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We optimize the nucleon-nucleon interaction from chiral effective field theory at next-to-next-
to-leading order. The resulting new chiral force NNLOopt yields χ2 ≈ 1 per degree of freedom for
laboratory energies below approximately 125 MeV. In theA = 3, 4 nucleon systems, the contributions
of three-nucleon forces are smaller than for previous parametrizations of chiral interactions. We
use NNLOopt to study properties of key nuclei and neutron matter, and demonstrate that many
aspects of nuclear structure can be understood in terms of this nucleon-nucleon interaction, without
explicitly invoking three-nucleon forces.
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Introduction. – Interactions from chiral effective field
theory (EFT) employ symmetries and the pattern of
spontaneous symmetry breaking of quantum chromody-
namics [1, 2]. In this approach, the exchange of pi-
ons within chiral perturbation theory yields the long-
ranged contributions of the nuclear interaction, while
short-ranged components are included as contact terms.
The interaction is parametrized in terms of low-energy
constants (LECs) that are determined by fit to exper-
imental data. The interactions from chiral EFT ex-
hibit a power counting in the ratio Q/Λ, with Q being
the low-momentum scale being probed and Λ the cut-
off which is of the order of 1 GeV. At next-to-next-to-
leading order (NNLO), three-nucleon forces (3NFs) enter,
while four-nucleon forces (4NFs) enter at next-to-next-
to-next-to-leading order (N3LO). For laboratory energies
below 125 MeV, the nucleon-nucleon (NN) force exhibits
a quality of fit with χ2 ≈ 10/datum at NNLO [3], while a
high-precision potential N3LOEM, with a χ2 ≈ 1/datum
up to 290 MeV, was obtained by Entem and Machleidt
[2, 4].

The 3NFs at NNLO that accompany the current N3LO
NN potentials play a pivotal role in nuclear structure
calculations [5]. They determine the ground-state spin of
10B [6], correctly set the drip line in oxygen isotopes [7, 8],
and make 48Ca a doubly magic nucleus [9, 10]. While it
might seem surprising that smaller corrections at NNLO
are so decisive for basic nuclear structure properties, the
3NF contains spin-orbit and tensor contributions that
clearly are important for the currently employed chiral
interactions. The contributions of 3NFs at N3LO have
also been worked out [11, 12], and there are on-going
efforts to compute even higher orders [13].

While the quest for higher orders is important, this
approach will only result in higher accuracy if the op-
timization at lower orders were carried out accurately.
This makes it important and timely to revisit the opti-
mization question. We note in particular that the fits of
the currently employed chiral interactions [3, 4, 14] date
back about a decade, and that there has been a consider-
able recent progress in developing tools for the derivative-
free nonlinear least-squares optimization [15]. Further-
more, the quantification of theoretical uncertainties is a
long-term objective of nuclear structure theory, and this
requires a covariance analysis of the interaction parame-
ters with respect to the experimental uncertainties of the
nucleon-nucleon elastic scattering observables, see, e.g.,
Refs. [15, 16]. It is the purpose of this Letter to take the
first step toward this goal. In what follows, we present a
state-of-the-art optimization of the NN chiral EFT in-
teraction at NNLO. This yields a much-improved χ2 and
a high-precision NN potential NNLOopt. The 3NF at
NNLO is adjusted to the binding energies in A = 3, 4 nu-
clei. We present computations of three-nucleon and four-
nucleon bound states, and employ NNLOopt to ground-
and excited states in 10B, masses and excited states of
oxygen and calcium isotopes, and neutron matter.
Optimizing the NN interaction at NNLO. – For the op-

timization of the chiral NN interaction we use the Prac-
tical Optimization Using No Derivatives (for Squares) al-
gorithm POUNDerS [15] as implemented in [17]. This
derivative-free algorithm employs a quadratic model and
is particularly useful for computationally expensive ob-
jective functions. We optimize the three pion-nucleon
(πN) couplings (c1, c3, c4), and 11 partial wave contact
parameters C and C̃, while we keep the axial-vector cou-
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pling constant gA, the pion-decay constant fπ, and all
masses fixed. In the optimization, we minimize the ob-
jective function

f(~x) =

Nq∑
q=1

(
δNNLO
q (~x) − δNijm93

q

wq

)2

, (1)

where δNNLO are NNLO phase shifts, δNijm93 are ex-
perimental phase shifts from the Nijmegen multi-energy
partial-wave analysis [18], ~x denotes the parameters of
the chiral interaction, and wq are weighting factors. Note
that Eq. (1) is not the χ2 with respect to experimen-
tal data. The actual χ2 is calculated following the
POUNDerS optimization. The phase shifts δNNLO are
computed from R-matrix inversion, and in the proton-
proton (pp) channels we include the Coulomb interac-
tion [19, 20]. The contact terms are optimized to re-
produce the Nijmegen phase shifts for each correspond-
ing partial wave, while keeping the ci’s fixed. For the
contacts, the weight wq scales with the third power of
the relative momentum q, while for the c′is, we employ
the uncertainties quoted in the Nijmegen analysis [18].
This can be justified by a physical argument: for the pe-
ripheral waves the higher energies still represent longer-
range physics, and the need for a pedantic agreement
with lower energy phase shifts can be weakened. The πN
couplings c1, c3, and c4 were simultaneously optimized to
the peripheral partial-waves 1D2,

3D2,
3F2, E2,

3F3,
1G4,

and 3F4. Note that the NNLO contact terms do not con-
tribute for orbital angular momenta L ≥ 2. We do not
include other peripheral waves from the Nijmegen study
since they carry extremely small uncertainties, which
leads to a very noisy objective function.

Table I summarizes the optimization results. Our val-
ues should be compared to the πN couplings as deter-
mined from πN scattering data, where c1 = −0.81±0.15,
c3 = −4.69 ± 1.34, and c4 = +3.40 ± 0.04 has been ob-
tained [21]. Thus, POUNDerS yields values for c1 and c3
which agree well with the empirical determination from
πN scattering. The c4 value, however, deviates signif-
icantly from its empirical value. The same trend was
also found in the construction of the N3LO [4] NN inter-
action. A detailed statistical sensitivity analysis of the
LECs with uncertainty quantification will be presented
in Ref. [22].

Table II shows the χ2/datum for NNLOopt at various
laboratory energy bins. The quality of the fit is particu-
larly good for energies below 125 MeV. For comparison,
the np NNLO interaction of Ref. [3] yields χ2/datum of
12–27 in the range Λ = 600/700− 450/500 MeV at ener-
gies up to 290 MeV.

Around energies of 144 MeV there exist two data sets
of pp differential cross sections with a very high precision
(0.5% error) [24] (47 data points). The total number
of pp data in the energy interval 125–183 MeV is 343.
The unusual precision of those 47 data points distorts

TABLE I. Parameters of NNLOopt at Λ = 500 MeV: ci (in

GeV−1), C̃ (in 104 GeV−2), and C (in 104 GeV−4).

LEC value LEC value LEC value

c1 -0.91863953 c3 -3.88868749 c4 4.31032716

C̃pp
1S0

-0.15136604 C̃np
1S0

-0.15214109 C̃nn
1S0

-0.15176475

C1S0
2.40402194 C3S1

0.92838466 C̃3S1
-0.15843418

C1P1
0.41704554 C3P0

1.26339076 C3P1
-0.78265850

C3S1−3D1
0.61814142 C3P2

-0.67780851

TABLE II. χ2/datum for NNLOopt at Λ = 500 MeV with
respect to the np and pp 1999 databases [23]. The values
without the high precision data sets [24] are marked by aster-
isks.

Tlab (MeV) 0–35 35–125 125–183 183–290 0–290

pp χ2/datum 1.11 1.56

{
23.95
4.35∗ 29.26

{
17.10
14.03∗

np χ2/datum 0.85 1.17 1.87 6.09 2.95

the χ2/datum for this interval. For this reason, Table II
also shows the results without the high-precision data.

Two comments are in order. First, the χ2 with respect
to scattering observables is lower when the 1P1 phase
shifts are weighted with the uncertainties from the Ni-
jmegen analysis. The P -waves are only accurately repro-
duced when going to N3LO [4]. Second, the 3S1 − 3D1

coupled channel is optimized with the additional con-
straint of reproducing the deuteron binding energy. The
remaining deuteron observables, as well as the 1S0 scat-
tering observables are predictions and reproduce the ex-
perimental values well, see Table III.

TABLE III. Scattering lengths a and effective ranges r (both
in fm). The superscripts N and C for the proton-proton
observables refer to nuclear forces and Coulomb-plus-nuclear
forces, respectively. BD, rD, QD, and PD denote the deuteron
binding energy, radius, quadrupole moment, and D-state
probability, respectively. QD and rD are calculated without
meson-exchange currents and relativistic corrections.

N3LOEM NNLOopt Exp. Ref.

aCpp -7.8188 -7.8174
-7.8196(26) [25]
-7.8149(29) [26]

rCpp 2.795 2.755
2.790(14) [25]
2.769(14) [26]

aNpp -17.083 -17.825
rNpp 2.876 2.817
ann -18.900 -18.889 -18.95(40) [27, 28]
rnn 2.838 2.797 2.75(11) [29]
anp -23.732 -23.749 -23.740(20) [23]
rnp 2.725 2.684 2.77(5) [23]

BD (MeV) 2.224575 2.224582 2.224575(9) [23]
rD (fm) 1.975 1.967 1.97535(85) [30]
QD (fm2) 0.275 0.272 0.2859(3) [23]
PD (%) 4.51 4.05
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Figure 1 shows some np phase shifts of NNLOopt and
compares them to phase shifts from other potentials and
partial wave analyses. Apart from the 3P -waves, the
phase shifts of NNLOopt are in very close agreement with
the ones obtained at N3LO. Note, however, that these
deviations do not spoil the good χ2 at laboratory energies
below 125 MeV.
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FIG. 1. (Color online) Computed np phase shifts of the op-
timized NNLO potential of this work (red), the NNLO po-
tential of Ref. [3] (dashed, blue), and the N3LO potential [4]
(green, dotted) compared to the Nijmegen phase shift anal-
ysis [18] (solid dots) and the VPI/GWU analysis SM99 [31]
(open circles).

TABLE IV. Ground-state energies (in MeV) and point proton
radii (in fm) for 3H, 3He, and 4He using the NNLOopt with
and without the NNLO 3NF interaction for cD = −0.20 and
cE = −0.36.

E(3H) E(3He) E(4He) rp(4He)
NNLO -8.249 -7.501 -27.759 1.43(8)

NNLO+NNN -8.469 -7.722 -28.417 1.43(8)
Experiment -8.482 -7.717 -28.296 1.467(13)

Three-nucleon forces also appear at NNLO, and two
additional LECs (cD and cE) enter. These are deter-
mined from calculations in the three-nucleon and four-
nucleon systems. We find that the binding energies of
3H, 3He, and 4He do not uniquely determine cD and cE ,
and the parametric dependence of both LECs is very sim-
ilar to the ones found in previous studies [6, 32, 33]. Due
to this close similarity, we choose cD = −0.2 guided by
the triton half life [33] and obtain cE = −0.36 from op-
timization to the binding energies. The resulting point
charge radii of 4He is also in good agreement with exper-
iment, see Table IV.

Performance of NNLOopt for light and medium-mass
nuclei and neutron matter – In this paper, we apply
NNLOopt to 10B, isotopes of oxygen and calcium, and
neutron matter. The considered systems are particularly
interesting because the current NN chiral interactions
at N3LO completely fail to describe key aspects of their
structure.

To study the ground- and first excited state in 10B we
carry out no-core shell model (configuration interaction)
calculations [34] using the bare NNLOopt in model spaces
of up to Nmax = 10 harmonic oscillator (HO) shells
(10 ~Ω) above the unperturbed configuration. These
model spaces are not large enough to provide fully con-
verged results for the ground- and first excited state of
10B. Still, the variational upper bounds for the energies
are −54.35 MeV for the 1+ state and −54.32 MeV for
the 3+ state. The energies are very close, in contrast to
N3LOEM, which yields a level spacing of about 1.2 MeV
between the Jπ = 1+ ground state and the Jπ = 3+

excited state [6].
Chiral NN interactions at N3LO fail to explain the

neutron drip-line in oxygen isotopes and 3NFs have been
the key element for the understanding of the structure of
nuclei around 24O [7, 8]. Figure 2 shows the experimental
ground-state energies of oxygen isotopes, and compares
the results from coupled-cluster (CC) computations in
the Λ triples approximation [35–37]. Our CC calculations
employ a Hartree-Fock basis (HF) built from Nmax = 15
HO shells at ~Ω = 20 MeV. Due to the “softness” of
NNLOopt, this model space is sufficiently large to con-
verge the ground- and excited states of the nuclei con-
sidered. In addition, we performed shell-model (SM) cal-
culations assuming the closed 16O core with an effective
interaction derived from many-body perturbation theory
to third order in the interaction and including folded di-
agrams [38]. For the SM calculations, the single-particle
energies were taken from the experimental 17O spectrum.
In both CC and SM, NNLOopt results are close to exper-
iment. This is in contrast to the N3LOEM case, which
requires 3NFs to provide reasonable description of mea-
sured values.

Now we consider the heavy isotopes of calcium. Here,
48Ca is doubly magic, 52Ca exhibits a soft subshell clo-
sure, and 54Ca is predicted to have an even softer subshell
closure [10]. A signature of shell closure is the location of
the first 2+ state. We employed CC equation-of-motion
methods within the singles- and doubles approximation
[37, 39] to compute the first 2+ state in the calcium iso-
topes. Figure 3 shows that N3LOEM fails to describe
the location of the first 2+ state in 40,48,50,52,54,56Ca. In
contrast, NNLOopt yields 48Ca as a doubly magic nu-
cleus, and predicts subshell closures in 52,54Ca. The
NNLOopt overbinds the calcium isotopes by about 1 MeV
per nucleon. In particular 40,48,52Ca are overbound by
1.03 MeV, 1.06 MeV and 1.04 MeV per nucleon, respec-
tively. That is, the excess energy per nucleon is fairly con-
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FIG. 2. (Color online). The ground-state energies of oxy-
gen isotopes obtained in CC with the NNLOopt and N3LOEM

interactions compared to experiment. The inset shows SM
results.
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FIG. 3. (Color online). The first 2+
1 state in selected calcium

isotopes obtained in CC with the NNLOopt and N3LOEM in-
teractions compared to experiment.

stant; hence, NNLOopt reproduces binding energy differ-
ences, such as neutron-separation energies and low-lying
excited states rather well.

The complete description of nuclei at NNLO also
requires 3NFs. We computed the first 2+ state in
22,24O and in 48Ca with the 3NF compatible with
the NNLOoptinteraction. The matrix elements of the
3NF are very expensive computationally, and we must
presently limit their calculation to three-body energies
up to e3max = 2na+ la+ 2nb+ lb+ 2nc+ lc = 14. (Recall
that we employ 15 major harmonic oscillator shells for
the NN interaction.) We also used the normal ordered
two-body approximation for the 3NF [40, 41] with respect
to a HF reference. With the restriction of e3max = 14,
we were not able to obtain fully converged results for the
binding energies of oxygen and calcium isotopes. How-

ever, excitation energies relative to the ground state con-
verge somewhat better. Our results for the first 2+ state
in 22,24O and in 48Ca are 2.3(3) MeV, 3.5(5) MeV and
4.8(7) MeV, respectively. We estimate the uncertainty
by varying ~Ω in the interval 16 − 22 MeV. The results
obtained using NNLOopt NN interaction alone, yields
2.5 MeV, 5.0 MeV and 4.5 MeV in 22,24O and 48Ca, re-
spectively. These preliminary results suggest that the
3NFs may not dramatically change the results that were
obtained with the NNLOopt NN interaction alone.

It is instructive to compare the predictions of NNLOopt

and N3LOEM for the neutron matter equation of state
at sub-saturation densities with the results of ab-initio
calculations of Refs. [42]. Figure 4 shows that the per-
formance of NNLOopt is on par with the EGM results of
Ref. [42], which take into account the effects of 3NFs and
4NFs. The predictions of N3LOEM deviate from other re-
sults at higher densities.

0

5

10

15

20

0 0.05 0.15
neutron density (fm-3)

0.10

E
/N

 (M
eV

)

EGM 450/500 MeV
N LO
NNLOopt

EM3

FIG. 4. (Color online). Energy per nucleon for neutron mat-
ter for NNLOopt and N3LOEM [4]. The calculations used
the CC method with the inclusion of particle-particle ladders
and a continuous single-particle spectrum. The shaded area
(EGM) show uncertainty bands for N3LO chiral effective field
theory calculations of Ref. [42], including 3NFs.

Conclusions. – We constructed the new NN chiral
EFT interaction NNLOopt at next-to-next-to-leading or-
der using the optimization tool POUNDerS in the phase-
shift analysis. The optimization of the low-energy con-
stants in the NN -sector at NNLO yields a χ2/datum
of about one for laboratory scattering energies below
125 MeV. The NNLOopt NN interaction yields a very
good agreement with binding energies and radii for A =
3, 4 nuclei. Key aspects of nuclear structure such as ex-
citation spectra, the position of the neutron drip line in
oxygen, shell-closures in calcium, and the neutron matter
equation of state at sub-saturation densities are repro-
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duced by NNLOopt interaction alone, without resorting
to 3NFs. We performed the initial calculation of the
first 2+ states in 22,24O and 48Ca with NNLOopt sup-
plemented by a 3NF, and found effects of 3NFs to be
small and a good agreement with experimental excita-
tion energies. The precise role of 3NFs in medium-mass
nuclei, the quantification of theoretical uncertainties, and
optimizations at higher-order chiral interactions, will be
addressed in forthcoming investigations.
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[21] P. Büttiker and U.-G. Meißner, Nuclear Physics A 668,
97 (2000).

[22] A. Ekström et al., to be published (2013).
[23] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[24] G. Cox, G. Eaton, C. V. Zyl, O. Jarvis, and B. Rose,

Nuclear Physics B 4, 353 (1967), 21 pp diff. cross section
data at 144.1 MeV.
O. Jarvis, C. Whitehead, and M. Shah, Physics Letters
B 36, 409 (1971), 26 pp diff. cross section data at 144.0
MeV.

[25] J. R. Bergervoet, P. C. van Campen, W. A. van der
Sanden, and J. J. de Swart, Phys. Rev. C 38, 15 (1988).

[26] W. A. van der Sanden, A. H. Emmen, and J. J. de Swart,
Tech. Rep., Nijmegen (1983), unpublished.

[27] D. E. Gonzalez Trotter, F. S. Meneses, W. Tornow, C. R.
Howell, Q. Chen, A. S. Crowell, C. D. Roper, R. L. Wal-
ter, D. Schmidt, H. Wita la, et al., Phys. Rev. C 73,
034001 (2006).

[28] Q. Chen, C. R. Howell, T. S. Carman, W. R. Gibbs,
B. F. Gibson, A. Hussein, M. R. Kiser, G. Mertens, C. F.
Moore, C. Morris, et al., Phys. Rev. C 77, 054002 (2008).

[29] G. Miller, B. Nefkens, and I. Šlaus, Phys. Rep. 194, 1
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