Programming for Exascale Computers

William Gropp Fellow, IEEE and Marc Snir Fellow, IEEE

Abstract—Exascale systems will present programmers with
many challenges. We review the parallel programming models
that are appropriate for such systems and the challenges that
implementations of those models face on an exascale system. We
discuss the feasibility of using existing programming systems,
thus preserving the investment in legacy applications, as well
as the benefits and likelihood of new programming models and
systems.

Index Terms—Concurrent, distributed, and parallel languages,
Simulation Languages.

I. INTRODUCTION

Computing at exascale and beyond will present many chal-
lenges: Programs will need to control billions of threads,
running on cores with different architectures; good power
management will be essential; applications will need to use
less communication and less memory, relative to the amount of
computing; failures will be more frequent, possibly including
silent errors; and power management and error handling will
cause different parts of the system to run at different speeds.
New programming models may be required to handle these
challenges.

We discuss in this paper parallel programming models,
and their ability to handle these challenges. We focus on
programming models, as distinct from programming systems:
A parallel programming model provides “a set of abstractions
that simplify and structure the way the programmer thinks
about and expresses a parallel algorithm™ [1]; a programming
system is an implementation of one of more models. Thus,
message passing is a programming model; MPI [2] is a
programming system that supports the message-passing model,
as well as other models, such as remote direct memory access
(RDMA).

A programming model needs a performance model that
estimates the performance of a program as a function of
input and platform parameters. The performance model is
approximate and has no formal definition, but is essential:
With no such model, a programmer has no insight into the
likely performance impact of a program change.

A good programming model for performance computing
should expose to the programmer those resources that have a
significant impact on performance and that can be controlled
by software; it should hide details that have a secondary impact
on performance, are not under software control, or can be
managed well by compiler and run-time.

A “machine-level” parallel computing model exposes the
hardware in as direct manner as possible: A program executes
on a platform consisting of a fixed number of nodes, each
with a fixed number of physical threads, and a fixed amount
of memory. The model specifies the communication mech-
anisms between threads — shared variables, within a node,

and message-passing, across nodes. A program specifies the
sequence of instructions executed by each physical thread.
This model can be supported using MPI+OpenMP: Each node
becomes an MPI process that executes an OpenMP program.
This program uses exactly one work-sharing construct (parallel
loop or section) to start an execution on each thread. The
OpenMP program should use a fixed number of threads and
affinity scheduling to have a fixed association of logical
threads to cores. Typically, one will not use all physical threads
so that system code can execute on separate resources. Also,
it is often preferable to split a physical node into several MPI
processes.

Higher-level programming models virtualize resources and
use a run-time layer to map “virtual” entities (e.g., threads
or variables) to physical entities (cores or memory locations).
This is done to facilitate programming and improve portability.
The use of higher-level programming abstractions will also en-
courage or mandate the use of restrictive programming patterns
that reduce the likelihood of errors or facilitate virtualization.

The remainder of this paper is organized as follows. We
first discuss some of the design choices for higher-level
programming models. Section III presents those programming
models that are broadly used now, and outlines how those
can evolve to support exascale. In Section IV we discuss
programming models that are now being researched and that
have been proposed as the basis for a “revolutionary” approach
to exascale programming. In Section V provides a summary
of this paper.

II. DESIGN CHOICES

A high-performance parallel programming model faces a
number of design choices beyond those for a sequential
programming model. We discuss five of the most important
considerations here.

A. Scheduling

The mapping between logical execution threads and phys-
ical threads may be dynamic and managed by a runtime.
In such a case, the programming model can accommodate a
varying number of logical threads and operations that create
(spawn) new threads or wait for their completion. How these
threads are scheduled to run and whether they can move to
different core or nodes can significantly impact performance.
Some models, such as TBB [3] make a single scheduling
decision when the thread is created. Others, such as OpenMP,
for shared memory [4], or Charm++, for distributed memory
[5], support thread migration at specific points in the thread
execution (this is usually called load balancing).



One may also have hybrid models, for example, where
logical threads are statically allocated to nodes but dynam-
ically allocated to cores within nodes; MPI+OpenMP and
DPLASMA [6] support such a hybrid model.

B. Communication

On current machines, communication takes significantly
more time than computation. Communication includes com-
munication between a cache and memory, communication
across caches within nodes, and communication across nodes.
Communication between caches and memory is traditionally
managed implicitly — as a side effect of loads and stores.
A simplified performance model will assume that access to
memory is as fast as access to the L1 cache. Programmers
ensure this approximation is valid by writing codes with good
temporal, spatial and thread locality.

Not all algorithms can be expressed with good locality.
Furthermore, the cost of associative caches (in silicon and
energy) may lead to their partial or complete replacement,
in future systems, by explicitly addressable scratchpads [7].
In addition, it may be difficult to support cache coherence
on nodes with hundreds of cores. Therefore, core-to-memory
communication and core-to-core communication are likely to
become more software controlled and possibly exposed to the
user. While compilers can easily generate explicit data move
commands from a code with loads and stores, they have hard
time optimizing these moves, for example, by aggregating
them or by executing them collectively. In these cases, the
cost of shared memory communication has to be part of the
performance model.

Communication across nodes is typically under software
control. For reasons discussed in Section IV, good temporal
locality and spatial locality do not necessarily translate into
efficient access to remote data; therefore, explicit user control
of data movement is needed.

Communication can be one sided: it is effected by software
running in one location. Examples are read and writes to local
memory or get and put operations on remote memory. It can be
two sided — with software on both communication locations
involved, as for send/receive message-passing operations; and
it can be collective with a group of locations jointly involved.
Collective operations can be implemented efficiently in hard-
ware, but will perform poorly in face of jitter (unsynchronized
performance irregularities) [8].

Various performance models have been developed for in-
ternode communication. Communication across nodes is usu-
ally modeled by using the postal model (communication of m
bytes takes time a + bm); or, occasionally, by using the more
complex LogP model [9].

C. Synchronization

Two-sided communication is also synchronizing: it con-
strains the relative execution order of operations on distinct
threads. One-sided communication is not synchronizing, and
separate synchronization is required to enforce data depen-
dencies. Both shared-memory and distributed-memory systems
support synchronizing operations.

Most shared-memory synchronization operations, such as
locks or atomic sections, are symmetric mutual-exclusion
constructs: They ensure that different threads will not (appear
to) execute concurrently operations or instruction blocks, but
do not specify the order in which the threads will execute
those. Distributed-memory synchronization operations, such as
two-sided communication or barrier, are asymmetric, ordering
constructs. The use of ordering synchronization constructs can
eliminate nondeterminism and thus facilitate debugging.

A simple synchronization model is the bulk-synchronous
parallel model (BSP), where the number of threads is fixed and
all threads execute in synchronized phases, so that remote data
consumed at phase ¢ by a thread is produced by another thread
at a phase j < 4 [10]. A bulk-synchronous execution is easy to
understand, as producer-consumer relations are synchronized
by a global clock. This model is supported in MPI if all
communications are collective, or if barriers are used to define
phases, and sends executed at phase ¢ are matched by receives
that complete at end of phase ¢ or at a later phase.

This model can be extended, while preserving the concep-
tual simplicity, to a nested bulk-synchronous model model,
where threads can be split into teams that execute each
under the BSP model [11]. MPI communicators can be used
to implement this model. Dynamic nested parallelism also
provides the same conceptual model, if a thread that spawns a
team of child threads blocks until they complete and threads
in a team only synchronize using barriers. This model is
supported by suitably restricted OpenMP programs.

D. Data Distribution

Communication costs depend on the “home” of the data:
where the data is stored when it is not actively used. Most
distributed programming models provide user control on the
data home. In an object-oriented system, such as Charm++,
data is encapsulated in objects, together with methods; the
location of the objects determines both where data is stored
and where the methods are executed. The same, fixed associ-
ation between storage location and loci of execution occurs in
message-passing models and partitioned global address space
(PGAS) languages, discussed in Sections III and IV. Some of
the newer languages discussed in Section IV separate the two.

Communication costs will depend on proper collocation of
data and operations on this data. One can approach this issue
from a data-centric or control-centric view. In the first case
(aka data parallelism), one focuses on data distribution and
distributes computation to match the data distribution. In the
latter case (aka rask parallelism or control parallelism), one
focuses on control distribution and moves data to where it’s
needed. Most current programming models encourage a data-
centric view for distributed memory and a control centric view
for shared memory. Some recent research (e.g., [12]) attempts
to provide a more symmetric view, by facilitating both data
and control migration. Note that whether one moves data to
control or control to data, one will still have communication
that is inherent to the parallel algorithm: data needs to move
to data.



E. Global View vs. Local View

In a system with a local view of control, each physical
thread executes its own (sequential) program. The programs
are identical in a single program, multiple data (SPMD)
model; they can be different, in a multiple programs, multiple
data (MPMD) model. The multiple executions interact through
communication and synchronization operations.

With a global view of control, one program uses parallel
control statements (such as a parallel loop) or parallel data
operations (such as a vector operation) to specify activities
that may happen concurrently on multiple physical threads.
The single instruction, multiple data (SIMD) model achieves
parallelism with sequential control and parallel data opera-
tions.

Similarly, one can have a local view of data, where each
thread has its own local data structures; or a global view
of data, where aggregate data structures such as arrays span
multiple nodes; a data distribution function specifies which
part of the array is stored where. In the first case, a remote
array location is accessed by using a different syntax from
a local one (e.g., a (index) and a (index) [numproc],
in Fortran). In the latter case, the same expression (e.g.,
a[index], in UPC) can refer to a local or a remote location,
depending on the distribution of array a.

III. EVOLUTIONARY APPROACH

Can we program exascale systems with our current ap-
proaches? Can the evolution of current approaches provide
adequate support for exascale systems? To answer these ques-
tions, we discuss the current programming models and their
likely extensions.

Because this section considers how an exascale system may
be programmed with existing parallel programming systems,
the focus is on programming systems rather than programming
models.

A. Current Systems

Current programming models for parallel computing cover
a wide range of approaches; the major ones are summarized in
Table 1. These examples show that one programming system,
such as MPI, can support multiple programming models.
In some cases, multiple programming systems may be used
together — the most common such case is MPI and OpenMP.

B. Single System

Because an exascale system is likely to have distributed-
memory hardware, one of the most natural programming
systems is MPI. MPI is currently used on over 1 million
cores with exceptional scalability. It therefore is reasonable
to ask whether MPI can be used on an exascale system. In
considering this question, the following issues are sometimes
raised but are not valid problems:

o The amount of message buffer space. This does not

grow as O(P) if properly implemented [28]. For many
applications, it only grows as O(log(P)).

e Other MPI internal memory, such as the description of
MPI communicators, also need not scale as O(P). It is
possible to trade a little bit of time for memory space
[29]. Depending on the application’s needs, the overhead
may be as little as O(1).

o The time to start MPI processes need not be linear in
the number of processes; scalable startup systems already
exist [30].

o The bulk-synchronous programming model is sometimes
raised as unworkable on an exascale machine because of
the extreme concurrency and asynchrony. Whether this
claim is true or not, MPI implements more than the bulk-
synchronous programming model.

e General all-to-all communication does not scale well,
irrespective of MPI, and an algorithm that frequently
use such communication is not scalable. MPI has in-
troduced ‘“neighbor” collectives to support sparse “all-
to-some” communication patterns that are scalable ([2],
Sections 7.6 and 7.7).

The “MPI everywhere” approach does face several chal-
lenges. These include:

o The MPI process model encourages programmers to
make local copies of data or to use memory to im-
prove performance (e.g., for halo cells in stencil codes).
As exascale systems are likely to have relatively small
amounts of memory per core, applications need to be
very memory efficient. One possible solution for MPI
programs is to make use of the direct access to shared
memory introduced in MPI-3 [2], Section 11.2.3.

o While MPI provides enough support for programmers to
implement efficient, scalable code, even in the presence of
performance uncertainty, MPI is a low-level system that
relies on the programmer to use it well. In addition, as a
library, an MPI implementation has some extra overhead.

The challenges faced by MPI are not insurmountable. How-
ever, they may require significant effort both in building a
scalable MPI implementation and from the programmer in
using MPI in a scalable way.

Several other candidates have been suggested for a one-
system-everywhere approach. OpenMP can be extended to
distributed-memory systems [31], but distributed-memory im-
plementations of shared-memory systems do not normally
achieve acceptable performance [32]. PGAS systems such as
UPC and Fortran may be implemented for an exascale system
and are discussed in Section IV.

However, these approaches also have problems. Some op-
erations are hard to scale; in other cases, descriptions are
enumerated in nonscalable ways. In addition, these approaches
have found limited success in practice, with few major codes
using them, perhaps because performance requires attention to
locality similar to what MPI requires.

C. Shared-Memory Programming

The programming system most often used for shared-
memory parallelism in scientific codes is OpenMP. The scaling
of OpenMP to hundreds of cores will require changes both
in programming style and in the language itself. OpenMP



TABLE I
PROGRAMMING MODELS AND SYSTEMS THAT IMPLEMENT THEM

Programming Model

Example Programming Systems

Shared memory
Dynamic scheduling, nested bulk synchronous
Dynamic scheduling, general synchronization

OpenMP [4], TBB [3], Cilk++ [13]
pthreads [14], OpenMP, TBB, Cilk++

Distributed memory

Bulk-synchronous

Static scheduling, two-sided communication

Static scheduling, one-sided communication

Hybrid scheduling (static across nodes, dynamic within nodes)

BSP [15], MPI with collectives/barriers, X10 with clocks [16]
MPI point-to-point

MPI RDMA, SHMEM [17], UPC [18], Fortran [19]
MPI+OpenMP, DPLASMA [6]

Local view of data and control
Local view of control, global view of data
Global view of data and control

MPI, Fortran
UPC, Global Arrays [20]
OpenMP, Chapel [21]

CoProcessor/Accelerator separate memory

OpenCL [22], OpenACC [23], CUDA [24]

Domain-specific languages and libraries

provides a pure control parallel model, and provides no mech-
anisms for controlling data distribution. Therefore, OpenMP
codes cannot be mapped efficiently to a non-uniform memory
architecture (NUMA) system. OpenMP provides many non-
scalable synchronization constructs (locks, atomic sections,
sequential sections) and tends to encourage fine-grained syn-
chronization. Therefore, many OpenMP programs are written
in a style that impedes scaling. Various proposals have been
made for extensions to the OpenMP language and for new
compiler and run-time techniques that can alleviate these
problem [33], [34], [35]; some of the needed changes were
made in OpenMP v4.0, in particular, support for thread affinity
— but evidence is lacking that OpenMP will scale to hundreds
of cores.

A possible alternative is to use of one of the PGAS
systems that are described in Section IV as a shared-memory
programming language. However, these systems, as currently
designed and implemented, do not provide good support for
load balancing.

D. Hybrid Systems

The scalability issues can be eased by using a hybrid system,
and the easiest is one that follows the hardware architecture:
MPI is used for internode parallelism and a shared-memory
programming model for intranode parallelism. This model is
often referred as MPI+X (e.g., MPI+OpenMP), and exploits
the fact that MPI is designed to be compatible with threading.
Such a model reduces the pressure to scale either MPI or
OpenMP, reduces memory pressure as less data is replicated
within each node, and can better utilize shared memory.

The biggest problem when mixing programming systems
is that they will compete for resources, such as threads (e.g.,
for runtime progress), and for memory bandwidth (including
effects of accessing memory via the internode interconnect).
Though some efforts are considering this problem [36], much
remains to be done.

Hybrid systems have demonstrated mediocre scalability, but
it is hard to separate the intrinsic problems of such systems
from performance problems due to the use of inappropriate
programming patterns [37], [38], or inefficient implementa-
tions.

PETSc [25], Liszt [26], TCE [27]

IV. NEW PROGRAMMING MODELS

We discuss in this section new programming models for
high-performance computing that have emerged in recent
years.

A. One-Sided Communication and PGAS Languages

Modern communication hardware increasingly supports
RDMA, to reduce the amount of copying that may occur
during communication and reduce communication software
overheads. One-sided communication supports the PGAS pro-
gramming model well. In this model, data can be either private
(accessed only locally) or shared; shared data can be local or
remote; access to private data may be somewhat faster than
access to shared local data; and access to local data is much
faster than access to remote data that requires RDMA.

The PGAS model can be supported by a library such as
MPI, SHMEM [17], or Global Arrays (GA) [20] or can
be supported by a language, such as UPC [18] or Fortran
(the Co-Array features added in Fortran 2008) [19]. In the
former case, remote accesses are explicitly done via function
calls. In the latter case, they are implicit: The language
distinguishes, by type, private variables from shared variables;
and may distinguish, by syntax, local references from remote
references.

PGAS systems differ in the way the global name space is
organized. Some, such as SHMEM or Fortran, provide a local
view of data. Others provide a global view of data. UPC and
X10 [16] support one-dimensional block-cyclic array distribu-
tions. GA supports multidimensional distributions, with blocks
of equal or distinct sizes. The Chapel language [21] supports
shared maps (with dense or sparse index sets) and arbitrary,
user-defined distributions. PGAS systems also differ in their
control structures. Most (MPI, UPC, X10) provide a local view
of control. UPC provides a collective forall statement that
switches to a global view of control; Chapel emphasizes a
global view of control.

MPI and UPC support a static scheduling model, with a
fixed number of threads. X10 and Chapel support dynamic
scheduling. In X10, tasks may be migrated from one process
to another or spawned, asynchronously, on another process.
In Chapel, the location where a statement is executed can be



controlled by the user to colocate the execution with a datum
or a locale.

B. Discussion

A global view of data or of control facilitates the porting
of sequential code: Loops are replaced with parallel loops,
and arrays are distributed. On the other hand, it often leads
to inefficient programming patterns: Since data location is not
salient, it is easy to write codes with excessive accesses to
remote data. Also, it is not always possible to distinguish
at compile time local accesses to shared data from remote
accesses, resulting in additional run-time overheads for shared-
data accesses. Global control encourages a programming style
where each synchronization is effected by joining all threads
and then forking control again, resulting in unnecessary over-
heads.

Caching is essential to achieving performance in (hardware-
supported) shared memory. Caching is made effective through
temporal locality and spatial locality in the stream of memory
references. PGAS language implementations use local memory
as a cache to remote memory data; the caching is done
by the runtime. Unfortunately, it is too expensive to run
a global coherence protocol and hard for the compiler to
analyze when a cached value becomes invalid. Therefore,
the local buffered copy is often used only once, even if
the code has good temporal locality. Fixed line sizes do not
work effectively for internode communication, and compilers
often fail to aggregate multiple remote word accesses into
larger messages. In order to achieve good temporal and spatial
locality, programmers often have to explicitly copy data, thus
losing much of the convenience that PGAS languages have,
as compared with one-sided libraries [39].

C. The Future

PGAS languages are still evolving; new features will be
needed before they are ready for use at extreme scale. These
features include:

Support for teams: Multiphysics codes often consist of
multiple modules, each running on a disjoint set of processes;
the modules may run concurrently, on disjoint nodes, or se-
quentially, on the same nodes. MPI provides communicators to
support such codes; similar team facilities have been discussed
for PGAS languages [40]. Teams can also be supported by
hybrid MPI+UPC systems [41].

Multitasking and message-driven execution: Concurrent
or simultaneous multithreading can be used to avoid idle time
when cache misses occur: If a thread is blocked, waiting for
a memory access, then another thread can use the CPU. In
addition, one can use cache prefetching to avoid cache misses;
prefetches can be generated by hardware for strided accesses
and can be inserted by a compiler for irregular accesses.

Similar techniques are needed to hide internode commu-
nication latency. One can use nonblocking communication
— for example, nonblocking gets, the equivalent of cache
prefetch, However, due to the much higher latencies it is
unlikely that prefetches could be compiler-generated. More
conveniently and effectively, one can run more threads than

cores and schedule threads dynamically. This can be done
either with nonblocking threads that are activated when their
input message arrives and terminate when they generate an
output message [5], [42] or with longer-lived threads that block
and are descheduled when they execute a blocking internode
communication and rescheduled after the communication is
complete [43]. Languages that combine PGAS and multitask-
ing are studied in the DEGAS project [44].

It is expected that execution time and communication time
will exhibit higher variances on exascale systems, because of
the larger levels of parallelism, varying execution speed due
to power management and fault handling, and irregularities in
the codes themselves. Multitasking increases the asynchrony
in computations and, therefore, our ability to cope with the
increased variance.

Virtualization: While PGAS languages typically map lo-
cales to fixed physical locations, there is no inherent reason
why this mapping could not change during execution. The
Charm++ system periodically redistributes ‘“‘chares” across
nodes, to improve load balance. Data and computation mi-
gration can be done transparently by the runtime or under
partial or full user control. Frequent, fine-grained, concurrent
object migration, as envisaged in systems such as ParalleX
[12], require a sophisticated and potentially expensive global
virtual address space management infrastructure.

Hierarchical design: PGAS+multitasking provides a two-
level programming model, analogous to MPI+OpenMP. As
system size increases, storage and communication hierarchies
become deeper. It is widely believed that exascale systems
will require support for hierarchical programming models,
with more than two levels: At higher levels of the hierarchy,
load balancing actions become rarer, and communications
are expected to be less frequent. The Hierarchically Tiled
Array project provides an example of a programming model
organized around a hierarchical data structure [45].

D. Domain-Specific Environments

A domain-specific language (DSL) has been defined as “a
programming language or executable specification language
that offers, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to, a
particular problem domain” [46]. DSLs are usually supported
by source-to-source compilers that translate the DSL notation
into code written in a conventional language that uses domain-
specific libraries. DSLs can facilitate code development, main-
tenance, and porting, at the expense of the effort needed to
develop the DSL and the programming tools needed to use
it effectively; Therefore, DSLs are most effective when they
serve a narrow domain with a large user community: The
effort in the development of the DSL and its environment are
amortized against the productivity gains of a large community.
As an example, this article is written by using IAIEX, a
DSL for generating documents: This is a narrow application
with many users. This also emphasizes that the meaning of
“domain” is usually not a specific science domain; rather, it is
a mathematical or algorithmic domain. For example, Matlab
can be viewed as a DSL for the domain of linear algebra. Many



DSLs, while often motivated by a particular science domain,
implement some combination of data structures and operations
on those data structures and derive their advantages by being
specialized to those specific types of operations.

DSLs for various scientific computing domains that generate
parallel code have been a subject of research for several
decades [47], [48], [49], [27], [26]. Two obvious obstacles
to their broader use is that the community of scientific HPC
programmers is small and the performance of DSL-generated
code is not always competitive with the performance of hand-
tuned code. This first obstacle may be alleviated by developing
technologies that facilitate the development of new DSLs [50];
the second, by using autotuning [51].

While DSLs are considered to be distinct from libraries
and frameworks, that distinction is shrinking. A library such
as PETSc [25] is in effect an embedded DSL, where a host
language is extended with domain-specific constructs. The
domain-specific knowledge can be built into a source-to-source
translator that optimizes code using these extensions [52].

We expect DSLs to be part of the solution for exascale pro-
gramming. We emphasize that DSLs do not replace general-
purpose parallel programming environments — indeed, they
depend on them. Furthermore, DSLs are more effective when
they are more specialized; they are unlikely to cover the entire
range of HPC applications.

DSLs and libraries are particular examples of “multilevel
programming”: The application scientist programs in a nota-
tion that is meaningful to her, while the performance program-
mer that implements the libraries programs at a level that is
closer to the hardware. Mechanisms and tools that facilitate
such a division of labor are a subject of intensive research
[53], [54].

V. SUMMARY

We have discussed approaches that may alleviate the con-
cerns of scalability, low memory and high communication
costs on exascale systems. We have not discussed so far het-
erogeneity, power management, and resilience. The reason for
these omissions is that it is not obvious that new programming
models will be needed to handle these issues.

We expect that one system (possibly, an evolution from
OpenMP) will be used to program shared-memory nodes and
handle the heterogeneities of core and memory architecture,
with significant compiler help. OpenACC [23] is an early
example of such extensions, allowing the user to specify
which device will execute which code and controlling data
movement across address spaces. As multiple accelerators
become integrated with CPU cores on one node or chip,
more general extensions will be needed. Portability across the
accelerators provided by different vendors will be essential.

Programming for low energy use is mostly synonymous
with reducing communication, which requires explicit user
control of communication, as discussed in previous sections.
Load-balancing run-times can be used to limit temperature and
reduce energy consumption [55].

Much uncertainty exists about programming model require-
ments for resilience. It is possible — especially if silent

errors can be avoided — that no new features will be needed
[56]. Otherwise, a minimum requirement is that failures that
occur frequently generate well-defined exceptions and leave
the application in a well-defined state.

We have made little progress in last few decades toward the
“Holy Grail” of one simple model that can be used to program
at any scale. Perhaps this goal is neither feasible nor practical.
Nevertheless we have slowly improved programming models
and programming methodologies for HPC; the quest for better
programming models must continue.

While there is much uncertainty about the models that will
be used at exascale, there is much certainty about needed re-
quirements: large number of threads, reduced communication
and synchronization, tolerance for variance in execution time,
etc. New codes, even if written with current programming
models, must be written to satisfy these requirements, so that
future ports do not require algorithm changes. In particular,
this is important for newly written OpenMP code as it is
natural to write such code without regard to locality and with
fine-grain synchronization. Good programming practices are
more important than good programming models.

Scaling up applications to exascale will require significant
programming efforts, even if current programming models
prove adequate. The handling of reduced communication and
asynchrony will require new algorithms. Therefore, program-
mer productivity matters. Good programming models, good
systems that implement them, and good programming environ-
ment for these systems can enhance programmer productivity.
On the other hand, programming a top supercomputer will
never be as easy as writing a Matlab program. Writing efficient
programs for a complex platform is a difficult engineering
endeavor that requires a lot of knowledge and experience;
complex engineering tasks are not easy to automate.

ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357, and under Award DE-
SC0004131.

We thank Gail Pieper for her careful review of this paper.

REFERENCES

[1] M. C. Rinard, D. J. Scales, and M. S. Lam, “Jade: A high-level, machine-
independent language for parallel programming,” Computer, vol. 26,
no. 6, pp. 28-38, 1993.

[2] Message Passing Interface Forum, “MPI: A Message-Passing Inter-
face Standard Version 3.0.” http://www.mpi-forum.org/docs/mpi-3.0/
mpi30-report.pdf, 2012.

[3] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. O’Reilly Media, Incorporated, 2007.

[4] OpenMP Architecture Review Board, “OpenMP Application Pro-
gram Interface Version 4.0.” http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf, 2013.

[5] L. Kalé and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” in Proceedings of ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’93) (A. Paepcke, ed.), pp. 91—
108, ACM Press, September 1993.



[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]
[24]

[25]

[26]

[27]

[28]

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Her-
ault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, et al., “Flexible
development of dense linear algebra algorithms on massively parallel
architectures with DPLASMA,” in Proceedings of the IEEE Interna-
tional Symposium on Parallel and Distributed Processing Workshops
and PhD Forum (IPDPSW), 2011, pp. 1432-1441, IEEE, 2011.

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in Proceedings of the Tenth international sympo-
sium on Hardware/Software Codesign (CODES 2002), pp. 73-78, ACM,
2002.

T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the in-
fluence of system noise on large-scale applications by simulation,”
in Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC10),
Nov. 2010.

A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: incorporating long messages into the LogP model—one step
closer towards a realistic model for parallel computation,” in Proceed-
ings of the seventh annual ACM symposium on Parallel Algorithms and
Architectures (SPAA’95, pp. 95-105, ACM, 1995.

L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, pp. 103-111, 1990.

E. D. Brooks III, B. C. Gorda, and K. H. Warren, “The parallel C
preprocessor,” Scientific Programming, vol. 1, no. 1, pp. 79-89, 1992.
H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX: An advanced paral-
lel execution model for scaling-impaired applications,” in International
Conference on Parallel Processing Workshops (ICPPW’09), pp. 394—
401, IEEE, 2009.

C. E. Leiserson, “The Cilk++ concurrency platform,” The Journal of
Supercomputing, vol. 51, no. 3, pp. 244-257, 2010.

D. Buttlar, J. Farrell, and B. Nichols, PThreads Programming: A POSIX
Standard for Better Multiprocessing. O’Reilly Media, Incorporated,
1996.

J. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B.
Rao, T. Suel, T. Tsantilas, and R. H. Bisseling, “BSPlib: The BSP
programming library,” Parallel Computing, vol. 24, no. 14, pp. 1947—
1980, 1998.

V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove, X10
language specification, Version 2.3, 2013.

K. Feind, “Shared memory access (SHMEM) routines,” in Proceedings
of Cray User Group Spring Meeting, pp. 203-208, 1995.

W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and
K. Warren, Introduction to UPC and language specification. Center for
Computing Sciences, Institute for Defense Analyses, 1999.

J. Reid, “The new features of Fortran 2008,” ACM SIGPLAN Fortran
Forum, vol. 27, no. 2, pp. 8-21, 2008.

J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A
nonuniform memory access programming model for high-performance
computers,” The Journal of Supercomputing, vol. 10, no. 2, pp. 169-189,
1996.

Cray, Chapel Language Specification, Version 0.92, 2012.

Khronos OpenCL Working Group, “The OpenCL specification, version
1.2.” http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf, 2012.
“The OpenACC application programming interface version 1.0.” http:
/Iwww.openacc.org/sites/default/files/OpenACC.1.0_0.pdf, 2011.
“CUDA API reference manual, version 5.0.” http://docs.nvidia.com/
cuda/pdf/CUDA _Toolkit_Reference_Manual.pdf, 2012.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik,
M. Knepley, L. C. MclInnes, B. Smith, and H. Zhang, “PETSc users man-
ual revision 3.3.” http://www.mcs.anl.gov/petsc/petsc-dev/docs/manual.
pdf, 2012.

Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,
E. Elsen, F. Ham, A. Aiken, K. Duraisamy, et al., “Liszt: a domain
specific language for building portable mesh-based PDE solvers,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC11), p. 9, ACM, 2011.
A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Chop-
pella, D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan,
et al., “Automatic code generation for many-body electronic structure
methods: the tensor contraction engine,” Molecular Physics, vol. 104,
no. 2, pp. 211-228, 2006.

P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar,
E. Lusk, R. Thakur, and J. L. Triff, “MPI on millions of cores,” Parallel
Processing Letters, vol. 21, no. 1, pp. 45-60, 2011.

[29]

(30]

[31]

(32]

[33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

D. Goodell, W. Gropp, X. Zhao, and R. Thakur, “Scalable memory use
in MPI: A case study with MPICH2,” in Recent Advances in the Message
Passing Interface - Proceedings of the 18th European MPI Users’ Group
Meeting (EuroMPI 2011) (Y. Cotronis, A. Danalis, D. S. Nikolopoulos,
and J. Dongarra, eds.), vol. 6960 of Lecture Notes in Computer Science,
pp. 140-149, Springer, 2011.

P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Krishna, E. Lusk, and
R. Thakur, “PMI: A scalable parallel process-management interface for
extreme-scale systems,” in Recent Advances in the Message Passing
Interface - Proceedings of the 17th European MPI Users’ Group Meeting
(EuroMPI 2010)”, (R. Keller, E. Gabriel, M. Resch, and J. Dongarra,
eds.), vol. 6305 of Lecture Notes in Computer Science, pp. 31-41,
Springer Berlin / Heidelberg, 2010.

J. P. Hoeflinger, “Extending OpenMP to clusters,” White Paper, Intel
Corporation, 2006.

C. Terboven, D. An Mey, D. Schmidl, and M. Wagner, “First experiences
with Intel cluster OpenMP,” in OpenMP in a New Era of Parallelism,
pp. 48-59, Springer, 2008.

B. Chapman and L. Huang, “Enhancing OpenMP and its implementation
for programming multicore systems,” in Proceedings of the International
Conference on Parallel Computing: Architectures, Algorithms and Ap-
plications (ParCo 2007), pp. 3—18, 2007.

F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.-A. Wacre-
nier, “Dynamic task and data placement over NUMA architectures:
an OpenMP runtime perspective,” in Proceeding, 5th International
Workshop on OpenMP (IWOMP 2009), pp. 79-92, Springer, 2009.

A. Pop and A. Cohen, “A stream-computing extension to OpenMP,” in
Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers, pp. 5-14, 2011.

H. Pan, B. Hindman, and K. Asanovi¢, “Composing parallel software
efficiently with Lithe,” in Proceedings of the 2010 ACM SIGPLAN
conference on Programming language design and implementation, PLDI
’10, (New York, NY, USA), pp. 376-387, ACM, 2010.

F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP on IBM
SP for the NAS benchmarks,” in Proceedings of the 2000 ACM/IEEE
Conference on High Performance Networking and Computing (SC2000),
2000.

N. Drosinos and N. Koziris, “Performance comparison of pure MPI vs.
hybrid MPI-OpenMP parallelization models on SMP clusters,” in Pro-
ceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS 2004, 2004.

J. Zhang, B. Behzad, and M. Snir, “Optimizing the Barnes-Hut algo-
rithm in UPC,” in Proceedings of the 2011 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis (§C11), 2011.

J. Mellor-Crummey, L. Adhianto, W. N. Scherer III, and G. Jin, “A new
vision for Coarray Fortran,” in Proceedings of the Third Conference
on Partitioned Global Address Space Programing Models, p. 5, ACM,
2009.

J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur, “Hybrid
parallel programming with MPI and unified parallel C,” in Proceedings
of the 7th ACM international conference on Computing frontiers, CF
’10, 2010.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
messages: a mechanism for integrated communication and computation,”
in Proceedings of the 19th annual International Symposium on Computer
architecture (ISCA 1992), pp. 256-266, 1992.

J. Zhang, B. Behzad, and M. Snir, “Design of a multithreaded Barnes-
Hut algorithm for multicore clusters,” Tech. Rep. ANL/MCS-P4055-
0313, MCS, Argonne National Laboratory, 2013.

“Dynamic exascale global address space or DEGAS.” https://www.
xstackwiki.com/index.php/DEGAS.

G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J.
Garzaran, D. Padua, and C. Von Praun, “Programming for parallelism
and locality with hierarchically tiled arrays,” in Proceedings of the
eleventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2006), pp. 48-57, ACM, 2006.

A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: an
annotated bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp. 26-36,
2000.

T. Ruppelt and G. Wirtz, “Automatic transformation of high-level object-
oriented specifications into parallel programs,” Parallel Computing,
vol. 10, no. 1, pp. 15-28, 1989.

E. N. Houstis, J. R. Rice, S. Weerawarana, A. Catlin, P. Papachiou, K.-Y.
Wang, and M. Gaitatzes, “PELLPACK: a problem-solving environment
for PDE-based applications on multicomputer platforms,” ACM Trans-



actions on Mathematical Software (TOMS), vol. 24, no. 1, pp. 30-73,
1998.

[49] S. Husa, I. Hinder, and C. Lechner, “Kranc: a Mathematica package to
generate numerical codes for tensorial evolution equations,” Computer
Physics Communications, vol. 174, no. 12, pp. 983—-1004, 2006.

[50] D. Quinlan, “ROSE: Compiler support for object-oriented frameworks,”
Parallel Processing Letters, vol. 10, no. 02-03, pp. 215-226, 2000.

[51] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using Orio,” in IEEE International Symposium on
Farallel & Distributed Processing (IPDPS 2009), pp. 1-11, IEEE, 2009.

[52] D. J. Quinlan, B. Miller, B. Philip, and M. Schordan, “Treating a user-
defined parallel library as a domain-specific language,” in Proceedings
of the 16th International Parallel and Distributed Processing Symposium
(IPDPS 2002), pp. 105-114, 2002.

[53] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for implementing
domain-specific languages,” in Software Reuse, 1998. Proceedings. Fifth
International Conference on, pp. 143-153, IEEE, 1998.

[54] J. J. Willcock, A. Lumsdaine, and D. J. Quinlan, “Reusable, generic
program analyses and transformations,” in ACM Sigplan Notices, vol. 45,
pp. 5-14, ACM, 2009.

[55] O. Sarood, E. Meneses, and L. V. Kale, “A “cool” way of improving
the reliability of HPC machines,” in Proceedings of The International
Conference for High Performance Computing, Networking, Storage and
Analysis, (Denver, CO, USA), November 2013.

[56] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. Debardeleben, P. Diniz, C. Engelmann, M. Erez, S. Faz-
zari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer,
D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V.
Hensbergen, “Addressing failures in exascale computing,” Tech. Rep.
ANL/MCS-TM-332, Argonne National Laboratory, Mathematics and
Computer Science Division, Apr. 2013.

William Gropp is the Thomas M. Siebel Chair in the De-
partment of Computer Science, Deputy Director for Research
for the Institute of Advanced Computing Applications and
Technologies, and Director of the Parallel Computing Institute
at the University of Illinois in Urbana-Champaign. He received
his Ph.D. in Computer Science from Stanford University in
1982, and worked at Yale University and Argonne National
Laboratory. His research interests are in parallel computing,
software for scientific computing, and numerical methods
for partial differential equations. He is a Fellow of ACM,
IEEE, and SIAM and a member of the National Academy
of Engineering.

Marc Snir is director of the Mathematics and Computer
Science Division at Argonne National Laboratory and Michael
Faiman and Saburo Muroga Professor in the Department of
Computer Science at the University of Illinois at Urbana-
Champaign. He received a PhD in mathematics from the He-
brew University of Jerusalem in 1979 and worked at New York
University, Hebrew University and IBM Research. His current
research focuses on software for extreme-scale computing.
Snir is a fellow of AAAS, ACM, and IEEE.



