking communication:

— ==, (12)

As opposed to blocking communication, the only loss of efficiency with non-blocking communication is due to
using fewer compute processes. To relate (12) to the parameters in our model, we again impose the constraint
that the amount of time each server spends receiving messages is less than or equal to the expected time for the
compute processes to finishing simulating particles. This implies that

ct;
— < tc (13)
S

Note the similarity of (13) to (6): the only difference is that the expected time to finish simulating the N particles
does not include the time to send messages since non-blocking communication is used. Again, combining (2), (3),
and (13) and solving for c/s, we obtain an upper bound on support ratio:

5

S S
s~ f(a+dp)

By substituting s = p — ¢ in (14) and rearranging terms, we obtain an estimate for the minimum value of p/c:

(14)

P_14+L (at+ap). (15)
¢ 2
Since t/t, = p/c, we have that
t f
—=1+=(a+df). (16)
i 5 ()
Thus, the expected overhead from tally servers when using non-blocking communication is
t—ty, f
Anc)n-blockjng = =- ((1 + dﬁ) . (17)
to u

It is interesting to note that Ayjocking = 2An0n-blocking- L Nis implies that while non-blocking communication is
expected to reduce the overhead considerably, the behavior of the overhead with changes in the model parameters
will still follow the same general trends whether blocking or non-blocking communication is used.

3.2. Performance predictions

In order to draw any further conclusions regarding the overhead based on (10) and (17), we must develop
realistic estimates for the speed of the network interconnect (o and f3), the calculational rate (u), and the amount
and frequency of data being tallied (d and f). For the network latency and bandwidth, our systems of interest
are two modern supercomputers: the Blue Gene/P supercomputer (Intrepid) at Argonne National Laboratory
(ANL) and the Cray XK6 supercomputer (Titan) at Oak Ridge National Laboratory (ORNL). For the purposes of
estimating d and f, we will look at solving for reaction rate distributions within fuel pins in the Monte Carlo
performance benchmark [13] using the OpenMC Monte Carlo particle transport code [3]. The calculational rate
will depend both on the computer architecture as well as the specific model chosen.

The Intrepid supercomputer has 40 Blue Gene/P racks with 1024 nodes each. In turn, each node has a
quad-core PowerPC 450 processor and 2 GB of memory. Tests have shown that the average ping-pong message
latency on Blue Gene/P is about 3.53 microseconds and the average ping-pong bandwidth is 0.3852 GB/s [14].
Thus, we can infer that & = 3.53-107°s and 8 = 2.60 - 10~? s/byte for the Intrepid Blue Gene/P supercomputer.
For the Monte Carlo Performance Benchmark modified to use 320 nuclides in the fuel, our tests using OpenMC
show that Blue Gene/P can simulate about 76 particles per second on each processor, i.e. u = 0.0132s/particle.
We have chosen to use 320 nuclides in the fuel as this is the maximum number of nuclides available in the
ENDF/B-VIL.O cross section library used in the simulation.

The Titan supercomputer has 18,688 Cray XK6 compute nodes, each of which has a 16-core AMD Opteron
6274 processor with 32 GB of memory. The Cray XK6 uses the Cray Gemini interconnect which has higher latency
but faster bandwidth than the interconnect on the Blue Gene/P. The parameters we use here are 1/u = 140,
a=14-10"sand f=1.0- 1077 s/byte (NEED REFERENCE/UPDATED DATA FOR TITAN).

Let us briefly discuss what values are appropriate to use for f, the number of events per particle. For the
purpose of LWR core analysis, we are only interested in integrated fluxes and reaction rates in the fuel and thus
can ignore all events in the cladding, water, and elsewhere. For the Monte Carlo performance benchmark, each
particle has on average 5.7 collisions in fuel and 21.3 total tracks in fuel. As a point of reference, each particle has
about 26 total collisions during its lifetime and makes 132 total tracks®. Thus, the cases of most practical interest
would be using a collision estimator to accumulate scores only in the fuel (f = 5.7) and using a track-length
estimator to accumulate scores only in the fuel (f = 21.3). To obtain an upper bound on d, a good reference

3These figures were obtained using no survival biasing techniques.

point is a depletion calculation where six reaction rates are needed for each of the 320 nuclides in the fuel. In this
bounding case, a compute process would need to send 6 - 320 - 8 bytes = 15.36 kilobytes at each event.

To summarize the preceding considerations, Table 1 shows the parameter space for both the Intrepid and
Titan supercomputers. Using these parameters, we can evaluate the expected overhead incurred due to sending
data to the tally servers based on (10) and (17). Fig. 1 shows the estimated tally server overhead as a function of
f and d for the Intrepid supercomputer. Based on our performance model, one can see that the communication
will be latency-dominated for small d and bandwidth-dominated for large d. Our upper bound of 15.36 kilobytes
is clearly in the bandwidth-dominated region. Fig. 2 shows the estimated overhead as a function of f and d for
the Titan supercomputer. While the Cray XK6 has very high bandwidth, the slower latency and faster processors
makes the performance approximately equivalent to that of the Blue Gene/P. For f = 21.3 and d = 15360, the
model predicts an overhead of between 10 and 20 percent of the total running time for both the Intrepid Blue
Gene/P and Titan Cray XK6 supercomputers when using blocking communication. If non-blocking communication
is used, the overhead is expected to be less than 10 percent.

Table 1
Parameters used for tally server overhead model in (9).

Parameter Description Intrepid Titan
a Network Latency (s) 3.53-10°® 1.5-107°
B Network Bandwidth (s/byte) 2.60-107° 1.0-107°
1/u Particles/second 76 140
d Data/event (bytes) 0-15,360 0-15,360
f Events/particle 0-132 0-132

10° T
| — f =5.7, blocking

| = - f=5.7, non-blocking
| — f =21.3, blocking

f = 21.3, non-blocking o
f =132, blocking
f =132, non-blocking

1071 k7

1072

Overhead per batch, A

10-3 L i R ;
10! 10? 10° 10¢
Data per event (bytes)

Fig. 1. Estimated tally server overhead for Intrepid Blue Gene/P supercomputer based on (10) and (17).

We can also use equation (7) to identify the number of compute processors that can be supported by one
server when using blocking communication. For our worst case of f =21.3 and d = 15360, the constraint implies
that on the Intrepid supercomputer we would need one server for every 15 compute processors. On the Titan
supercomputer, we would need one server for every 12 compute processors for the same values of f and d.

The predicted overhead due to tally servers based on the model in (10) and (17) is quite modest. In particular,
over the range of parameter space that is of interest in IWR analysis, the overhead is generally less than 10%

7

10" o . : R IR R : R R

— f =5.7, blocking :
- - f =5.7, non-blocking :
— f =21.3, blocking
- - f =21.3, non-blocking :
— f =132, blocking

< - - f =132, non-blocking :

~ 0 L - — : A

o 10

s :

© 2

- i

-

b :

o ”

o :

5 .

Q

= :

T .

2 10! ‘

O %

B L Sk SR RN S

Data per event (bytes)

Fig. 2. Estimated tally server overhead for Titan Cray XK6 supercomputer based on (10) and (17).

— a very small price to pay for the benefit of being able to have tallies of arbitrarily large size. The promising
results based on the theory presented here warrant an actual implementation in a real Monte Carlo code. In
section 4, we describe our implementation of this algorithm in the OpenMC Monte Carlo code. Actual test results
using the implementation in OpenMC are presented in section 5. Before we discuss the implementation and
results, however, we first discuss and analyze several considerations that may have an influence on the achievable
performance.

3.3. Implications of total memory requirements

One may have noted in the derivation of the performance model that, even though the entire purpose of the
algorithm is to allow for decomposition of the tally memory, nowhere was the total memory requirement for the
tallies taken into account. In fact, one of the alluring aspects of the tally server algorithm is that, in general, its
performance does not depend on total amount of memory. However, we must be careful in interpreting such a
statement too broadly as there are constraints on the memory.

The most obvious constraint is that the memory for each server must not exceed the available memory on a
single node. Let M, be the total memory required for tallies, M, be the tally memory on each server, and M,, be
the available memory on a node. This constraint implies that

M, < M,,. (18)

Another implicit assumption made in the course of the derivation was that the message being sent was small
relative to the tally memory on each server. However, for a fixed tally size, the total tally memory on each server
will be inversely proportional to the total number of processors (assuming a constant support ratio). Thus, as the
total number of processors becomes very large, the total memory on each server could hypothetically become
smaller than the message size for each scoring event. This situation would result in increased overhead as it
would necessitate sending more messages. A reasonable constraint to impose is that the message size for each
scoring event be smaller that the tally memory of each server:

d < M, (19)

In practice, even d = M, can cause problems since a single message can still overlap two servers. If we assume
that the total memory required for tallies is divided evenly over the tally servers, then the constraints in (18) and
(19) can be written in combined form as

M,
d<— < M,. (20)
s

As we saw earlier, the upper limit on d for our cases of interest is 15,360. Let us suppose that the memory on a
single node is M,, = 32- 10° bytes. If the total memory of the tallies is M, = 500 - 10° bytes, then (20) implies that

15.6 <s < 3.26- 10°. 1)

Thus, we must have at least 16 servers in order for the memory footprint of each to fit on a single node. This
lower bound is quite easy to achieve even on a small cluster. For the upper bound, if we have more the 3.26
million servers, each server would have too little data compared to the size of a single message. At present, this
limit puts no practical restrictions on our use of the algorithm.

The constraint in (20) can also tell us, given a total number of a tally servers, the range of total tally memory
that can be reasonably accommodated. Let us suppose we wanted to perform a simulation using entire Mira
Blue Gene/Q supercomputer at Argonne National Laboratory. This supercomputer has 48 racks each having 1024
nodes, each of which in turn has a 16 core processor for a total of 786,432 cores. Each node has M, = 16 - 10°
bytes of memory. Assuming a support ratio of ¢/s = 15, we would need 49,152 servers. Thus, (20) implies that

755.0-10% < M, < 786.4-10'2. (22)

For any reasonable simulation, the total memory of the tallies will likely be somewhere between 755 kilobytes
and 786 terabytes.

Admittedly, the foregoing analysis does not take into account the fact that tally servers will have to share the
memory of a single node with compute processors. However, doing so would not change the overall conclusion
that under normal circumstances, the memory requirements are not a formidable challenge to successfully
employing the tally server algorithm.

3.4. Dependence of u on d

To this point, we have assumed that u is independent of all other parameters in our model. However, in most
Monte Carlo transport codes, the rate at which particles are simulated depends on how much data needs to be
tallied. Hence u should really be a function of d, i.e. 4 = u(d). In our case, d will vary according to how many
nuclides and scoring functions are being tallied. For every nuclide reaction rate that needs to be tallied, it is
necessary to either calculate or look up a nuclide microscopic cross section at the time of tallying. As a result, u
will depend linearly on d. If u, is the calculational rate with no tallies and u, is the average time to process tally
scores per byte, then we have that

p(d) = uo +duy (23)
Substituting u(d) for u in (16), the tally server overhead using non-blocking communication would then be
__f
Anon-blocking - 4 (a + dﬁ) . (24)

Mo +duy

We see that the tendency would be to lessen the overhead as d is increased relative to the overhead in (17). In
the actual performance measurements discussed in section 5, this effect is accounted for explicitly by measuring u
over a range of d.

4. Implementation

4.1. Description of algorithm

The algorithm described in section 2 was implemented in OpenMC [3], an open source Monte Carlo neutronic
simulation software package recently developed at MIT capable of performing calculations on arbitrary 3D
geometries with continuous-energy cross-sections. OpenMC was written with a focus on scalable algorithms for

9

leadership-class supercomputers and has demonstrated weak scaling up to hundreds of thousands of processors on
ALCF’s Intrepid and OLCF’s Jaguar supercomputers [3]. The codebase is written in Fortran 2008 with parallelism
provided via MPI and OpenMP

Modest changes were required in the OpenMC source code to implement the tally server algorithm. At
initialization time, processes are divided into compute processes and servers based on user input. If p total
processes and s servers are specified, then the processes whose MPI rank satisfies i + 1 mod s/p = 0 are assigned
as servers. Each user-defined tally has an array of score objects whose length is the product of the number of filter
bins multiplied by the number of scoring functions. All scoring bins from user-defined tallies are concatenated into
one “global” tally score array which is then divided equally over the servers. Finally, a look-up table is constructed
that relates indices in the global tally scores array to indices within the scores array for each user-defined tally.
The look-up table enables the compute processes to determine which server they need to send scores to.

The necessary changes to the actual tallying subroutines that are used during particle tracking follow directly
from the discussion in section 2. As a summary, Algorithm 1 shows a pseudocode outlining the salient points of
the tally server algorithm as implemented in OpenMC. There are a few important points to note regarding this
algorithm. Firstly, the array of scores created when a scoring event occurs contains the scores for all specified
scoring functions. This means that the receiving server will increment multiple tally scores from a single message.
Also note that the servers must be informed of when a batch of particles (or the simulation) has been completed
as the servers are now responsible for computing sums and sums of squares of the tally score bins in order to
calculate variances. At the end of the simulation, the servers must collectively write the tally results to disk. This
can be done efficiently using parallel I/O techniques such as MPI-IO or parallel HDF5.

4.2. Potential optimizations

4.2.1. Explicit buffering

In Algorithm 1, an array of scores is sent to a server at every single scoring event. If f in (10) or (17) is very
large, this would clearly create a large overhead regardless of whether the communication would be latency- or
bandwidth-dominated. One potential workaround for this situation would be to explicitly buffer messages before
sending. Rather than sending a message at every scoring event, we could create a buffer array on the compute
process for each server that is some factor 1) larger than the total number of scoring functions for a tally. When
the buffer array is full, it would then be sent to the corresponding server. In this case, we have decreased f by a
factor of 17 and increased d by the same factor. The predicted overhead using non-blocking communication would
then be

a
Anon-blocking = ;_M (a + dﬁﬁ) = £ (E + dﬁ) . (25)

We see in (25) that the latency term has been reduced by a factor of 1, but the bandwidth term is unchanged.
Since the main case of interest (depletion of an IWR model) was shown to be in the bandwidth-dominated region
for contemporary supercomputers, the extra effort of implementing explicit buffering did not seem to justify the
performance benefit for cases that are latency-dominated. This is especially true given that, as we will see in
section 5, the overhead for latency-dominated cases is extremely small.

4.2.2. Combining successive scoring events

A small variation on the explicit buffering concept described in the previous section is to combine successive
scores that match the same filter criteria. Let us suppose that for a tally with scoring bins b;,i =1,...,k, we have
n consecutive scoring events that match the same filter criteria. Let x; ; be the ith score for the jth event. In the
basic algorithm, we send a message containing the values x; j, x5 ;,..., X j to a server for each scoring event.
Then the server adds each score to the appropriate scoring bin b; < b; + x; ;Vi. Rather than sending n messages
and having the server accumulate each array of scores, the compute processes can combine consecutive scores
and subsequently send the sum to a server to be accumulated. Each compute process would calculate x; = Zj X js
and the server would accumulate b; < b; + x!. This scheme effectively reduces the number of scoring events per
particle, f.

To obtain a simple estimate of the potential reduction in f, let us consider the case of track-length tallies in
the fuel region. Any time a particle scatters within the fuel region, it will result in two separate tracks. The tally

10

Algorithm 1 Pseudocode for tally server algorithm

if compute process then
fori<—1to M do
for j<— 1to N/p do
while Particle j is alive do
Process next event
if Event satisfies filter criteria then
Create array for scores
for all Scoring functions do
Calculate score
Add score to array
end for
Determine server destination
Send array to server
end if
end while
end for
Send ‘finished’ message to server
end for
else if server then
loop
Receive message
if End of batch then
Accumulate tally scores
else if End of simulation then
Accumulate tally scores
exit loop
else
for Score i — 1 to d do
Determine memory location j to increment
Increment tally j with score i
end for
end if
end loop
Write tally results to state point file
end if

11

scores from these separate tracks could be combined and sent to a server in one message. This implies that the
effective number of scoring events, f’, is then

~(-22)

where X, ¢ is the scattering reaction rate in the fuel and 3, ¢ is the total reaction rate in the fuel. For the Monte
Carlo performance benchmark %.¢ /%, ¢ = 0.23, so f would be reduced about 23%.

4.2.3. Topologically-aware layouts

To maximize network bandwidth and minimize latency, the mapping of processes to processor cores could
hypothetically be optimized based on the topology of the particular machine the algorithm is implemented on.
We chose a naive implementation that is unaware of topology to ensure portability across different architectures
and to demonstrate that successful use of the algorithm does not require such optimizations.

5. Results

The performance model developed in section 3 is dependent on a variety of parameters. On any given computer,
a, B, and u are effectively constant. The remaining parameters can be manipulated by varying the definition
of the tallies and the job parameters. Thus, to fully test the performance of the tally server implementation, a
parameter study should be carried out by running a series of simulations varying the parameters p, s, f, and d.

One could argue that based on (17), it should not be necessary to include p, c, or s in the parameter study
since the overhead does not explicitly depend on those parameters. However, (17) was derived assuming that the
support ratio attains its maximum based on the inequality in (14). In practice, it’s not possible to know a priori
what the maximum attainable support ratio is and thus it is instructive to test this directly. While the performance
depends on f in general, our primary interest is tally events in the fuel region. As a result, we performed a
parameter study using the modified version of OpenMC varying p, c¢/s, and d only.

First, a number of “baseline” simulations of the Monte Carlo performance benchmark were run to determine
how u varies with increasing d, and hence how t, varies with increasing d. The baseline simulations were run
without tally servers to capture only the increase in simulation time due to cross section look-ups for tallies.
On both the Titan supercomputer, the baseline simulations were run with 16 processors with a total of 32,000
particles per batch. Ten batches were run both without tallies (referred to as inactive batches) and with tallies
(active batches). These values were found to be adequate to accurately profile performance. On the Intrepid
supercomputer, the baseline simulation was run with a single processor with 2000 particles per batch. Again, ten
batches were run first without and then with tallies. For each case, a tally was set up with a mesh filter and a
second filter to match only events within the fuel volume. The scoring functions requested were the flux, total
reaction rate, scattering rate, absorption rate, fission rate, and neutron production rate for varying numbers of
nuclides, starting with 5 nuclides and doubling the number of nuclides up to 320. Thus, the amount of data
sent at each event varied from 240 bytes up to 15.36 kilobytes. Fig. 3 shows the observed dependence of u on d
normalized to the d =5 case.

The parameter study using tally servers on the Intrepid supercomputer consisted of 168 simulations with each
combination of the following parameters: p = 16,32,64,128,256,512, ¢/s =1,3,7,15, and d = 240,480, 960,
1920, 3840, 7680, 15360. Like the baseline cases, the runs with tally servers had 10 inactive batches, 10 active
batches, and N /p = 500. The effective overhead from tally servers was determined in the following manner. First,
the expected overhead due to looking up cross sections during tallying was subtracted from the active batch time
based on the results from the baseline cases. Then, the adjusted simulation time in active batches was divided by
the inactive batch time to determine the overhead in active batches. This essentially represents an estimate for
the second term in (5), i.e. it does not account for the fact that we have fewer compute processors. However, if
we know p and c, that source of overhead is trivial — it is really the extra overhead from message-passing that we
are interested in. The overhead calculated in this manner for ¢/s =1, ¢/s =3, ¢/s = 7, and ¢/s = 15 is shown in
Fig. 4, Fig. 5, Fig. 6, and Fig. 7, respectively.

12

1.5

®—e Intrepid

e—e Titan

i i i i i i
%% 50 100 150 200 250 300 350
d (bytes)

Fig. 3. Observed dependence of u on the amount of data tallied, d, on Intrepid and Titan.

It is also of interest to observe the behavior of the tally server overhead with increasing numbers of total
processors. Recall that the performance model predicts that the overhead should not depend on the number of
processors used. Fig. 8 shows the overhead plotted as a function of p for cases with d = 15360. We see that
the overhead does not increase appreciably for ¢/s = 1,3, 7. However, for c/s = 15 the performance begins to
degrade. This may indicate that on Intrepid, this support ratio is not quite sufficient for all servers to keep up
with the volume of messages. Since the model assumptions regarding achievable bandwidth do not account for
contention, such deviation from the model is not unexpected.

Another parameter study using tally servers on the Titan supercomputer consisted of 196 simulations with
each combination of the following parameters: p = 16,32,64,128,256,512,1024, ¢/s = 1,3,7,15, and d =
240,480,960, 1920, 3840, 7680,15360. Again, the runs with tally servers had 10 inactive batches, 10 active
batches, and N /p = 1000. The effective overhead from tally servers was determined as described for the study on
Intrepid. The calculated overhead for ¢/s =1, ¢/s =3, ¢/s = 7, and c¢/s = 15 is shown in Fig. 9, Fig. 10, Fig. 11,
and Fig. 12, respectively.

Similar to Fig. 8, we can look at the behavior of the tally server overhead on Titan with increasing p. Fig. 13
shows the overhead plotted as a function of p for cases with d = 15360. We see that the overhead is relatively
stable with increasing p. However, the cases with c¢/s = 1 are clearly outliers with much higher overhead than the
other cases. (STILL NEED EXPLANATION FOR OUTLIERS).

6. Conclusions

In the present work, an algorithm for decomposing large tally data in Monte Carlo particle simulations was
proposed, analyzed, and implemented/tested in a production Monte Carlo code, OpenMC. The algorithm relies
on disjoint sets of compute processes and servers of which the former simulate particles moving through the
geometry and the latter runs in a continuous loop receiving scores from the compute processors and incrementing
tallies. This algorithm potentially allows the end user to dramatically increase the overall tally memory footprint
and therefore enables the potential to carry out full core fuel depletion calculations.

The proposed algorithm is only of practical value if the communication penalty resulting from tally decom-
position is reasonable relative to the key timescales of the problem. We carried out an analysis to that end and
showed in section 3 that for a range of parameters relevant to LWR analysis, the tally server algorithm should
perform with minimal overhead on contemporary supercomputers regardless of the message-passing semantics.

13

10° T T T T T T 10° T
— p=16 fatas : o — p=16
€ 107 € 107
© ©
=} =}
b5} b5}
(=9 (=9
o o
3 3
£ b=
g g
S 102 3 102
10 163 16‘ 10 163 16‘
Data per event (bytes) Data per event (bytes)
Fig. 4. Tally server overhead on Intrepid Blue Gene/P as a Fig. 5. Tally server overhead on Intrepid Blue Gene/P as a
function of data per event with c/s = 1. function of data per event with ¢/s = 3.
10° T T T T T 10!
— p=16 E : monni — p=16
— p=32
— p=64
[} [}
= =
5 5
(=9 (=%
o o
I I+
(53 (53
< <
2 o g
O 10 o
o L ; 0 L ;
10° 10% 10° 10%
Data per event (bytes) Data per event (bytes)
Fig. 6. Tally server overhead on Intrepid Blue Gene/P as a Fig. 7. Tally server overhead on Intrepid Blue Gene/P as a
function of data per event with ¢/s = 7. function of data per event with ¢/s = 15.

An implementation of the algorithm in OpenMC was tested on the Intrepid and Titan supercomputers and was
demonstrated to perform well over a wide range of the parameters. We can conclude that even with no further
improvements in the algorithm or its implementation in OpenMG, it could be successfully used to analyze LWR
models with a level of fidelity that was heretofore not possible due to the need to replicate memory across all
processors. It is likely that future developments in Monte Carlo methods for reactor analysis and improvements in
computer architectures will only improve the performance of the tally server algorithm over time.

One point that was made earlier was that the algorithm presented here does not reduce the burden of large
cross section data. For realistic reactor analysis, cross section data may well reach into the hundreds of gigabytes
owing to the fact that cross section libraries would be needed at a multitude of temperatures. That being said,
there is a considerable amount of research and development in the area of on-the-fly evaluation of effective cross
sections at any temperature. We mention in passing two promising efforts to that end — the work of Yesilyurt on
on-the-fly Doppler broadening [15] and the work of Viitanen on explicit temperature treatment [16]. The latter
development would enable simulation using 0 K cross sections but with a significant performance penalty. In

14

10!

— ¢/s=1
— ¢/s=3
— c/s=7
= ¢/s=15

Overhead per batch

101 ; ‘ ‘ ‘
16 32 64 128 256 512

Number of processors, p

Fig. 8. Tally server overhead on Intrepid Blue Gene/P as a function of p for d = 15360.

general, this and other improvements in physics methods will likely lead to slower simulations but with higher
fidelity. From the perspective of the tally server model, these developments will increase u and consequently
decrease the communication overhead.

On the hardware end, improvements in supercomputer architectures may continue to reduce network latency
and improve bandwidth, at least in the short-term. Again, this will largely benefit the tally server algorithm. Since
incrementing tallies can naturally be expressed as a fetch-and-add atomic operation, there is also potential to
exploit remote direct memory access (RDMA) operations either explicitly (e.g., using MPI-2) or implicitly through
a partitioned global address space (e.g., Fortran co-arrays). Modern network interconnects should be able to take
advantage of RDMA operations. In addition, the requirement that servers and compute processes be disjoint could
be obviated by the use of RDMA, potentially offering further reductions in overhead.

One potential downside to the algorithm presented here is that it considerably complicates the use of threading
via OpenMP. The most natural means of obtaining thread-level parallelism in a Monte Carlo particle transport
simulation is to divide particles within a batch over multiple threads. Normally, no communication occurs until
the end of a batch when it is necessary to synchronize fission bank sites and tallies. However, with the inclusion of
tally servers, it would then be necessary for each thread to participate in message-passing. Further algorithmic
innovations will need to be explored to efficiently combine a tally server model with on-node shared-memory
parallelism.

As a final comment, one should recognize the fact that the algorithm presented here has primarily been
presented with a focus and intent on applications in LWR analysis. For other types of analysis performed with
Monte Carlo, it may turn out that the tally server algorithm does not make sense.

Acknowledgments

This research was performed under appointment of the first author to the Rickover Fellowship Program in
Nuclear Engineering sponsored by Naval Reactor Division of the U.S. Department of Energy. This work was also
supported in part by the Office of Advanced Scientific Computing Research, Office of Science, US Department of
Energy, under Contract DE-AC02-06CH11357 and by the Consortium for Advanced Simulation of Light Water
Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under US Department of
Energy Contract No. DE-AC05-000R22725. The authors would also like to thank Forrest Brown for advice and
guidance regarding data decomposition.

15

0.10
0.08
0.06
= =
S S
3 3
5} 5 004
[=9 [=9
=] =
« «
Z 2 002
B -
g g
& &
0.00
—0.02 |~
008 0 107 -0 0 107
Data per event (bytes) Data per event (bytes)
Fig. 9. Tally server overhead on Titan Cray XK6 as a function Fig. 10. Tally server overhead on Titan Cray XK6 as a function
of data per event with c/s = 1. of data per event with c/s = 3.
0.12 T T 0.08
— p=16
0.10
0.06
0.08
5 S 004
T 0.06 =
o o
o} o}
,g‘ 0.04 .g‘ 0.02
§ 0.02 §
3 & 0.0
0.00
—0.02
—0.02
-0.04 - L -0.04 - L
10° 10% 10° 10%
Data per event (bytes) Data per event (bytes)
Fig. 11. Tally server overhead on Titan Cray XK6 as a function Fig. 12. Tally server overhead on Titan Cray XK6 as a function
of data per event with c/s = 7. of data per event with c/s = 15.
References

[1] william R. Martin. Challenges and prospects for whole-core Monte Carlo analysis. J. Nucl. Eng. Technol., 44(2):151-160, March 2012.

[2] Andrew R. Siegel, Kord Smith, Paul K. Romano, Benoit Forget, and Kyle Felker. The effect of load imbalances on the performance of
Monte Carlo codes in LWR analysis. J. Comput. Phys., 2012.

[3] Paul K. Romano and Benoit Forget. The OpenMC Monte Carlo particle transport code. Ann. Nucl. Energy, 2012.

[4] Forrest B. Brown. Recent advances and future prospects for Monte Carlo. Prog. Nucl. Sci. Technol., 2:1-4, October 2011.

[5] Paul K. Romano and Benoit Forget. Parallel fission bank algorithms in Monte Carlo criticality calculations. Nucl. Sci. Eng., 170(2):125-135,
February 2012.

[6] Paul K. Romano and Benoit Forget. Reducing parallel communication in Monte Carlo simulations via batch statistics. Trans. Am. Nucl.
Soc., 107, 2012. Accepted.

[7] Thomas A. Brunner and Patrick S. Brantley. An efficient, robust, domain-decomposition algorithm for particle Monte Carlo. J. Comput.
Phys., 228:3882 - 3890, 2009.

[8] Gregory Greenman, Matthew O’Brien, Richard Procassini, and Kenneth Joy. Enhancements to the combinatorial geometry particle
tracker in the Mercury Monte Carlo transport code: Embedded meshes and domain decomposition. In International Conference on
Mathematics, Computational Methods and Reactor Physics, Saratoga Springs, New York, May 2009.

[9] Brenden T. Mervin, Scott W. Mosher, Thomas M. Evans, John C. Wagner, and G. I. Maldonado. Variance estimation in domain

16

Fig.

[10]

[11]
[12]

[13]

[14]

[15]

[16]

— ¢/s=1
041 v c/s=3

— c/s=7

o
3

Overhead per batch
[=]
S

o
F

0.0

j j j j
16 32 64 128 256 512 1024
Number of processors, p

13. Tally server overhead on Titan Cray XK6 as a function of p for d = 15360.

decomposed Monte Carlo eigenvalue calculations. In PHYSOR 2012 - Advances in Reactor Physics — Linking Research, Industry, and
Education, Knoxville, Tenneessee, 2012.

Andrew Siegel, Kord Smith, Paul Fischer, and Vijay Mahadevan. Analysis of communication costs for domain decomposed Monte Carlo
methods in nuclear reactor analysis. J. Comput. Phys., 231:3119 - 3125, 2012.

Forrest B. Brown and William R. Martin. High performance computing and Monte Carlo. Trans. Am. Nucl. Soc., 91(1):279 — 280, 2004.
Paul Romano, Benoit Forget, and Forrest Brown. Towards scalable parallelism in Monte Carlo transport codes using remote memory
access. Prog. Nucl. Sci. Technol., 2:670-675, October 2011.

J. Eduard Hoogenboom, William R. Martin, and Bojan Petrovic. The Monte Carlo performance benchmark test - aims, specifications and
first results. In International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de
Janeiro, Brazil, May 2011.

S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J. Rogers, R. Sankaran, J. S. Vetter, P Worley, and W. Yu. Early evaluation
of IBM BlueGene/P. In Proceedings of SCO8: International Conference of High Performance Computing, Networking, Storage, and Analysis,
Austin, Texas, 2008.

Gokhan Yesilyurt, William R. Martin, and Forrest B. Brown. On-the-fly Doppler broadening for Monte Carlo codes. Nucl. Sci. Eng,
171:239-257, 2012.

Tuomas Viitanen and Jaakko Leppanen. Explicit treatment of thermal motion in continuous-energy Monte Carlo tracking routines. Nucl.
Sci. Eng., 171:165-173, 2012.

17

	Introduction
	Tally Server Algorithm
	Analysis
	Derivation of performance model
	Blocking Communication
	Non-blocking communication

	Performance predictions
	Implications of total memory requirements
	Dependence of u on d

	Implementation
	Description of algorithm
	Potential optimizations
	Explicit buffering
	Combining successive scoring events
	Topologically-aware layouts

	Results
	Conclusions

